
PRELIMINARY REPORT ON A PROGRAM FOR GENERATING NATURAL LANGUAGE

David McOonafd
MIT Artificial Intelligence Laboratory

Cambridge, Massachusetts, U S A

Abstract

A p r o g r a m f r a m e w o r k has been designed in which the
l ingu is t ic facts and heurist ics necessary for generating fluent
n a t u r a l l anguage can be encoded. The l inguist ic data is
represented in annotated procedures and data structures which
are designed to make English translations of already formulated
messages given in a primary program's internal representation.
The messages must include the program's intentions in saying
them, in order to adequately specify the grammatical operations
requ i red for a translation.

The pertinant questions in this research have been: what
s t r u c t u r e does natural language have that allows it to encode
mutifaceted messages; and how must that structure be taken into
account in the design of a generat ion facil i ty for a computer
program.

This paper describes the control and data structures of the
des ign and and their mot ivat ion. It is a condensation of my
Master's Thesis <1>, to which the reader is retered for further
i n fo rma t ion . Work is present ly underway on implementing the
design in LISP and developing a grammar for use in one or more
of the domains given below.

Introduction

At the p resen t t ime, t he re are in te l l igent , i n te rac t i ve
programs under development which will require greater fluency in
generat ing natural language than any current system can offer.
Th ree such programs, in part icular, are a personal scheduling
p r o g r a m (Goldstein <2>), a programmer's assistant <Rich and
Shrobe <3>), and the MACSYMA advisor <Geneserith <4>).

A characteristic of all these programs is that they wifl employ
models of their users - of their habits, and the things they are
l ikely to know in various situations. They will also maintain models
of themselves and their intentions as they reason and interact with
the i r users . This wi l l have a large effect on the design of a
suitable generating facility for them.

Level of f luency Desired
The sor t of conversat ions we hope these programs wi l l

e ven tua l l y be able to have are typ i f ied by the short example
be low, between a scheduling program (P) playing the part of a
secretary scheduling appointments for a professor, and a student
(S).

(S) 1 want to see Professor Winston sometime in the next few
days.

(P) He's pret ty busy this week. Can it wait?
(H) No, I need his signature on my petition before Friday.
(P) Well, maybe he can squeeze you in tomorrow morning. Give

me your name and check back in an hour.

These are ve ry f luent answers by human standards. The
word ing is colloquial - "pretty busy", "squeeze you in" - but at the
same t ime, it de l ibera te ly conveys useful information; casual
speech can give an impression of flexibility. Impressions like this
can be as important to the total message as the sentence's
preposit ional content. Similarly, the use of "well" at the beginning
of a reply can signal an admission on the part of the speaker that
the answer which follows may not be adequate. This realizes a
need w i t h i n the discourse situation that is proper)y part of
c o n v e r s a t i o n s among p e o p l e , and shou ld be i n c l u d e d i n
converstattons between computers and people.

A Separate Linguistic Component
The total process of generating language involves making a

large var iety of decisions and having available the information on
w h i c h to base them. The in i t ia l urge to speak comes f rom
somewhere to fulf i l l some need which must then be made more
p r e c i s e . Models of the audience, their present knowledge and
expectat ions, must be consulted. The available procedures for
put t ing together an utterance will never be totally adequate and
t h e r e f o r e compromises must be reached. Finally, the most
a p p r o p r i a t e l i ngu is t i c rep resen ta t i ons must be found and
o r g a n i z e d , p robab l y requir ing more compromise. Despite the
i n t r i cacy of this process, I believe it is both meaningful and
p r o f i t a b l e to d iv ide it two: decision making which requires
cognit ive/domain knowledge, versus decisions requiring linguistic
knowledge.

In some early communicating programs (Winograd <5>, Woods
<6>), linguistic and domain knowledge were freely mixed. This was
poss ib le because the programs only worked in a very small
number of situations where the relevant linguistics could be "built
in" . However, if, as seems to be the case, an extensive amount of
" l ingu is t i c reason ing" is requi red to meet the needs of more
s o p h i s t i c a t e d p rog rams (and peop le) , the the programming
dif f icul t ies of designing a mixed system become insurmountable,
(n.b. the more recent systems, Goldman <7>, and Slocum <8>,
incorporate essentially the same division as my own.)

A poss ib le ob jec t ion to this compartmentalization is that
peop le don' t wo rk that way. A grammar that is organized in a
d i f f e r e n t w a y than human grammar may have d i f f i cu l t i es
represent ing the same rules. People often consider the potential
impact on their audience of their use of particular words, or of the
o rdenng of their phrases. Poets, in particular, are certainly as
conscious of choosing syntax and meter as they ara of choosing
cognit ive content.

When I say that the generation process should be divided in
two , I do intend the strongest interpretation: namely, that the
" c o g n i t i o n " w i f l have t o ta l l y deve loped the message to be
c o m m u n i c a t e d b e f o r e any l i n g u i s t i c p r o c e s s i n g i s d o n e .
F u t h e r m o r e , the l inguistic processing should not change the
meaning in any way that the cognitive domain cares about, and the
message, once determined, should not be modified. This design
w i l l , i ndeed , not be able to behave as people do on the tasks
above.

However, I believe that computer programs will not be able
to motivate such behavior for a long time, and that the division in
the design is a useful one for the purpose of current research.
(In my thesis, <1>, I describe how the design might be upgraded to
handle increasingly sophisticated human linguistic behavior, and
wha t addi t ional informat ion such behavior would require the
cognit ive "component" to have.)

The Translation Process

In this design, the generation of English utterances in context
is seen as involving two, computationally separate components.
<AM of this work has been done in English, though there should not
be any dif f iculty in applying it in other languages.) Since there
are t w o components, there must be a communications channel
be tween them and a language which the cognitive component uses
to describe to the linguistics component what it wants said (the
use of the term l inguist ics component" in this paper only refers to
generat ion processes and not to interpretive processes, see <1>).

401

Messages
Before the linguistic component is called in, the main program

(for example <2>,<3>, or <4>) has as total a picture as it needs of
wha t is to be said. It Knows that it wants to mention certain
part icular entites and certain relations among them, and to achieve
• c e r t a i n e f fec t upon its audience. To communicate wi th the
l ingu is t ic component, this information is collected into a data
s t ruc ture , a "message". A message can be viewed as consisting of
t w o sorts of things.

1. A collection of pointers to the internal objects that are to
be talked about. The pointers ere annotated to describe how
the objects relate to each other and the message as a whole.

2. A list of features which characterize the primary program's
communicative intent in making that message.

The fo l lowing s t ruc tu re is en example of what a message
m i g h t l ook l i ke . The w o r d on the lef t of each pair is the
anno ta t i on , and the phrases on the r ight in angle-brackets
represent objects in the main program with roughly the meaning
of those phrases.

This message may be translated into the sentence: "Professor
Winston wil l probably be busy all afternoon".

The character of the translation
Translation from the internal representation of a computer

program to natural language is very much like translating from one
language to another, and the same problems arise. Basically, the
problems are that the same concepts may not exist as primitives in
each language, and that the conventions of the target language
may requ i re addit ional information that was not in the source
language. Translation, therefore, cannot be simply one for one

What English phrase should be used for a particular element
in the program's message will vary as a function of what is in the
rest of the message and of what the external context is. To allow
these factors to be adequately considered, the translation of an
element is carried out by special procedures called "composers"
which may take into account a wide variety of phenomena as they
do their translation.

Evary concept, name, s t ructure, process, or other ent i ty
wh i ch the main program might employ in a message wil l be
assoc ia ted w i th such a describing procedure. The association
might be a direct pointer from a unique name in the program to its
composer , or it might be der ived by examining " is-a" links or
" t y p e " features associated wtth the object (e.g. all things of type
" e v e n t " might share a composer) . Composers are run at
predetermined points in the translation process and are designed
to expect a particular computational/grammatical context at that
point.

The t rans la t ion to English, then, does not employ a single,
u n i f i e d g rammar , such as an ATN (<7>,<8>). Ins tead , the
grammat ica l in format ion is d is t r ibuted among the individual
composers. This is in part a matter of programming aesthetics,
and in p a r t due to a be l ie f that the attendant increase in
modularity and flexibility will make the grammar more tractable
and easier to improve.

Control Structure

With the grammar distributed among a very large number of
separate processes, the task of coordinating their actions becomes
of paramount importance. Roughly speaking, the translat ion
p rocess has this character: the intentions and objects in the

message will suggest (via their composers) strategies for realizing
themselves in English. However, these strategies may be blocked
or modif ied by general linguistic information in "the grammar", or
by the effects of decisions made by earlier strategies. (The term
" t h e g r a m m a r " r e f e r s to the co l lec t i ve in fo rmat ion in the
composers and thei r data s t ructures, rather than some central
body of constraints.)

The control structures required to implement this process are
t h e m s e l v e s , v e r y s imple , This is because the desc r i p t i ve
apparatatus of the grammar can provide a rich enough description
of the situation to direct the actions of the composers and keep
them, in effect, from tripping over each other's feet.

This would not be possible if it were not for the fact (hat
natural languages are very complex entities with rich structures.
In more concrete terms, this is to say that languages are made up
of a relat ively large number of types of structures (noun phrases,
function words, inflectional endings, modifiers, etc.) and that the
poss ib le arrangements of these structures are very highly
res t r ic ted - only a few combinations are possible. By encoding
this information into a system of features and data structures, and
then wr i t ing a grammar for the composers in terms of that system,
a tremendous, implicit coordination should be achieved.

This coord inat ion does not come automatically of course.
Since situations are defined in terms of features, a composer will
recognize where it is by using conditional statements involving
those features. The larger the number of possible situations that
a par t i cu la r composer may be run in, the more intr icate its
conditionals will be, and the harder the composer wilt be for the
human designer to wri te

Part of the job of cut t ing down on the complexity can be
done in the grammar by increasing each feature's descr ipt ive
p o w e r (and probab ly adding to their total number). The more
informat ion that a given feature codes for, then the more decisions
that can be made solely on its basis. An even more ef fect ive
technique is to closely control when the individual composers will
be run. This can provide implicit situational information. Also, if it
can be ar ranged that a decision, once made, seldom has to be
recons ide red , then a considerable overhead in mechanism and
composer code will be saved.

The requirement of linear order
One of the fundamental characteristics of natural language is

that utterances are necessarily made up of linear strings of words.
This requirment is an inescapable fact of the "physics" of natural
language and accordingly, it has been given a large role in
conveying information. It can realize propositional meaning and
r h e t o r i c a l i n t e n t , and permi t abbrev ia t ions th roughout the
ut terance tor example.

Fortunately for fhe program designer and the linguist, those
things that are ordered are not arbitrary clumps of words, but
r a t he r s t ruc tu ra l units (noun phrase, adverb, etc.) w i th two
important characteristics.
1. They seem (not coincidental ly) to describe categories of

experience which are natural to us as people and which we
wi l l probably want to introduce into our computer programs.

2. Linguistically speaking, they are very modular and can usually
be "moved" to several different positions within an utterance
to achieve rhetorical effects, and require only minimal, well
specif ied structural changes in each position.

The majority of the descriptive composers in the lexicon wilt
desc r i be their corresponding internal entit ies wi th just such
coherent grammatical structures. Most of the syntactic details of
these s t ruc tu res vary w i th posit ion in the sentence, I f these
composers can be given a guarantee that the posit ion of their
object wil l not be shifted as the utterance is further developed,
there wi l l be a considerable savings in the complexity of individual
composers and in the overhead required to manage them.

Two Phases
To provide this quarantee, the translation process is divided

into t w o phases. During the first phase, the message as a whole is
e x a m i n e d acco rd i ng to the in ten t ions g iven for i t and the
annotat ion for each object that it mentions. A "plan" is selected

402

for it (see below) which embodies the syntactic structure of the
ult imate utterance and which has "slots" in it into which the largely
" u n e x p e n d e d " objects of the message are transfered. In this
phase , all of the elements in the message which will involve
order ing conventions in their realization (translation) are found
end the plan modified to accomodate them.

Dur ing the second phase, the developed plan, which is
essential ly a constituent structure tree with the possible positions
expl ic i t ly labeled, is "walked" from left to right and top down - as
it would be spoken - and the objects in it are described by their
composers as they are encountered. With the "proto-utterance"
r e p r e s e n t e d in its surface st ructure form during this phase,
relat ionships become apparant which could not otherwise be seen.
These include the possibilites for pronominalizing elements, and
the actual scope of quant i f iers. These can be dealt wi th by
syntactic procedures associated with the features and grammatical
units in the plan

Data-directed processing
In both phases, control is data-directed, lr the first phase,

the data structure being interpreted is the message, and in the
second, it is the plan that was chosen and filled in during the first
phase. This is another source of coordination for the composers
since the control of their order of execution is now governed by
st ructures which can be wri t ten to be very rich in grammatical
information

Let me summarize what has been said so far. This design
proposes that a very loose, modular framework can be used in
language generation; that it will be most convenient if the domain
and audience specialists in the program be allowed to work out
their message independently of its ultimate linguistic details; and
that when the time comes to consider the linguistics, the process
should be viewed as a translation which is performed by a large
number of specialist procedures associated wi th the possible
things which may appear in a message. The operation of these
specialists can be coordinated implicitly by the grammar and data
st ructures that are developed.

In the rest of this paper, 1 will describe some of operations
and structures of this design in more detail

Plans

All natural language programs and linguistic theories employ,
in one form or another, a tree structured constituent analysis of
their sentences in terms of the traditional grammatical units. My
design is no different, except that I have found it necessary to
augment the usual descriptive framework to make it capable of the
task at hand. This has resul ted in the data structure 1 call a
"plan".

The pr inc ip le funct ion of plans is to mark the possible
posit ions in a grammatical unit, in terms of a fixed vocabulary of
slots auch as "subject", "mam verb", "post-verb-modifiers", and so
o n . T h e s l o t s in a p l an are a r r a n g e d in a f i x e d o r d e r
co r respond ing to the normal English surface structure. For
example, if we used the grammar developed by Winograd in his
SHRDLU program <5>, the slots in a noun phrase would be as
fo l lows.

Since the slots are named, they can be referred to directly
f rom with in the grammar, rather than requiring some complicated
t ree walk and string matching operation as in PROGRAMMAR <5>,
or in transformational grammars. The grammar can, for example
when it is doing verb agreement, ask what is the number of the

object in the subject slot, or, when considering using extraposition,
ask if the subject will be described using a clause.

The major motivation for naming the possible positions within
a grammat ica l unit involves more than convenience in wr i t ing
grammatical rules. The basic operation during the first phase is to
insert another element from the message into an established plan.
To do this, the composing procedure must know: 1) what positions
are open in this plan where it is grammatically leasable to put this
e lement ; and 2) if more than one position is available, in what
ways do their properties vary so that a reasoned decision can be
made as to which one is best in this case.

When the possible positions in an utterance are marked with
un ique names, it becomes possible to associate grammatical
information with them to use in situations such as above. Most of
th is in fo rmat ion wi l l probably reside directly in the relevant
composers, but some wil l be used by functions which mediate the
insert ion of an object into a slot.

The function of such mediation is to relieve the composers of
the need to know low level syntactic information. The verb group
is a prime example. Because of the intricacy of its syntax, it will
be convenient to have only one slot, VG, in a clause or verb
phrase plan, and let a function associated with VG manage a full
ve rb group plan below it. The function determines what sub-slot
should be fil led (perhaps even changing the actual configuration of
the slots) and adjusts the features of the group if necessary. This
w a y , the bulk of the composers no longer need to know about
deta i ls such as: "if you add a modal verb ("would") to a verb
group, you have to add a marker to the main verb to inhibit the
later morphological expression of tense"

Plans are associated with grammatical units, with possibly a
separa te plan for each set of grammatical features that a unit
might have, reflecting the different slots that may be present in
each case. By knowing the features of a unit, a composer wi l l
know exactly what slots to expect it to have. The next section has
examples of how plans are used.

Translating a Message

Most of the work in the first phase is done by organizational
c o m p o s e r s assoc ia ted w i t h the in tent iona l fea tures on the
messages . Each such composer w i l l include code wh ich
understands the possible annotations that typically are mentioned
w i th such intentions, and which will govern their insertion into a
p lan at the p roper time. Consider the example message given
earl ier and repeated here.

Mere, the organizing composer will be associated with the feature
"predict ion" . Typically, one element of the message will be most
important and is translated first. The others will probably refer to
i t and may need to be rea l i zed inside the plan that i t was
t r ans la ted into. In this case, the prime element is the one
annotated "proposit ion", an object of the sort "status of a person".
Plan selection is done by the descriptive composer for this sort
and is guided by further characteristics of the object. The lexicon
wil l record that the type property <busy> must be realized as a
predicate adjective. This leads to the following, partially filled in
plan.

)

403

The rest of the message is t ransferred by the predict ion
composer chunk by chunk. Predictions are of future events, so
"w i l l " is added to the verb group; the "hedge", <70% chance> will
be real ized as an adverb, say, "probably", and so it is added to the
a d v e r b slot in the verb group; and " t ime-predicted" is a time
mod i f ie r to the clause, making it part of the post-sentent ia l -
modif iers. With the entire message transfered, the plan looks like
this.

Annotat ing Composers
To proper ly fit the pointers/objects in a message into a plan,

the o rgan iz ing composer must know what sort of grammatical
object they will be. This can not always be directly deduced from
the nature of the annotation on the message. For example, in this
s e n t e n c e , t h e " h e d g e " might we l l have been an o b j e c t
corresponding to the phrase "unless something comes up", which is
a bound clause and would have to go at the end of the post-
eentential-modif iers.

The necessa ry i n fo rma t i on can be maintained by each
descr ipt ive composer as a permanant annotation in the form of a
f e a t u r e l ist which descr ibes what sort of grammatical unit it
cons t ruc ts . To check this for an object in the message, an
organizing composer will look up the object m the lexicon to see
what composer will describe it, and then read the annotation on
that composer. In this case, the features might be "(adverb event-
modifer)", versus "(clause bound conditional)"

An Example of a Composer

Each of the objects m a message will eventually be described
by a general descriptive composer which is keyed to the sort of
object that they are, plus additional information associated with
the names in each object . As there are "sorts" of objects in a
program, there will be descriptive composers in the lexicon. Some
sorts might be reasons, actions, people, appointments, activities,
times of the day, and so on. This design makes no restrictions on
the poss ib le composers; only that they should reflect what
proper t ies objects have in common and common ways that they
can be descr ibed. Individual objects wil l usually only supply
parameters to their composers, but some may be idiosyncratic and
instead point to complete words or phrases or to specially tailored
composing procedures.

Actions
Ac t i ons are th ings that something does: "making an

appointment", "evaluating a procedure", "defending a chess piece",
e tc . The funct ion of "the action composer" is to set up the
syn tac t i c environment that all actions have in common. In this
analysis, actions are realized as verb phrases, with the internal
name of the action indicating in the lexicon what the verb should
be, and the objects asociated with the name (if any) becoming its
syntactic objects in the phrase.

An example of an action in a likely internal representation
might be the following (in a programmer's assistant)

We might see this in an utterance like it is necessary to set the
value of swi tch l to nil before leaving this routine".

The first thing any composer does when it begins to run is
f ind out where it is. In the above utterance, the location would be
in the second phase, with the action-object in the "complement"
slot. Other slots where actions could occur are "subject", and as
the mam-propos i t i on in an answer to a question. With the
si tuat ion known, the composer might dispatch to a particular block
of code which handles that s i tuat ion, but in this case, the only
d i f ference is that complements must have infinitival verbs. This is
done by adding a feature to the verb group at the end of the
operat ion.

Al l actions y ie ld verb groups, so the composer begins by
replacing the pointer in the complement slot with a syntactic node
for a verb group. It must then get a plan for this verb group, and
f i l l in the appropriate slots of that plan with the subcomponents of
the object. Then it is finished and the node and plan are in turn
re f ined by their own composers as the second phase controler
walks along the plan to them.

The information on what plan to use and what transfers to
make is part of an object's specific lexical entry. To get at it, the
action composer must know what property of the object describes
its st ructure (of course, the programmer must see to it that such a
p roper ty exists) and then follow tt into the lexicon for a plan and a
mapping of properties on the object to slots in the plan. For the
example action this entry is given below.

Note that this plan is not so much a grammatical skeleton as a
var iabl ized English phrase. With such information in the lexicon,
t h e a c t i o n composer can employ s t r a i g h t f o r w a r d p a t t e r n
subst i tut ion functions to finish its job.

The Syntactic Environment

The primary operation in the second phase is to describe the
chunks of the message that have been embedded in the plan. This
is done by walking the plan wi th a simple controler to run the
composer for each object as it is encountered; print out the
words given, l i terally, and ignore any empty slots. Since a plan is
esential ly a constituent structure tree, walking it topdown, from
left to right results in words being uncovered (and "spoken") in
the same order as would occur if a human were making the
ut terance. At the same time, parts of the plan further on, which
have not yet been walked, retain their unexpanded character,
present ing those characteristics which may be important to know
in decis ions involv ing the whole utterance while hiding those
details that are unimportant.

This points out that plans can be viewed as providing an
environment ihat composers can ask questions of. Some questions
are easy because their answers are represented directly ("what is
the t ransi t iv i ty of the main verb?") and others are much harder
because they must be computed Ctrt there any intervening noun
groups between me and that previous occurance of me way back

404

t h e r e ? " - needed for r e f l e x i v e pronouns) . However , in
e n v i r o n m e n t s w i t h d i f f e r e n t s t r uc tu res than that o f p lans,
answering such question could become simple.

Such addit ional environments could be created as a side-
e f f ec t of the construct ion and walking of a plan. Because the
w a l k i n g fo l lows the temporal order of the generation of an
ut terance, it readily marks what the audience can be presumed to
know at any given point.

I have not yet done any work on determining just what such
paral lel environments should look like. That will come as grammars
are wr i t ten for this design. However, it is clear that they must
encode some very subtle aspects of what the audience knows, and
should describe the syntactic situation in such a way as to guide
pronominalization and "deletion" of later structures.

Pronominalization
Pronominal izat ion is only one instance of a very general

phenomena in language which "encourages" the speaker to
abbreviate their utterance wherever possible. Languages contain
conventional structures which themselves mark the relationships
that are going on, so that the actual words need not be physically
present (e.g. equi-np-deletion: "John is ready to please" - the
subject "John" does not need to be repeated with each verb).

Often conventions which allow potential descriptions to be
omit ted take into account semantic information that the audience is
assumed to share. For example consider the sentence "White's
knight can take a pawn". What is interesting here is that there is
no need to say "... take a black pawn". Presumably, it is what we
know about the semantics of " take" in chess games - that its
subject and object will be pieces of opposite colors - which has
taken effect here.

Every composer describing an object will have to examine the
"discourse" environment to see if it would be most appropriate to
use a pronoun or otherwise cut down on the normal amount of
descr ipt ion.

Quantif ier Scope
Cer ta in re lat ionships become apparent during the second

phase that can not be seen at other times. Cic very important
one is quant i f ie r scope Certain accidental misreadings can be
generated as the plan is walked, precisely because the individual
c o m p o s e r s w o r k i ndependen t l y of each other . This can be
cor rected by introducing "global" syntactic processes associated
w i th the grammatical units, which can "monitor" the activities of
the composers and insert corrective patches when necessary.

Situations in the grammar where such accidents are possible
must be identif ied and routines designed for them. Then, when
any syntac t ic unit is en tered by the second phase controler, a
check wil l f i rst be make for any monitoring routines, which are
then run before going on.

One situation that would be checked for would be that of a
v e r b f o l l owed by a conjoined object. The monitor would be
associated with the verb group and go to work if it saw that a
conjoined noun phrase followed. The problem is that the structure
"(are (not A) and (B))" is usually misinterpreted by people as "(are
not (A and B))" wi th the scope of "not" inadvertently taking in 8 as
wel l . The monitor must watch as the first conjunct ts described,
and if it begins w i th "not" , it should patch the construction by
c o p y i n g the " a r e " after the "and" - "(are not A and are B)". A
r e p e t o i r e of such monitors and patches witl be required in the
grammar.

Present Directions

The design that I have described here (see <1> for greater
de ta i l) rep resen ts some contentions about what a very f luent
"generat ion grammar" for English must deal with, and what control
and data structures will be convenient to write that grammar in.
At this wr i t ing (June 1975), a LISP implementation of the design is
wel l under way, and it is anticipated that part of a grammar can be
comp le ted be fo re the end of the summer. However, unti l a
work ing grammar exists, and the generator has been interfaced
w i th some primary program, many of the things described in this
paper remain contentions which I believe to be true, but which
may t u r n out to be wi thout substance, necessitating possibly

drastic changes in the design. In particular, the program has made
these assumptions.

1. That the candidate primary programs will have a sufficiently
r ich organizing structure that very general composers can be
w r i t t e n , cut t ing down on the bulk of the lexicon, and that
associating objects with composers will be a straightforward
thing to do.

2. Tha t the messages cons t ruc ted by a main program wi l l
naturally be translatable without editing. Some problems in a
message could be patched by the grammar, but others, like
too much necessary embedding, could not be fixed without
going directly back to the program and "explaining" that some
material must be cut, letting the mam program decide what is
to be left out.

3. The proposed grammar depends on having good information at
all t imes, o the rw ise , the composers may thrash and wi l l
continually find themselves in unanticipated situations. This
in fo rmat ion wi l l be encoded in a system of features and
possible plans and slots. It must be possible to devise an
adequa te grammat ica l sys tem, or else the resu l t ing
inefficiences may swamp the generator.

4. The grammar will organize linguistic constructions in terms of
the reasons why speakers use them. However, the reasons
for using the bulk of the constructions in English are poorly
understood. It is hoped that a combination of the fact that
programs are presently rather simple minded compared to
humans, and that ini t ial hunches about the use of those
grammatical constructions which are called tor will be close to
c o r r e c t , wi l l make it possible to wr i te a grammar without
unmanagable gaps in it.

Some people in A. I . have said that language generat ion is
"easy". Basically I agree with them. I think that the structure of
language is wel l enough understood that we should be able to
have our programs speak in very fluent English without excessive
research. As in many things, however, to make a system "easy" to
work wi th seems to require first introducing a rather complicated
s t r u c t u r i n g f ramework in order to separate out its component
inf luences into managable chunks, and let the messy interfacing
details work themselves out, away from our view.

405

