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Abstract

We report on a method of automated hypothe-
sis generation, called f-resolution, which is
derived from deductive resolution techniques.
The method is inductive in character, in the

sense that given input statement E, it generates
hypotheses H, such that E is a deductive conse-
quence of E. The method is extended by a gener-

alized wunification algorithm which introduces
appropriate identity assumptions needed to unify
a pair of literals. The f-resolution technique
is shown to embody a version of Ockham's raror
as a pruning heuristic. Some promising experi-
mental results are also presented.

In [5] we discussed a general method for
transforrairg deductive consequence generators
into inductive consequence generators. In this
paper we wish to report on a general mechanised
inductive method, to be called f-resolution,
which was derived from normal resolution proce-
dures. The f-reeolution procedure was not
designed as a special purpose routine only
applicable to certain problems (like the routine
described in [2]), but rather it is applicable
to any problem in any context suitably descrlb-
able in the syntax of first-order predicate cal-
culus with identity. The potential range of
applicability of the method is thus extremely

broad. Our routine appears to deal with a more
general class of hypotheses than previously
reported efforts in this area; in particular,
sff}] B [0 [ ad [IZ

We assume familiarity with the usual termi-
nology and theory of resolution. For any expres-
sion E, we represent the set of clauses obtained
from the clause form of E by C(E). For a set C
of clauses, we represent the set of all pairwise
resolvents of members of C by R(C). We then
define RO(C) = C and R"'(C) = R(R"(C)) U R"(C).

For our purposes, we will consider resolu-
tion as a consequence generator. As such, reso-
lution ie not complete. That is, for any expres-
sion E, there are expressions E' such that E
entails E' but for nc n is it the case that
C(E') ¢ Rn(c(E)). For just one type of example,
consider the case in which E' contains predicates
which do not occur in E, and note that resolution
introduces no new predicates.

The basic f-resolution principle is very
similar to the basic resolution principle. The
principle appears to be, in essential respects,
the same as the basic inverse method of [3],
apparently developed by Maslov as early as 1964.

However, our development was independent of
Maslov's. work, and our routine is used induc-
tively rather than deductively. Ac with the

deductive case, before the principle can be
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applied to a given expression,
muet first be transformed
form. For f-resolution,
first transformed into prenex disjunctive normal
form, using the standard equivalences:

(Q1) (Cii) (E1 V ... V Qa)
where the Qi are quantifiers, each over a differ-
ent variable, and each Ei is a conjunction of
literals. We must now remove the quantifiers to
obtain the quantifier-free disjunctive normal
form. To avoid introduction of more complex
Skolera functions than necessary, we next employ
the standard quantifier distribution rules to
obtain an equivalent expression such that the
scope of each quantifier contains as few cf the
Ei as possible. We then remove all universal
quantifiers by replacing them with appropriate
Skolem functions. (That is, if a universal
quantifier does not occur within the scope of
any existential quantifier, we replace the

the expression
into a certain normal
input expressions are

variable of the universal quantifier, wherever
it occure in the Ei, by a new constant (O-place
function). If a universal quantifier occurs

within the scope of existential nuantifiers over
variables x1, ..., xp, then we replace the vari-
able of the universal quantifier wherever it
occurs in the Ei by f(x1, ., Xp), where f is
some new p-place function.) We then drop all
quantifiers. The resulting expression is called
the f-clauoe form; a conjunction of literals is
called an f-clause. |If E is any exprepsion,
then we represent the set of f-clauses obtained
from E by fC(E). Note that in the f-clause form,
free variablee represent existential quantifi-
cation. Note alco that if the input is to be
several expressions, At, ., Aq, then we must
obtain the f-clauses from their conjunction,

Al & ... & Aq.

We assume familiarity with the standard
terminology regarding substitutions and with the
unification algorithm. As usual, if C is a set
of expressions and X is a set of substitutions,
by CX we mean the set of expressions obtained by
performing every substitution in X on every
member of C.

The basic f-resolution principle allows the
inference of one f-clause from a given pair of
f-clauses. Cur first step is to rename the
variables in one of the f-clauses so that the
pair has no variables in common. Let E1 and E2
be the two resulting f-clauses. Let C71 and C2
be the sets of literals occurring in E1 and EZ2,
respectively. Further, suppose there are subsets
C1'" and C2' of C1 and C2:

crt = {Et,, ..., E1,}
C2' = [« E2y, +u., = E2,)

such that cte it [EZ p vy

EznT is unifiable by
a most general unifier 1.

Then an f-resolvent



of £1 and E2 is the f-clause which results from
conjoining the literals in the set:

(#) (C1 ~cCt1*M U (C2~C2'N

where of course " ~ " is set theoretic subtrac-
tion. Notethatwe mustinclude the empty clause,
designated by EMP, as a possible f-resolvent.
For our purposes, EMP is taken to be true in
erery interpretation,

For any expression E, there are only a
finite number of f-resolventa of pairs in fC(E).
We designate the set of f-resolvents of pairs of
f-clauses in set C be fR(C). We then define
fHP(C) = C and fR""'(C) = fR(fR"(C)) U fR"(C).
A detailed proof of the following useful theorem
may be found in [6].

Theorem 1: Let E be any closed first-
order expression. Then E is valid if and only
if for some n, EMP € fRn(fC(E)).

For any two expressions, E1 and E2, if E2
is false in every interpretation which falsifies
E1, then we write E1 |-F E2; if E2 is true in
every interpretation which satisfiea E1, we write
E1 /- E2. Clearly we have E1 II-F E2 if and only
if E2 Il- E1. So if an expression E2 is generated
from expression E1 by falsehood preserving rules,
we know that E2 entails E1 in the usual sense.
The important thing about f-resolution is that it-
is falsehood preserving. A detailed proof of the
following theorem may be found in [8].

2: Let E1 amd B2 be any two closed

first-order expressions. If for some n,
Et lp B2).

Thus we can use f-resolution to generate
hypotheses from which our input may be deduced
(see [7] for a general discussion of objections
to this approach). However, ae an hypothesis
generator, f-recolution is incomplete in the sense
that for any expression E1, there are expressions
E2 such that E1 |I-F E2 but for no n is it the
case that fC(E2) ¢ fRn(fC(E1)). Again simply
note that f-resolution introduces no new predi-
cates. So f-resolution automatically incorporates
some form of pruning.

It is useful to characterize the pruning
heuristic in more intuitive terms. We may think
of a literal as a statement of a basic (or atomic)
fact about the subject matter under consideration.
Note firtt that when we substitute a term, which
occurs in one literal, for a free variable in
some other literal, we are in an intuitive sense
reducing the number of unnamed entities which
might possibly be required to satisfy the liter-
als; intuitively, the more existential quanti-
fiers in the prenex form of an expression, the
more entities which might possibly be required
to satisfy the expression. But note secondly
that the only substitutions that are made are
those which allow the elimination of a pair of
literals. So the intuitive heuristic seems to
be:

(H.1) Reduce the nunher of unnamed

entities where ouch a reduction

will allow a reduction in the
number of basic facte,

Thus we can see that basic f-resclution incorpor-
ates a version of Ockham's rasor.

Let ue consider an extranely nimnle exammle:
Either Smokey is a black arimgl or there is an
animal that is not black, In symholsx we have:

(5-])

We obtain the followlng feclauv=est

(As & Bs) v (8y)(Ay & — By)

(3.2) As & Bs
(a.3) Ay & — By

By basic f-resolution we obtain:
(as4) As

And (a.4) simply says: Smokey is an animsl, Ry
Theorem 2, we know that (a.L) entails (a,1).
Note that we have reduced the number of unnamed
entities as well as the number of basic facts In
arriving at the hypothesis,

The heuristic {H.1) is actually a bit troader
than the performance of f-resclution., Suppore we
receive the following report from a detective ot
the scene of the crime: Someone killed a pereron
ramed John and someone killed a person named Rill.
We might represent our information symhclically
by:

(b.t) P & (Mx)(Px & Kx)) & Pb & (3y)(Py & Kyb)

From (b.1) we obtain only one f-clause:
(v.2) P & Px & Xxj & Pb & Py & Xyb

Since we have only one f-clause, hasic f-

regolution is not applicable, DTut heuristic

(H.1) would direct us to the following hypotheses,
among others:

(b,3) P§ & K33 & Pb & Py & Kyb
(John committed suicide and
someone killed Rill.)

(be4) P} & K§J & Pb & Xbb

(Jokn and B311 hoth committed
suicide,)

(be5) P3 & Pb & Kbj & Xjb

{John and Bill killed each other,)

(be6) Pj & Xoj & P & KDb

{Pill killed John and committed
suicide, )

(b.7) Pj & Px & Xx) & Ph & Kxt

(The same person killed hoth .Jobhn
and Bill,)

Such examples and the statement of the heuristic



suggest adding another rule of inference; the

rule will be called linear contraction, or LC for
short. The rule allows us to infer one f-clause
from one other f-clause. Let C bo the set of
literals in some given f-clause, and suppose there
is a subset of C, say C' = [Bl, ..., En], such
that there is a most general unifier A of C'; that
is, EYA = 44 = Bnke Then LC allows us to infer
the f-clause formed by conjoining the members of
CA.

The rule LC would allow the generation of
(b.3 - 7) from (b.,2), as well as some additional
hypotheses. But note that the example indicates
the sensitivity of LC to the amount of detail in
the representation. If the predicate for person-
hood were eliminated from (b.2) we would have:

(be8) Xx) & Kyb

Since instantiating x for y (or y for x) would
not allow us to reduce the number of basic facts,
even LC would not allow any inference from (b.8).
The fact that all the individuals in (b.1) are
persons means that instantiation reduces the
number of persons. Consequently, in any proposed
application, we must be careful to include all
information concerning the individuals named or
quantified.

It is very simple to establish that LC is
falsehood preserving. Since free variables repre-
sent existential quantification, substitution of
a term, t, for a free variable simply involves one
of three possibilities: (i) replacing a pair of
existential quantifiers by a single existential
quantifier, in case t is a variable} or (ii)
replacing an existential quantifier by a universal
quantifier, in case t is composed of Skolem
functione; or (ill) replacing an existential
quantifier by some interpreted constant, in case
t is an interpreted constant, But then we just
note that: (i) (ME1(x) & E2(x)) entails
()81 (x) & (Fy)E2(y); (41) (x)E(x) entaile
(Ix)E(x); and (iii) E(a) entails (Tx)B(x). These
conslderstions, combined with the fact that E & E
is equivelent to E, establish the dosired result,

Both basic f-resolution and LC strive to
reduce the number of atomic facte. However,
since neither deals explicitly with equality,
both share the implicit assumption that constants
represent distinct entities. If we could some-
times assume that certain terms designate the
same object, wo might be able to further reduce
the number of atomic facts. For example, in (b.8)
if we could assume J = b, then we could arrive
at Kxj via LC. These considerations led us to
develop a slightly different version of the uni-
fication algorithm, called equality assumption
introduction (EAI), which introduces just those
equality assumptions which will allow a reduction
in the number of basic facts. We will give a
brief statement of a version of the EAI algorithm
suited to the unification of pairs of literals,
E1 and K2. We assume E1 and E2 are either both
negated or both unnegated and that both employ the
same predicate. In the following algorithm, k is
just a counter, A will correspond to e most
general unifier, and eq will be a set of required
equality assumptions. By (t/t'}, we mean the

substitution of t for t'; we use X o X' to desig-

nate the usual composition of substitution mets;
we use § for the empty set.

1. Set k=0, Elg = E1, F25 = K2, Ao = §,

and eqn = B,

2, 1If E‘Ik = Ezk, then set 1 = lk and

eq = eq, and stonp,

3. Find the (ordered) disagreement set

(t1y, t2,) of EY, and E2,,

Le If tik is a variable not in t?k, then

g0 to step B,

. If tzk is a variable not in ti,, then

£o to ﬂtap 10.

6, If t.'l}, is shorter than, or of the same
length us, t2,, then ret lk—ﬂ = %, ~nd

eG4y = oqk(tlk/tRk) U {t1, =t} and

go to atep 1.

7. ‘et 1k+1 - lk and Q. = eqk(t.zk/t"k)

U {t2, = t1,) and go to step 9.

8. Set 3, = 3 o [(t2/t1,)) and

eq ., = oqk(t.Qk/t.lk).

9. Set E2 . = B2, (22, /t1,) and El gy =

E1, (t2,/t1,) and go to step 12,

10, Set A, = & o {(¢1,/t2, )1 and
eq , = aqk(ﬂk/ti'k).

11, set El, = E1,(t1,/t2,) and
E2 ., = E(t1,/12,).

12, Set k=k + 1 and po to step 2,

This modified unification algorithm ie Just
an extension of the usual one. |If two clauses
are unifiable, then our algorithm returns s most
general unifier (in the usual sense) and an
empty eq. Our algorithm differs from the normal
unification plgorithm at those points where the
normal algorithm terminates unsuccessfully. The
normal algorithm hilts with no unifier if (i) the
disagreement set contains no variable, or if
(ii) one term is contained in the other. In
such cases, EAIl introduces (via the set eq) the
explicit assumption that the two terms are eoual
and rubatitutes the shortes for the longer. The
reason for substituting the shorter for the

longer is to guarantee that the substitution
process will terminate.

If we employ EAI, then basic f-resclution
and LC must be slightly altered so that the



resultant f-clauses contain the contents of eq.
The f-resolvent is obtained by conjoining the
literals in the following set (compare with (%),
above):

(»*) (C1~Ci'"M U (L2~C2'N2 U o

For LC, the resultant clause is the conjunction of
the members of CA U eq (instead of Just, CA) In
both cases, of course, the A is the substitution
set obtained from EAI.

Basic f-resolution and LC when extended by
2Al still generate only a finite number of f-
clauses from any given finite set. For a finite
set C of f-clauses, we mean by efR(C) tne set of
all f-clauses which result from the application
of basic f-resolution and LC, both extended by
SAIl, As usual, we define efR°(C) = C and
efftrrM(C) = efR™(C) U efR(eflP(C)). For any set
C of f-clauses, by EQ(C) we mean the set of
equality axioms of the language of C. It is
then possible to prove the following:

Theorem 3: Let E! and E2 te any two closed
sxpressions in & first-order language with iden-
tity. If for some n, fC(E2) ¢ ern"ﬁc(m)), then
{32} U M(rC(E1)) i E1.

In other worus, our methods, extended by EAI, will
generate from the f-clauses of an input expression
E1, the f-clauses of expressions E2 such that
given the usual equality axioms, £1 ie entailed
by E2.

The intuitions embodied in the EAI extension
are slightly more complex than those embodied in
heuristic (H.1) in two ways. First, the extended
method proposes a reduction in the number of
named entities, providing such a reduction will
reduce the number of atomic facts. And secondly,
the extended method proposes restrictionf on
certain functional values, again providing that
such restrictions will reduce the number of atomic
facts.

Two rather distinct circumstances for the
application of f-resolution may be identified.
In the first case, no background assumptions arc
presuppoeori. The input to our procedure is then
Just the set of f-clauses obtained from the
expression of the state of affairs for which we
would like an hypothesis.

Let us consider an example., Suppose we wish
to find an hypothesis to aceount fer the following
axpresaion:

(eet) (x){(3y)(Rxy & -~ Py) v
(){(~ Rxs v (w){~ Rew v Pw)})

From (c,1) we obtain the following f-clauses:

(¢e2) Ray & —= Py
(¢.3) - 1ab
(ceks) - ltbe
(c.5) Po

Our methcd yields the following results:
(cs6) = Po from (c.2) and {c.3)

(ce?7) a=b & —wTe from (c.2) and (c.b)

(¢c.8) Rac from (c.2) and (c,5)
(co9) b=¢ from {c.3) and (c.8)
(c.10) a=1b from (e.4) and (c.8)
(calt) b=¢ from {c.5) and {c,6)
(ca12) a=1bv from {c,5) and (e.7)

To obtain the desired hypothesis, we must trars-
late back into normal first-order notation, Put
the question is, which f-clauses should be
included? Py Theorem 3, we could choose any
single f-clause, or Any non-empty subnet.
Various heuristics could be used to make the
selection, but we will mention only one here.

Suppose we are after hypotheses which account
for a disjunction, say P V Q, and suppose we know
that S entails P and R entails 0. Then we could
use S, or we could use R, or we could use the
disjunction S V R. One reason for preferring
the disjunctive hypothesis is that it is deduc-
tively weaker than the alternatives; it therefore
places fewer reptrictions on the range of possi-
bilities and is thus in some intuitive sense
more likely to be true. To make this idea a
little more precise, we introduce a definition.
We will say that one f-clause A covers another
f-clause B just in case either (i) A is identical
to 6, or (ii) A results from applying extended
LC to some f-clause C, where C covers B, or (iii)
A results from applying extended basic f-resolu-
tion to f-clauses C and D, where B is covered by
at least one of C and D. We may then formalize
our heuristic by saying that in the selection of
f-clauses for hypotheses, we should include f-
clauses sufficient to cover every f-clause in the
original input. Thus in our example, we should
not use Just (c.4), or Just (c.6), or just (e.12).
In fact, there is no single f-clause which covers
all of (c.2 - 5). But we could use (c.11) and
(c.12) to obtain:

(c.13) (x)(p)(a)(x=yV y=zs)
Or we could use (c.3), (c.4), and (e.8) to obtain:
(x)(y){(2)(~ Rxy V = Ryz v Rxsz)
Or we could use (c.3) and (c,12) to ohtain:

(co14)

(ce?13) (x)y)(~y Vx = y)

Each of these hypotheses entails (c.1). There are
various other possibilities as well, but the

range of possibilities is substantially smaller
than that which we would have to consider if no
heuristic were employed.

The second circumstance in which we might
wish to use f-resolution is the more usual one.
Frequently we wish to obtain an hypotheiss to
account for A, given the presupposition B. That
is, we want some C ouch that:
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(d.3) C & B p A
But {d.1) is squivalent to:
(d.2) C Ik=-BvaA
And (d.2) 1s eguivalent to:
(d.3) -«anu-Fc

From this example we can see that the input to
our f-resolution procedure should be the f-
clauses in A along with the f-clausos in the
negation of our presupposition. If we have more
than one presupposition, then we must take the
negation of the conjunction of all our presup-
positions. Our input presuppositions can be any
statements at ell, whether factual or logical.
We could for example have the axioms for identity
theory as our presuppofiitione.

For simplicity, let us consider a standard
syllogistic example. Suppose we would like an
hypothesis which would entail "All dogs are

hairy", given the assumption that "All dogs are
mammals". Our assumption may be formalized as:
(0.1) (X)(-\ Dx v MX)

The negation of (e.1) 1s just:
(e.2) (3x){Dx & = Mx)

From {e.2) we obtain the f-clause:
(0e3) Dx & — Mx

The statement we want to be able to derive may
be formalized as:

(eots) (x)(— 2x v Hx)

And (e.4) gives us the following f-clauses:
(¢.5) =1la
(e,6) Ha

From (e.3) and (e.5) we obtain:
(6.7) —Ma

Ko other applications of our rules are possible,
$0 we get the following hypotheses, among others:
(e.8) (x)Hx from (e,6)

(Everything is hairy.)

(e.9) (x) - Mx from (e,7)
(There are no mammals. )
(e.10) (x)(=¥x v Hx) from (e.b) and (e,7)

(A1l narmals are hairy.)
Note that (e.10) is the only hypothesis obtained
in acecord wnith the covering heuristic discusscd
above,

We should say a few more words about the
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covering heuristic wher used with antecedently
given information. ‘fuppore we are assuring ©1
ard B2 as sntecedently pgiven infarrmation and we
are seckirpg an hypothecis to account for A. “wr
input would then “e the feclauresn frvm =1 V

= B2 V A, Suppose further that in derdving our
hypothesec, we make no use of apy f=clavse Tron
= B1, Ther. the hyrotternas given by thr enveriry
heuristic would be nf the frorm - =1 V L, PRut
rnote that B1 & (=~ B1 vV C) is enuivalent to

Bl & C, So trere would “e¢ nc reed tc include
the f—clzuses frco — Bl in our hyrotheses under
these circumstances., The sare considerations
would apply tc conjunctive components of B1 and
B2 (i.e., to dislunctive crmponents of — 1 and
— B2). Consequently, the covering heuristic
should only be applied to that nortion of the
input whieh does not arise fron antecedantly
glven presuppositma. In this aimnle examrle,
the covering heuristic should he applied only

to A and nct to = B! and not to -~ 32, In the
syllogistic axample ahove, the covering heurlstice
should be applied oanly to (e.%) and (e.f) and
not to {e.3).

Experimentally, we can rerort that for any
syllogism whose validity does not assume exis-
tential import, given the conclusion and one
premise, our method with the covering heuristic
will yield Just the required additional premise.
Further, for those syllogisms which do require
existential import, our method generates the
hypothesis that there is something in the
appropriate subject class from the input of the
desired conclusion and the oremises as assume—
tions.

The most extensive experimental test of our
methods has beer made in the ares of non-
standard logics. In particular we have dealt
in detail with many systems of modal logic and
many systems, of relevance logic. The charac-
teristic semantics for such systems depends on
the determination of certain restrictions to
be placed on given semantic relations. Using
our methods we have been able to generate from
a semantic translation of the axioms And infer-
ence rules the known semantic requirements for
every case investigated—about ?0 systems have
been examined at this time (see [4] and [8]).
Further, in these cases, we can employ a slightly
modified version of the covering heuristic
and prove that the hypotheses gererated by our
methods will yield the chcracteristic semantics
if any first-order conditions will. These
results are particularly pleasing, as our methods
were designed from a general point of view, with
no thought of this application.

We would like to see more extensive
testing of our methods 1n more practical, less
formal areas. In any case, it should be borne
in minc' that the method carnot be used to ger-
crate new predicates (i.e., new "concepts").
The hypotheses generated ?re always in terms of
the input predicates, with the possible exception
of equality.

We would finally like to point out that EAI
could be used to supplement norrial deductive
resolution. The resultant clause would Ve
formed in the usual way along with the disjure-



tion of the negations of the equality aesumptione
in eq. By employing simple lexical ordering
principles in formulating equality statements,
no special axioue for equality would be required.
(Such an application would be similar to the
method described in [13].) It seems intuitively
that EAl might substantially speed up proofs
involving equality by introducing Just the
appropriate equality statements needed for
obtaining resolvents. However, at this time we
have not conducted an experimental examination of
EAl in the deductive context.
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