A STUDENT-ORIENTED NATURAL
LANGUAGE ENVIRONMENT FOR LEARNING LISP

Richard O. Hart
University of New Hampshire
Durham, New Hampshire

Elliot

Philadelphia,

Abstract

A computer-based instructional environment for
students learning LISP is described. Its design
includes a LISP Interpreter with an extended
error-handling capability for evaluating functions
written by students. Students can ask questions
in natural language about LISP in general and con-
cerning specific LISP functions which they have
defined. A fuzzy parser interprets the student
requests and builds a LISP function which operates
on a semantic network to determine its response.

Introduction

As an application area of Artificial Intelli-
gence, computer-aided instruction (CAIl), has re-
ceived considerable interest (1). Carbonell's
SCHOLAR (2) is perhaps the best known example of a
"mixed-initiative" CAl system. Through SCHOLAR,
students can ask questions about concepts relevant
to the geography of South America.

Koffman and Blount (3)
tem to teach machine-language programming.
system can generate programming problems, and mon-
itor and assist students in coding their solution
programs. This system concatenates a small set
of problem primitives and associated solution rou-
tines in order to create and solve meaningful pro-
gramming problems.

have developed a sys-
This

Natural language understanding is becoming
important In CAl system. Many powerful par-
sers have been developed for very extensive sub-
Bets of English including Wood's parser (A) and
Vinograd's PROGRAMMER (5). These methods are be-
ginning to be of use for question answering sub-
systems and for interpreting student responses.

more

Of particular Interest is the work done by Brown
et al (6). It is his semantlcally driven fuzzy
grammar that has Influenced this research.

Brown analyzed student scenarios Involving
electronic circuit trouble-shooting and discovered
that the concepts and items discussed fell Into

small numbers of semantic groupings or categories.
These included: measurements, control set-
tings, circuit elements, and circuit locations re-

lative to the electronic circuit. The parse was
then accomplished by anticipating and looking for
phrases which matched these semantic categories
where they might be appropriate. The parser's
fuzzlness stems from the fact that words that are
not understood can be skipped over.

Teaching a programming language embraces two
major tasks. One is presenting new material In an

B.

Koffman
Temple University
Pennsylvania

391

orderly controlled fashion. The other involves
making available a friendly, informative environ-
ment that allows experimentation, and that can re-
cognize errors and misconceptions and point them
out. With ISLE (Interactive Student LISP Environ-
ment) we have concentrated on this second item by
developing a computer-based environment for LISP.
The system knows about the structure and semantics
of the LISP language and can answer questions
about LISP data structures, concepts and functions;
both those functions defined by the student and
the primitives internal to the system.

As an example consider the following dialogue:

STUDENT: 1Is Atom a function?

MACHINE: Yes, Atom is subr.

STUDENT: How many arguments does it take?
MACHINE: Atom is a subr and takes 1 argument.

Notice that questions are answered With a
complete statement to avoid any ambiguity, also
note the use of the pronoun it by the student.
Some limited anaphoric reference Is permitted by
the system to allow a more natural dialogue.

STUDENT:
MACHINE:

Describe 1t.

Atom is a subr. and a predicate func-
tion, It returns true {(the Atom T)

if its argument is an atom, nil other-
wise,

STUDENT
MACHINE:

Yhat is an Atom?

An Atom 1s the moat elementary type
of s-expression. It may be either a
number or a literal atom.

Some worde like atom can refer to more than
one thing. The correct reference 1s found by look-
ing at the context of the word and making a de-~
cision based on plural markers, determiners, or
qualifying adjectives.

STUDENT:
MACHINE:

Are property lists kinds of lists?

A property or P list is an alternating
list of literal atom property names
and corresponding property values,

It can be searched using the function
GET.

Subset-superget and part-part of relationehipas
are used extensively by the system for answering
questions of thie type. A yes answer 1s implied
here by giving the student a definition of the sub-
get item.

DEFINE (((FACT (LAMBDA (X) (COND
((ZERDO X) 1)
(T (TIMES X (FACT (SUB1 X))))))M))

STUDENT:

MACHINE: Arguments for Fvalquote:

DEFINE

(((FACT (LAMBDA (X) (COND{(ZEROO X) L) (T(TIMES X

(FACT (SUB1 X))}))))3))
VALUE 18:
(FACT)

Any student input that has the form of a func-

tion followed by an argument list {s assumed to be
Here the student defineas

input for the evaluator.
a function to compute factorials.

STUBENT: FACT (3))

MACHINE: Arguments for Evalgquote:
3)
VALUE IS:

Undefined function found.

It 1s ZEROO found in the function fact.

In defining FACT the student mistyped ZEROP.
The error is found during evaluation and returned
to the student. Notice that terminating symbols
are necesaary at the end of each student input
line. They may be periods, question marks or an
extra right parenthesis.

STUDENT:
MACHINE:

PRINT FACT
(LAMBDA (X) (COND & &))

When printing function definitions, only the
highest elements of the definitlion appear; lower
level structures are replaced with &.

J2P.
((ZEROO X) 1)

STUDENT:
MACHINE:

Now using commands to the editor, the student
looke at the lower level where he remembers ZEROP
should go.

STUDENT:
MACHINE:

1 (1 ZEROP) P.
(ZEROP X)

The error 1e now corrected and this can be
checked by evaluation or by asking another ques-
tion.

STUDENT: Does FACT call any undefined func-
tions?
MACHINE: FACT calls no undefined functions.
STUDENT:
MACHINE:

FACT (3))

Arguments for Evalquote.
FACT

(3)

VALUE 1S:

6

The parser and the semantic rountines work
together to answer factual questions about the
LISP language, its data structures and functions,
and about the functions the student has defined.
The parse mechanism has a semantic basis in that
specific words or phrases are looked for that re-
fer to things the system knows about, i.e., func-
tions, definitions, or entries in the semantic
network. These items are divided into groups or
categories that are semantically similar

items are those that

might fit in a given slot in a sentence or ques-
tion, and that fall into a superset classification
such as data structures or function names. The
result of the parse is an executable LISP function
whose evaluation causes a response to be generated
for the student

Semantically similar

The evaluator evaluates student functions
when called upon, accepting nearly any LISP 1.5
constructions. When student errors are found, it

reports the type of error and in what function it

occured to the student. Editor commands can be
used to look around inside of function definitions
and to insert, delete, and change parts of the

definition.

Semantic Categories

The ISLF- system uses four semantic categor-

ies. These categories allow the parser to be
somewhat selective in choosing what to look for
next while processing the student's input. The
semantic categories are the following: (1) Func-

tions (2) function data structures

(A) other general

types (3)
concepts.

Each semantic category is represented in the
implementation by a LISP function which will
check, beginning at the head of the current sen-
tence, for a phrase that matches an element in
that category. Depending on the fuzziness set by
the grammar at that moment, one or more of the

initial words in the current sentence may be

skipped.

The first semantic category is that of func-
tion names. It is represented in the grammar by
FNNAME. This category consists of all functions

that are currently defined in the system; that
is, all SUBRS and FSUBRS plus any functions that
may have been defined as EXPRS or FEXPRS by the

System Organization

user. FNNAME and the other three semantic cate-
gory matching routines all operate in the same
manner. They operate like any other grammar rule
function in that they accept some tail of the in-
put sentence. They can return NIL if they find no
match at some point In that tail. If they do find
a match, they return the next tall (consisting of

The system is built around several subnodules
as shown In figure 1. Each stud ent command or re-

quest is received by the monitor where it is clas-
sified as input for either the editor, the eval-
uator, or the parser. Any input which is not

either a list of edit commands or a function fol-
lowed by an argument list is assumed to be a re-
quest for information and so is passed to the
parser. Anything the parser cannot handle is re-
jected and the student is asked to rephrase or
break up the question.

392

the original tall minus the matched portion).

They also set the atom RESULT with a global
(CSET) value that specifies what semantic elements
were matched along with their semantic category.
As an example, consider the tall "THF FUKCTION
FACT CALL ANY SUBRS passed as an argument to
FNNAME. (Perhaps as part of the question: "Can
the function FACT call any subrs?") FNNAME would
match the three words 'THE FUNCTION FACT. It
would return the tail, 'CALL ANY SUBRS' and set
the value of RESULT to the list (FN FACT). FACT

18 the semantic entity matched, while FN represents

the category, function names. Table 1 shows some
phrases that might be matched by FNNAME and the
corresponding value of RESULT generated.

Table 1
Translations by the function FNNAME

Input Phrase Value of RESULT

"CAR' (FN CAR)
'CAR and CDR’ (FN CDR CAR)
'THE TWO FUNCTIONS CAR AND CDR' (FN CDR CAR)
"THE 3 FUNCTIONS X, Y, AND Z' (FN Z Y X)

Table 2
Translatione by the function ¥N/TYPE

Input Phrase Value of RESULT

'FSUBRS AND SUBRS' (FTYPE SUBR FSUBR)
*ARITHMETIC AND BOOLEAN FUNRC- (FTYPE BOOLEAN

TION' ARITHMETIC)
'A CONDITIONAL FUNCTION' (FTYPE CONDITIONAL)
'FUNCTIONS' (FTYPE FUNCTION)

The semantic category consisting of function
types is represented in the grammar by FN/TYPE.
The operation of this function is very similar
that of FNNAME. In this case, a word or phrase
that somehow describes or classifies a group of
functions is looked for. This includes function
types like expr, subr, fsubr, and fexpr as well
things like arithmetic functions and conditional
functions.
will be produced for a few input phrases.

to

Perhaps the largest semantic category is that
consisting of LISP data structures. This is rep-
resented in the grammar by STRUCTURES and in the
implementation by a function of the same name.
Table 3 shows some of the phrases accepted

category by the function STRUCTURES.

The fourth and
as a catch-all
other three.

last semantic category serves
for anything not included in the
This category is represented by

CONCEPTS in the grammar and the implementation. A
few phrases recognized by the CONCEPTS function
are shown in Table 4.

Table 3

Translations by Structures

as

Table 2 shows the value of RESULT that

in this

Input Phrase Value of RESULT

'ATOM' (STRUCTURE ATOM)

'A and P LISTS'® {STRUCTURE A-LIST P-LIST)
'A LAMBDA EXPRESSION’
'"DOTTED PAIRS' (STRUCTURE DOTTED-PAIR)
Table 4

Translations by Concepts

(STRUCTURE LAMBDA-EXPRESSION)

Input Phrase Value of RESULT

'GARBAGE COLLECTIONS® (CONCEPT GARBAGE-~COLLECTOR)
'LISP’ (CORCEPT LISP)
‘A FREE VARIABLE' (CONMCEPT FREE-VARIABLF)

The Grammar And Tte Implementation

The heart of the English understanding com-
ponent of the system is a BNF grammar. After a
line has been read in, an interpretation of it is
attempted. In the SOPHIE system (6), every non-
terminal is considered a semantic entity to be
searched for when necessary. In the ISLE system,
however, only a few of the rules are actually con-
cerned with semantic entitles or categories.

These semantic entities are defined as only those
things which have entry in the semantic network.
The rules which embody certain semantic groups
have already been described. The rest of the

grammer rules are used to identify requests for
certain relationships or properties of the seman-
tic entitles.

Most programs which make use of a grammar use
some kind of parser or grammar interpreter. This
parser (a program) then uses a table or array in
which the grammar rules are stored (data).

Special control structures must be set up to con-
trol backing up when an incorrect parse is begun.
In ISLE, this grammar is implemented directly in
LISP. For each rule (nonterminal) in the grammar,
there is a corresponding LISP function with the

same name implementing that rule. The LISP con-

trol structures make this implementation relative-
ly easy due to the recursive definition of LISP
functions in general and the use of the special
built-in functions; COND, AND, and OR. Backup is
automatic as each rule-function can let its cal-
ling rule-functions know of its failure on return.
All pointers and variable values will again be

those originally set in the calling function.
There is nothing to undo or redo as the LISP con-
trol structure handles this automatically.

The Semantic Routines

The parsing operation, if it is successful,

will produce another LISP function to be eval-
uated. Some of these functions and the sentences
that produced them are given in Table 5. Each is
a call to a predefined semantic routine. The

functions FN, FTYPE, CONCEPT, and STRUCTURE re-
trieve the desired semantic information for their
arguments. In this way words such aa ATOM are
disambiguated. For example, (FN ATOM) will re-
trieve information relevant to the function ATOM,
while (STRUCTURE ATOM) will retrieve the Informa-
tion for pronouns which it does by matching its
arguments against the semantic categories of prev-
iously mentioned items.

Table 5

Sentences and their Translation into LISP Functions

393

IS ATOM A FUNCTION?
(RELATE (FN ATOM) (FTYPE FUNCTION)

HOW MANY ARGUMENTS DOES IT TAKE?
(ARGCOUNT (LIST (PREF FN)))

DESCRIBE IT,
(DESCRIBE (LIST (PREF FN FTYPE CONCEPT
STRUCTURE)))

WHAT 1S AN ATOM?
(DESCRIBE (LIST (STRUCTURE ATOM)))

ISLE's semantic routines are all specialists
for answering their own type6 of questions. Some
take information directly from the network to be
ftiven to the student or to be used in comparison
or relationship tests. DESCRIBE, for example,
gives the student a pre-defined definition or des-
cription if it exists. In the case of student
defined functions, it tells the student the type
of function it is. RELATE reports on 'superset’,
'subset’, and 'part-of relationships between Its

argument, or in the case of student defined func-
tions—the actual function definition, to tell how
many arguments a particular function has.

The permanent semantic Information used by
these functions is set up as association lists of
relationships and values for each semantic entity.
Table 6 shows this Information for the structural
Iltem atom. The value of the relationship TEST is
the name of a predicate function which teste for
the associated semantic entity. In this case, the
function ATOM tests for the structure which Is an

atom. TYPE and TYPE OF indicate subset and super-
set relationships, and DESCRIPTION indicates a
literal definition of the item.

Table 6
. Semantic Information for the Structure Atom
({ TEST . ATOM)
(TYPE OF . (S-EXPRESSION INDICATOR))
{ TYPE . (LITERAL NUMBER))
{ PART OF . (S-EXPRESSION DOTTED-PAIR LI1ST))

{ DESCRIPTION . ((AN ATOM IS THE MOST ELEMENTARY
TYPE OF S-EXPRESSION (DOT))
(1T MAY BE EITHER A NUMBER OR A LITERAL ATOM
(DOT))1)})

Other, temporary Information that might be
used by the semantic routines can be created and
changed in various ways. When a student defines
a function, the function is analyzed and lists of
the variables It binds or uses and the functions
It calls are created. This information is used by

the routines which handle questions about the
student's functions and Is updated whenever a
function is edited or redefined. The editor and

the evaluator also store information that could be
used by the question-answering system. This Is
done whenever errors occur and includes Informa-
tion about the current state of the evaluator or
editor (e.g., the association list) and the cause
of the error. This would allow the student to ob-
tain more information about the source of the
error and what the evaluator (or editor) was doing
before the error occured.

Knowing About Student Defined Functions

Knowledge concerning functions defined by the
student falls into two distinct categories. The
first is the category that might be called seman-
tics; that is what the function does (or should do
or perhaps what the student thinks It should do).
This involves why the function does what it does,
when it does it, and how it does it. The other
category is that of syntax or function structure.
The function structure consists of only the infor-
mation contained in Its definition—the functions
It calls, the variables It binds, sets, or uses,
its arguments and any dlscernable relationships
between these basic components. We have concen-
trated on this second category and ignored the
first one. This system handles knowledge of user's
or student's functions in two places. First the
functions must each be scanned as they are defined.
Information concerning the use of variables and
function calls is recorded to be used by the

semantic routines when needed. This is a sort of
preprocessing to collect information for the se-
mantic routines.

During the scan, the following properties are

394

representative of the ones set up on the function
name's property list:

VFNS- variable functions; those functions
that the given function calls which are
not defined.

EFNS- EXPR'S~ those EXPRS that the given
function calls,

SFNS- SUBR's-those SUBR'S that the func-
tion calls.

SETVRS- those variables which the func-
tion mets.

BINDS- those variables which the function
binds, those that are found in PROG and
lambhda expression variable lists.

These properties are then used by the seman-
tic routines which anawer questions about the
user defined functions. These fnclude questions
like:

WHAT VARIABLES DOES FOO SET?

DOES FIE CALL FUM?

DOES FOO CALL ANY SUBRS?

WHAT VARTABLES ARF. BOUND BY FUM THAT FOO
SETS?

to these semantic routines has been
the answer to the question Is easily
through the use of the above property
the desired functions.

Once the call
generated
determined
values for

Problems Encountered

The problems encountered
natural language seem to fall Into four separate
areas. It is difficult to measure the extent of
each of these problems at present. There are vi-
able approaches to the solution of each which
should be examined.

in dealing with

a) The use of adjective and modifying phrases.
Students can be expected
various things concerning their programs in many
different ways. At present, modifiers are looked
for by the grammar at certain points and then

ignored or, if necessary, used in writing the se-

to try to describe

mantic interpretation functions. Problems can
occur when one of the basic semantic entities is
used as a modifier, for example In phrases like

LIST VARIABLES and VARIABLE LISTS.
would be solved by adding more
semantic network. The parser could then use this
Information to decide how to handle the semantic
entitles when they are used as either modifiers or
as nouns. Certain other modifiers that are not
classified as semantic entities should be Included
in the network to allow variations of meaning to
be understood that are now ignored.

This problem
information to the

b) Cause and effect relationships.

Often during the writing and debugging of a
program, students will want to ask 'What happens
if ..." or Why questions. To answer questions
of this type it Is usually necessary to compare

desired with actual results. It Is also necessary
to know about various side-effects that might oc-
cur such as setting global or free variables.
The information necessary to handle such questions
could be obtained by tracing the evaluation of

the student's functions. This could then be
checked for validity in some way (i.e., compared
against some desired result) or reported back to
the student. It would also be useful to allow the
system to simulate the evaluation of certain forms
or lisp functions. This might take care of a

large class of 'what happen if . ..' type questions.

Others might be handled by adding more information
to the network, (i.e., that an error will occur
when CAR is called with an atom as its argument).

At the present, none of these cause and ef-
fect type questions can be asked because of a lack
of the necessary semantic information. If it were
available, the addition of a few more rules to the

grammar would allow many such question to be asked.

c) Verbs and action relationships.

The system now can only handle simple binary
relationships between the semantic entities known
to it. These relations can only describe static
situations such as subset-superset (an EXPR is a
FUNCTION), part-part of (a VARIABLE LIST is part
of a LAMBDA-EXPRESSION) and function structure
(function X can call function Y). When talking
about writing and using LISP functions, students
often need to use verbs specifying actions or re-
lationships involving two or more things. These
verbs include the following among others—DO,
MAKE, EDIT, CHANGE, INSERT, STOP, and REMOVE. A
taxonomy of the ways students use these verbs
would be very helpful. The number of such verbs
that might be needed may be small enough to keep
the system relatively efficient. The best place
to try this would be to attempt some additions to
the grammar that would allow the student to edit
LISP functions using English sentences instead of
edit commands. Most edition operations involve
actions on various object and subject nouns.

d) Pronouns, anaphoric deletion, and ellipsis.

Students often use pronouns or leave out
words completely that might seem obvious. We have
attempted to allow the use of pronouns, but in
some cases the results are not the desired ones.
For example, the following dialogue:

STUDENT: What are atoms?
MACHINE: An atom is the most elementary type
of s-expreassion
It may be either a number or a 1lit-
eral atom.

STUDENT: How many arguments does PLUS need?

MACHINE: PLUS is a FS5UBR and can take any
number of arguments.

STUDENT: Describe them.

At this point the system would not have rec-
ognized the relationship between 'PLUS' and ‘'ar-
guments* due to Its inability at present to rec-
ognize the relationship between modifier and modi-
fled entity. A very minimal history of the pre-
vious dialogue is kept so that, although the sys-
tem remembers that PLUS was discussed previously,
it does not remember that it was its arguments
that were in question. Therefore, the system
thinks that 'them' refers to 'atoms' and not the
arguments of PLUS, and describes an atom. This
particular problem could be solved by handling

395

modifiers in a better, more consistant manner
and by keeping a more complete history of the
previous dialogue.

The handling of anaphoric deletion and el-
lipsis is, however, even more difficult. The
following, seemingly natural dialogue, would not
be accepted:

STUDENT: IS X AN ATOM?
MACHINE: YES, X IS AN ATOM.
STUDENT: AND Y?

The student has deleted most of the question
"IS' Y AN ATOM?" assuming that Y is to be substi-
tuted for X in the previous question. There are
many similar deletions to be found in nearly any
natural dialogue. Verbs, subjects, object, modi-
fiers, or any combination of these might be dele-
ted. A study and classification of the various
types of ellipsis that might occur in a student-
teacher dialogue would be very helpful here.

The most important lesson learned concerns
the Interaction of semantic and syntactic infor-
mation in dealing with and understanding natural
language. Heavy use Is made of semantic infor-
mation during the parsing operation. A parse will
in fact fail If it does not make sense based on
what the system knows, even though it may be syn-
tactically correct.

The shortcomings here involve the structur-
ing and use of the semantic information. There
is a large literature describing how to form and
use grammars and other syntactic structures; how-
ever, similar studies for semantic structures are
not yet available.

There are many models under study such as
semantic networks and conceptual models (7).
However, as yet, there are no definitive measures
of the capabilities and limitations for these
various techniques. Also, there are no studies
comparing various means of Implementation and the
storage requirements of these model**. Hopefully,
research along these lines would aid those at-
tempting to use these models for CAIl In other ap-
plication areas.

Conclusions

This system is undergoing continued develop-
ment. The question-answerer is being expanded to
allow the student to get more of the Information
he or she might want and to perform more edit
functions in English.

ISLE Is implemented in LISP which runs inter-
actively on an IBM 360/65. This Interactive LISP
is an improved version of the Waterloo LISP which
uses a cathode-ray display as the active user
terminal. The system runs in 250k bytes of mem-
ory. Each question is processed in one second or
less.

Preliminary indications are that the system
will serve as a useful tool for familiarizing a
student with LISP concepts. The question answer-
ing capability allows a student to inquire about
the semantics of LISP; he can use the LISP stu-
dent evaluator to test his knowledge of LISP syn-
tax and to help him correct his errors. The ex-

panded diagnostic information presented should help References
hire clear-up initial misconceptions and ease his

transition from ISLE to the standard LISP evaluator (1) E. B. Koffman, Generative computer assisted

instruction: An Application of Artificial

This approach appears to be general in that Intelligence to CAI, Proceedings of the 1st

one could present any material of a factual nature USA-Japan Computer Conference, Tokyo, 1972.
in a similar manner. SOPHIE (6) is an example of . o

a similar system for teaching electronic-circuit (2) J. R..Carbonell, Al in CAl:An Art|f|IC|aI

analysis and trouble-shooting. Other programming Intelligence Approach to Computer-Assisted

Instruction, I|EEE Transactions on Man-Ma-
chine Systems, Vol. MMS-11, No. 4, December,
1970.

(3) E. B. Koffman and S. E. Blount, Artificial
Intelligence and Automatic Programming In
CAIl, Proceedings of the 2nd International
Joint Conference on Artificial Intelligence,

languages, logic circuit design, and basic algebra
and calculus might possibly be taught using a sim-
ilar computer environment.

The important lesson learned concerns the in-
teraction of semantic and syntactic information in
dealing with and wunderstanding natural language.

Heavy use is made of semantic information during 1973.

the parsing operation. A parse will in fact fail (4) W. A. Woods, Transition Network Grammars For
if it does not make sense based on what the system National Language Analysis, Communications of
knows, even though it may be syntactically correct. The ACM, Vol. 13, No. 10, October, 1974.

(5) T. Winograd, Understanding National Language,
Academic Press, New York, 1973.

The shortcomings here involve the structuring

and use of the semantic information. There is a

large literature describing how to form and use (6) J. S. Brown, R. R. Burton, and A. G. Bell,

grammars and other syntactic structures; however, SOPHIE: A Sophisticated Instructional En-

similar studies for semantic structures are not vironment for Teaching Electronic Trouble-

yet available. shooting, Bolt, Beranek, and Newman Report
No. 2790, Cambridge, Massachusetts, March,

There are many models under study such as se- 1974.
mantic networks and conceptual models (7). How-

(7) R. C. Schank, Identification of Conceptual-
izations Underlying National Language, in
Computer Models of Thought and Language,

ever, as yet there are not definitive measures of
the capabilities and Ilimitations of these various

techniques. Also, there are no studies comparing dited by R. C. Schank d K. M. Colb
various means of implementation and the storage \?V |t|_e| Fy ’ & CC anSanF o ° 15’73
requirements of these models. Hopefully, research - . rreeman ©- =an Francisco, '

along these lines would aid those attempting to use
these models for CAIl or other application areas.

STUDENT /
INPUT — MONITOR
PARSER SEMANTIC EVALUATOR EDITOR
SPECIALIST
ROUTINES ¢ /
\TEHPO‘RARY smun&
PERMANENT SEMANTI(INFORMATION:
Ig?%l:MATION: DIALOGUE HISTORY,

x ITIONS, STUDENT-DEFINED

TIONS, ET(C. FUNCTIONS, ETC.
SEMANTIC NETWORK SYSTEM DATA~
STRUCTURES

Fig. 1. System Organization

396

