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This papier is concerned with a class of
problems whose solutions are in a sense linear.
Several formalisms have been used to describe
such problems [1,2,3,4,7,9], but the central
ideal can be simplified and summarised as follows
The universe is a network consisting of a set
S={s, } of objects connected by a set E of edges.
A problem is the task of finding a path from one
object s. to another object 3.3. A solution con-
sists then of a sequence of objects

si- 55, SI, . ey s;_l,s; = sj
such that an edge connects each object to the
next. The above will be called a solution of
length n because the path from s, to sj contains
n edges.

Several systems have been developed for dis-
covering solutions to these problems. They have
one feature in common with most algorithms in
artificial intelligence, namely: at any stage in
the search for a solution, a choice must be made
among several possible next actions. This choice
is known to be crucial, for if it is made felici-
tously a solution may be found quickly, whereas a
great deal of time may otherwise be spent fruit-
lessly. Many successful systems incorporate re-
latively complex mechanisms to make this choice
[5,10,14] but these mechanisms often seem to be
bound inexorably each to its own system, and thus
cannot be transferred to new systems.

This situation was relieved by analysis
[7,8] indicating that the ability to make a good
choice comes down to (in our simple formalism)
the ability to predict the lengths of solutions
to problems before they are solved. This is a
particularly useful approach because the length
of a solution to a problem does not depend on the
way that the solution was found, and so the
choice-making function can be divorced from the

algorithm proper. In particular it is possible
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to study the prediction task in isolation, so
long as the implications of the eventual re-
union of all the components are borne in mind.
The following section develops a general pre-
diction scheme that could be adapted to any
system for handling this type of problem. This
is followed by an examination of its performance

on a substantial number of problems.

A General Scheme

The underlying structure of the scheme is
straightforward. Suppose we have a set of prob-
lems whose solution length is known, and an un-
solved problem whose solution length we wish to
estimate. The approach taken is to predict that
the unsolved problem will have the same solution
length as the 'most similar' solved problem. To
determine the most similar solved problem, we will
map all the problems into points in some space and
find the point closest to the unsolved problem.
The main part of the scheme is concerned with
setting up the mapping in such a way that points
in the space which are close together do tend to
have similar solution lengths. Note that the con-
verse is not true: we do not require that all
points with similar solution lengths lie close
together. For instance, the points with a given
solution length may form several distinct

clusters throughout the space.

A few preliminary remarks must be made. A
problem may have many solutions of various
lengths, so 'the' length will be taken to be the
shortest. Alternatively a problem may have no
solution, in which case we take the length to be a
large number. Finally, while a solution length is
clearly an integer, we will allow an estimate to
be a real number such as 3.7, which may be inter-

preted as 'closer to 4 than to 3'.



The first step will be to look at the dif-

ferences between a pair of objects. We are after
some means of describing the changes that must be
the first it identical to the

wrought on to make

second. Clearly this description will depend on
the nature of the objects and cannot be defined
terms.

in general We thus postulate the exist-

ence of a difference function

§

given a pair of objects,

:S"S*Rq

which, produces a vector

of g non-negative real numbers. Section 3 des-

cribes two such functions that may serve as illus-

trations.

Now 6 maps a pair of objects into RY and a

problem consists of finding a path between a pair

of objects s, and s., say. [t might seem that &

alone will suffice to map problems into a suitable

space. However, recall that we will need to find

the closest point to an unsolved problem, so we

will need to use distance in the space. The

various components of étsi.s )

3
with the result that

might measure quite
different things, using ¢

alone might render distances in the space meaning-

less. Consider the analogy of mapping people
into R? by taking their height in feet and their
weight

who map to <3.5,150.0> and <6.0,160.0>.

in pounds. Suppose we have two individuals

A third

individual <5.9,154.0> would then be closer to the
former than the latter! To ensure that distances
are meaningful, then, our mapping must have the

property that the coordinates of a point are

measured in the same units.
Since the length of a problem's solution
will also clearly depend on the edges E connect-

ing objects, it would seem desirable to bring

them into the mapping somehow. Now each edge e

connects two objects s and s , We can form
X

y
a picture 6(sx.sy! of the difference between the

say.

objects connected by edge e. If we could form

such a picture for each edge and average them, the

result would be a vector
d = (d,,d, ..., dq)

a—

where d; is the average value of the ith component

of the difference between pairs of objects con-
nected by an edge.

Intuitively, d is a picture of

the difference created by moving along a 'typical*

364

Each component of & is non-negative, so d.

d.

edge.

will be non-negative. Moreover, will be zero

only if the ith component of the difference

between all pairs of objects connected by edges
is zero ith component of the

But

(in which event the
difference function could well be scrapped).

for most problems of interest S and E are very
infinite,

large or even so d cannot be computed as

above. Here we make use of the fact that the
scheme is to be embedded in a problem-solving
system. It is most unlikely that a problem-

solver would be set up to tackle a single problem

in some universe; even if it were, it would solve

some subproblems in the course of its search for a

solution. We can assume, then, that a number of

problems with identical or very similar S and E

have been solved. The vector d can be approxi-
all edges e,

the

mated by averaging é(sx,sy} not over

but over those edges used in solutions to

previous problems.

Again, a problem is solved when a path is

found from object s, to object sj. 1f

s, X))

G(Si,sj) = (xl,x a

20

then xx. is the kth component of the difference
that will arise as we move from s. to s,. Aqgain,
d is the corresponding component of the differ-

ence that arises

The

in moving along a typical edge.

ratio x/dx. is then the number of typical

edges that we would expect to move along in
getting from s. to s:i.. If we form

z (xl/dl,xzfdz. “sas xq/dq)

then zy is a crude estimate, derived from the kth
component of the difference function, of the
length of the solution to the problem. Each com-

in the same units,

in RY

ponent of z is clearly measured

so mapping problems to their z descriptions

will result in meaningful distances in the space.

that we have

the

At first glance, it seems

changed the task of predicting length of solu-
into a classical

[6]

vectors and the classes are the solution

tions pattern recognition

problem in which the z's are the description

lengths.

This unfortunately is not so. Since the picture

of a problem is incomplete, it is quite possible

to envisage two problems with the same picture

but different solution lengths. Secondly, we have



allowed the prediction function to take real
values so the number of classes would become in-
finite. As a matter of peripheral interest, when

the first set of data from the next section was
set up as a pattern recognition problem using a
[13], the

the approach taken

clustering algorithm results were poor.

Still, is a variant of a

familiar pattern recognition technique. Each z

is clearly a point in g-space, so we imagine a

set {p.} of prototype points embedded in this

space. Each prototype point p. has associated
with it a frequency f;. and a class sum ¢ , both
of which are integers. As usual we operate in
two modes, classifying and training. For classi-
fication we are given to description z of a
problem; we find the prototype point p. nearest
to z and predict the solution length as the ratio

c./f.. in training we have a description of a
problem with known solution length n. If there
already exists a prototype point p; that is very

close to z, i.e., |pi- z|_<_ some £, we modify it

by

{i) moving it slightly: Py becomes

fipi*z
f.o+1
1
(ii) changing its frequency and class sum;
f. becomes f +1 and c. becomes c.+n.
If no prototype point is very close to z, we

enter the latter as a new prototype point pj=z,

setting f. to 1 and c. to n.
One matter remains to be dealt with. If the
predictor is to be useful in practice it cannot

be allowed to acquire prototype points without

limit. There must be some mechanism for reducing
their number so that the performance of the pre-
dictor is degraded as little as possible. This

implies that some means of generalizing a subset

of the prototype points is required, in the vein

of Samuel's generalization of checker

[11]. is defined that

positions

A simple process reduces

by one the number of prototype points.
Basically, it looks for two neighbouring points
with similar class sum/frequency ratios and re-
places them by an average point.

We say two prototype points p. and p. are
adjacent if the distance between them is less
than the distance from either to any other proto-
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type point.
single prototype peint Py * with
f = £ + f,

i ]

We congider merging them to form a

k
Ck'*ci'l'cj
f + f.p.
i85

p mr
~k + £,
]

iPi
f.
1

Now this merge has associated with it a cost in
the form of a change in class sum/freguency
ratios that can be expressed as
[ c,
£, ?i-- ?i . 1
which reduces to
R 64 7 1584 _
fi+f

The procedure then consists of examining each pair

of adjacent points and merging that pair for which

the above cost is minimal. Each application of

the procedure reduces the number of prototype

points by one. Section 3 reports on the degrada-

tion of prediction performance as the number of

prototype points is reduced.

Early in this section we postulated a func-

tion 6 for producing a vector description of the

changes that would have to be made to one object

in order to make it identical to a second. This

function eventually yielded a description z of a

problem in g-space. The scheme proceeded under

the assumption that two problems with points

lying near each other will tend to have solutions

of similar length. In other words, we required 6

to provide a meaningful description so that this

spatial property comes about. Now for some
connotations
transportation problems) it is not diffi-

But what about the

problem areas with built-in spatial
(such as
cult to formulate such a 6.
rest? The next section examines two universes,

one finite and one infinite. In each case it is

possible to develop a simple 6 so that the pre-
results.

diction scheme gives useful Hopefully

these successes indicate a general applicability

of the scheme.

Testing the Scheme

In the first universe objects are binary

trees, a representation recognized as being both



The universe is

[71.
so objects and edges cannot be stated explicitly.

Edge

common and general

information rewriting rules,

is given by

each of the form s, := 8 where s, and s are
£ r r

£

infinite,

objects. The meaning of such a rule is as follows:
if s is an object containing an instance of sy
then s. can be rewritten as the object s. formed
by replacing the instance of 51 with a corres-
ponding instance of s For example, consider

the object (at+b)+c and the rule x+y := y+x. The
object is an instance of x+y, and so can be re-

written as the corresponding

But a+b

instance of y+x,

namely c+(a+b). is also an instance of

x+y, so the original object could also be re-

written by this rule as (b+a)+c.

s. to s; if and only if s. can be

Since S is infinite, each rewriting rule normally

defines an infinite number of edges.

Two sets of problems were established. The

first (set A) contained 152 problems relating to
the manipulation of algebraic expressions involv-
ing + and -. The number of rewriting rules

varied from 6 to 23, solution
(set S)

with establishing

lengths from 1
The second of 139 problems was concerned
the equivalence of programs

using a formal to describe flowcharts

[12].

language
The number of rules ranged from 26 to 40,

solution lengths from 1 to 5. Sample problems
and solutions for sets A and S appear in [9,10].
A number of problems from both sets have been
presented to human problem-solvers who found them
non-trivial.

A moderate amount of experimentation was
needed to find a suitable 6 (largely because the
early attempts were It was

decided

too sophisticated).

to use only syntactic information, i.e.,

to disregard entirely the meanings of objects

represented as trees. Further it was decided to

rewritten as s,.

to 6.

An edge connects

ignore the difference between operators and
operands. Six operations for manipulating binary
trees were formulated, as

i move a symbol up and to the right

hY move a symbol up and to the left

N : move a symbol down and to the right

¥ : move a symbol down and to the left

® : add a new symbol somewhere in the tree

6 : delete a symbol somewhere in tree.
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Any changes to a binary tree can be described
using these operations. The function 6 produces
one for each of the

of 6(51

simply the number of times that the kth operation

a vector of 6 elements,

operations. The kth element ,sj) is

above was used in changing s; to s; The unique-

ness of the vector was ensured by a number of
restrictions, the

arbitrary such as only using

operations ® and €@ when the move operations by

themselves were inadequate. For example, con-
sider the two objects
I\ N\
b/ \c: a/ \c

which we denote by S5 and s, respectively. To
change s, to s, we must

(i) move a down and to the left (¥)

{ii) mowve c X twice, and then ¥ and ¥

(1ii) move b A

(iv) add a symbol + to s

1

(v) delete a asymbol - to 5.
The vector produced by counting the number of

times each operation was used is

. My 08
(s, ,8,): —~———~

172 121211
This & is completely independent of the rewriting
rules available to solve a problem; there is no

idea of 6(si,sj} providing a model of how to get
The same & was thus used for both

The

from s to s;.

sets of problems. 'typical' edge difference
d for each problem was computed from the solu-
tions to previous problems in its set.

The second universe was that of the 8-

An object consists of a 3x3 arrangement
to 8 and a blank

if the

puzzle.
of tiles bearing the digits 1

tile. An edge exists between two objects

second arises from the first by interchanging the

blank tile with one of its neighbours. In this

problem domain both S and E are finite,

(S contains about 360,000 objects).

though
large
of

[71.

Three measures were used to set up &, all
them adapted from those mentioned by Nilsson

We define &(s .x2,x3) where

i 1
X, * the number of non-blank tiles that

S5.) as (x
B )

occupy different positions in 5, and B

3

X, * the sum of the cell distances apart of



the above different positions

x, = golng around the edge, the number of
non-blank tiles that have different
successors in si and sj.

For example, if si and 8, are the objects

3
1 5 2 1 2 3
4 8 4 5
6 3 7 6 7 8

than G(Si,aj) is (5,9,5). {(Note that, unlike the
first &, this one has a substantial connection to
the way a problem is solved; in fact, Xy is a
lower limit on the length of the sclution.) The
third set (set P} contained 186 8-puzzle problems
with solution lengths ranging from 1 to 18.

The basic measure of the predictor's perform-
ance on a problem was taken to be the absolute
error, i.e., the magnitude of the difference
between the actual and predicted solution lengths.
(This follows the approach to errors in heuristic
functions in [8].) For a set of problems the
performance measure was the average absolute error
on the set. The predictor could be considered
useful in so far as it outstrips the obvious ran-
dom procedure of selecting an arbitrary length
from those actually occurring in the set. This
random procedure has an expected average absolute

error of

2,02 on set A (selecting a length from 1 to 6)

1.63 on set S (ditto from 1 to 5)

6.10 on set P (ditto from 1 to 18).

The first experiment was designed to test the
scheme in an environment similar to that which
would be encountered in practice. Each set was
first shuffled so that the original order of the
problems would have no bearing on the outcome.
Each problem in a set was first tested, the
absolute error found, and then the problem used to
train the system. Each problem was thus tested
with the predictor having the benefit only of
experience from previous problems in the set.
Three average absolute errors were computed:
for the first 2/3 of the problems, for the last
1/3, and for the whole set. This experiment was

performed with 20 different shuffles of each set.
The results obtained appear in Table 1. This

shows that the performance on the whole set was

better than the random procedure in all cases, but

particularly so for sets A and P. There is also

a clear improvement on the last 1/3 in all sets.
Considering the numbers of problems and
shuffles, this improvement can only be ascribed
to the experience obtained on previous (different)
problems.

Table |

Alternating test and train: average absolute

errors on 20 shuffles and mean.

The values shown for each set are for the first
two-thirds of the problems, the last third, and
the whole set.

Set A Set § Set P

1.05 .67 .93 1.08 .92 1.02 1.03 .36 .81
.91 .70 .84 1.13 .85 1.03 .80 .60 .73
.90 .70 .81 1.08B .86 1.00 .73 .66 .70
.85 .87 .85 1.03 .85 .97 .17 5% .70
.96 .69 .87 1.11 .86 1,03 .B7 .56 .76

1.15 .78 1.02 1.02 .75 .92 .80 .e1 .74

1.06 .75 .95 1.22 .79 1.07 -BC .43 .68

1.01 .66 -89 1.04 .86 .98 .77 .60 .71
.99 . BO .93 1.22 .98 1.14 .78 .85 .80
-3 .B4 .B9 1.05 .81 .97 .6B .57 .64

1.18 .56 .97 .95 -84 .91 .82 .67 .77
.91 .B5 .89 1.07 .81 .98 .73 .48 .65
.84 .BS .84 1.07 .87 1.00 .79 .48 .68

1.07 .75 .97 1.16 .75 1.02 .72 .65 .69
.90 .74 .85 1.02 .96 1.00 .64 .70 .66
.90 .85 .89 1,10 .84 1.01 .77 .53 .69
.83 .85 .84 .97 .95 .96 .68 .62 .66
.92 .71 .85 1.19 .80 1.05 .74 .52 .67

1.00 .72 .91 1.08B .92 1.02 .64 .60 .63

1.00 .73 .91 1.11 .84 1.02 273 .72 .73

Means:
.97 ) .90 1.08 .85 1.01 .76 .59 .71
The second experiment was drawn up to investi-
gate the predictor's performance on the sets of
problems after training, and to see how it was
affected by reduction of the number of prototype
points. The prototype points developed in the
first experiment were retained and each problem
again presented for classification. The number
of prototype points was then reduced by repeated
merging and each problem again fed to the predic-
tor. This reduction process was performed

several times.

The results appear in Table 1I1. It is clear,
first of all, that the predictor is doing very
well with its full complement of prototype points.
Secondly, it is possible to merge quite a large
number of prototype points before the performance

of the predictor is seriously degraded; even



allowing only 10, the predictor still does
passably. This suggests that the scheme should
still be useful if a restricted amount of space

was available to hold prototype points.

Table I
Degradation of retrial performance as the number

of prototype points is reduced.

Set A Set S Set P
no., average no. average no. average
of abs. of abs. of abs .

points error points error points error

126 -15
120 .15 117 . 20
110 .18 110 .20
100 .18 100 .20

90 .19 90 .20

BO <23 80 .24

70 -30 70 .29 64 «32
60 .35 60 .37 60 »32
50 .45 50 .47 50 .32
40 .bl 40 .58 40 .32
30 .73 30 .66 30 -37
20 .83 20 .78 20 .45
10 .91 10 .91 i0 .63

Conclusion

On the basis of its performance on the sets
of problems in the previous section, it seems
fair to say that the scheme gives useful results,
even with an unsophisticated 6 function. It is
being included as part of a problem-solver in the
process of development. Still, many improvements

are possible.

In Section 2 we went to some lengths to en-
sure that the various components of the z descrip-
tion of a problem were measured in the same units.
As a result, distances were equivalent in all
dimensions of the problem description space.

Ths does not allow for the possibility that
small changes in one component could be more
significant than large changes in another. A
more flexible definition would allow distances in
different dimensions to be weighted differently.
Experiments have been conducted along these lines
using statistics such as the variance of d. from
problem to problem in a set. The result was a

small but noticeable improvement.

Certain aspects of the scheme may not be
appropriate if the number of training points

were to run into the thousands. In particular.

it may be desirable to impose some sort of ageing
process on prototype points and on the solutions
used to give a picture of the 'typical' edge.
These measures would be designed to make the
system more responsive to its recent history
rather than its total history in some problem
domain.

Finally, there still remains the nuisance of
designing an appropriate This may not be as
annoying as it appears. For the universe of
binary trees we used only structural information
on objects, so the same 6 was appropriate for two
quite different problem domains. A relatively
small number of structures is used to represent
objects in artificial intelligence, so a few 6's
may suffice to handle a large number of problem
domains. The ideal system, of course, would
specify a loose framework for 6 and allow the
function itself to be induced from experience,
along the lines of a feature extraction exercise.
Intriguing as this sounds, it may turn out to be

pinning one's hopes on a deus ex machina.
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