
FROM D Y N A M I C PROGRAMMING TO SEARCH ALGORITHMS WITH FUNCTIONAL COSTS

A. Martel l i and U Montanari
Ist i tuto di Elaborazione dell ' lnformazione

Cunsiglio Nazionalc delle Ricerche
Pisa, Italy

Abstract

In this paper we approach, using arti f icial intelligence methods, the
problem of f inding a minimal-cost path in a funct ional ly weighted graph,
i.e a graph w i th monotone cost functions associated w i th the arcs This
problem is important since solving any system of funct ional equations in
a general dynamic programming formulat ion can be shown equivalent to
it. A general heuristic search algorithm w i th estimate is given, which is a
nontrivial extension of algori thm A* by Hart, Nilsson and Raphael. Put­
t ing some constraints on cost functions and on the estimate, this algorithm
can be simplif ied unt i l the classical version, w i t h additive cost funct ions,
is reached.

I. Introduct ion

Dynamic programming is a well-known methodology for representing
opt imizat ion problems in terms of the so-called functional equations and
for solving them. While in the artif icial intelligence literature dynamic
programming is often described reductively as a static, breadth-first tech­
nique for searching cycle-free graphs, a general model for the discrete,
deterministic case has been given by Karp and Held [1]. This model,
called sequential decision process consists essentially of a f inite automaton
w i th cust functions associated wi th the transitions. If the cost functions
arc monotone, and if a l imit condit ion is satisfied, searching the transition
graph of the finite automaton is equivalent to solving a suitable set of
funct ional equations. The authors have shown how both the funct ional
equations model and the Karp and Held model can be derived f rom a
quite primit ive problem-reduction schema [2,3] which directly interprets
the Bellman's concept of problem embedding and shows how the optima
lity principle holds if and only if the cost functions are monotone.

In this paper, we approach the problem of searching a functionally
weighted graph wi th methods proper of artif icial intelligence, in particular
we extend the heuristically guided search method by Hart , Nilsson and
Raphael [4] Since here the cost of an arc is represented by a generic
monotone funct ion, the extension is nontr ivial , and it may happen that
no simple or no finite opt imal path exists. Putting further constraints on
the cost functions and on the estimate (strict monotomci ty , positive mo
notonic i ty) it is then possible to simplify the general search algorithm
unt i l the classical version is reached.

The relevance of bridging the gap between dynamic programming
and heuristic search methods is two fo ld . On one hand, the Karp and
Held model provides a framework where search problems can be stated
in quite general terms and (heuristic) search algorithms can be proved
effective under well specified constraints. On the other hand, if good
estimates can be derived f rom the problem domain, the solution of prob­
lems amenable to a dynamic programming representation can be greatly
sped up.

2- Djynarmic Programming

Dynamic programming [5[is an opt imizat ion technique based on
the representation of a problem as a process which evolves f rom state to
state. When the cost structure is appropriate, the determination of an
opt imal solution may be reduced to the solution of a system of functional
equations. A general form of such equations is the fol lowing [1]

345

functionally weighted graph from node Ni to the solved node N
This theorem shows that a dynamic programming problem can be

reduced to a minimal-cost path problem, if the cost of a path is suitably
defined Therefore such a problem could be solved by using algorithms
for finding minimal-cost paths in a functionally weighted graph. These
algorithms are well-known in the case of additive costs, i,e. where the
cost functions have the form f (x) = x+a [4,6] In the next section we
give a general search algorithm which uses heuristic information to guide
the search

Conversely, this theorem says that a minimal-cost path problem can
be solved by solving a system of functional equations with, for example,
the iterative algorithm. Such a result is well-known in the additive case,
and several iterative algorithms have been given for finding the shortest
path in a graph [7].

We point out that the model of dynamic programming presented in
this section is general as far as monadic functions are considered. However
there are dynamic programming problems which are better modelled by
assuming that the functional equations contain polyadic functions [8]
In this case our model can be generalized to an AND/OR graph (9).

3. A General Propagation Algonthmwith Estimate

In the previous section we have described a general model for dy­
namic programming and an iterative solution algorithm. No better method
is available, unless special assumptions are made on the functions f and/
or an estimate is supplied for the cost of all intermediate problems based
on information from the problem domain This line of development cor
responds to merging the branch-and-bound idea with dynamic program­
ming and has been originally pursued by Hart, Nilsson and Raphael [4]
in the special case of additive functions with positive weights. Here we
give a general algorithm for searching functionally weighted graphs and
we show its validity when the estimates arc lower bounds

Let G be a functionally weighted graph with n+1 nodes Ni, ...
.... N , N * and monotone cost functions f , Given a path p from
node N to node N ik (p = N i1 N j2 N t k) *c define the cost function of
path p as the (monotone) function f (x) obtained by composing the cost
functions of the arcs of p

)

Furthermore we define the distance function d, (x) from node N(to node

where P.. is the (possibly infinite) set of paths from N to N . Notice that
the distance is defined, for every x. as the greatest lower bound and not
simply as the minimum, because, in some cases, it can only be obtained
as a limit, i.e. with an infinite path

Finally wc can define the solution cost c of a node N^ (i= 1,. . . . n)
as the gib of all values which can be achieved by applying the cost func
tion of every path from of the solved node

We give now an algorithm for finding the solution cost c of a
given node N(of G. called the top node, and a path for which this cost
is achieved, called solution path Note that, when the solution cost c(is
obtained as a limit, no (finite) solution path exists. This algorithm is a
bottom-up propagation algorithm, i.e. it propagates toward the top node
starting with the solved node N which, from now on, will also be
called bottom node and denoted with Nt No restriction is made on the
generality of the algorithm by having only one bottom node and one top
node. In fact, if more than one top node were present, we could add to
the graph a new node N0 connected to each top node through an arc
with the identity function associated with it, and we could consider N0

as the top node of the new graph

* Usually, in the artif icial intelligence literature, aearcti algorithm* are given for
infinite graphi Must results of thes paper can he extended to this casc.

At each step, the algorithm selects a node Ni and expands it gene­
rating all of its parents, i.e. all nodes N. such that (N N) is an arc of G.
The selection of the node to be expanded is made according to a total
estimate e associated with each node N , which is an estimate of the

solution cost ct of node Nt, with the constraint (hat the solution path
passes through node N The total estimate e can be expressed as follows

where gi is an estimate of the solution cost ci of node N and h. (x) is a
monotone function which gives an estimate of the distance function
c . (x) f iom Ni to Nj . This estimate can be obtained using the heuristic
information available from the problem domain, whereas gi will be
constructed step by step by the algorithm

Our algorithm is an extension to the case of monotone cost func­
tions of algorithm A* by Hart, Nilsson and Raphael (4.10), which consi­
ders the case of additive cost functions with positive weights, i.e.

for every arc (N N). Furthermore, algorithm A* assumes that the bottom
node Nb. has a cost and that the estimate h (x) is also an additive
function, Thus, the total estimate becomes, in this ca-

Since our algorithm deals with the general case of monotone cost
functions, the extension is nontrivial and some new features have to be
added First of all we point out that the solution path can contain the top
node N more than once This happens when the distance function from
the top node to itself is smaller than the identity function (dtt (x) < x,
for soir.c x), i.e. the top node belongs to a cycle which can reduce its
cost This fact is taken into account by adding a new node N0 to the
graph and an arc (N o N) with the identity function l i x) associated with
i t . The algorithm wil l stop only when this node will be encountered.

Furthermore, a solution path can contain the same node several
times. Therefore, if we want to obtain the solution path by tracing back
through the pointers from the top node, we must have more than one
pointer for each node. This is achieved by associating with each node a
stack of pointers, to which a new element is added every time the node
is reopened.

346

of the algor i thm, each node N i has a total estimate except for
node N 0 for which we h a v e A c c o r d i n g to the condit ion on ties
in step 4 of the algori thm, the node whose gi value is smallest is expanded
at each step Since N0 is the only node wi th total estimate . the
algorithm wi l l stop only after all other nodes have been closed. In this
case it is clear that the solution cost of all nodes is determined simulta­
neously. Thus the estimate h for each node can be always
assumed when the above more general problem must be solved.

Note that this algorithm may be used in the case of additive cost
funct ions, if negative weights are allowed and no estimate is available.

4 Positively Monotone Cost Functions, and Consistent and Str ict ly
Monotone Estimates

The first case we examine is when all cost functions are positively
monotone. A monotone funct ion is called positively monotone i f f for
all arguments x we have

Examples of positively monotone functions are as fol lows

It is easy to sec that the composit ion of two positively monotone
functions is sti l l a positively monotone funct ion, and thus the cost func­
t ion of every path is also a positively monotone funct ion As a conse­
quence, the estimates can also be assumed positively monotone wi thout
restrictions

For positively monotone cost functions we have the fo l lowing
theorem, (For the proofs of all theorems in this section, see the Appendix) .

Theorem 4 . 1 . Let C be a functional ly weighted graph wi th positively
monotone cost functions Then there always exists a simple solution
path f rom the top node.

From the above theorem it lol lows that algorithm SEARCH cm
take into account only temporary solution paths wi thout cycles Thus
the algorithm can be simplified by eliminating the slacks of pointers and
by replacing them wi th only one pointer for each node (as in algorithm
A *) .

When the estimate h is str ict ly monotone, looking at g values in
step 4 of algorithm SEARCH for solving tics is no longer useful since

i m p l i e s T h u s in this case algorithm SEARCH
behaves exactly

Note that positive monotonic i ty alone, while insuring terminat ion,
does not guarantee that all closed nodes are never reopened. This case is
well-known in the special, classical case of a graph weighted w i th positive
constants, w i th estimate | 4 | . Fol lowing | 4 | . we thus introduce consistent
estimates An estimate is ctinsistent i f f for all arcs

(Nj Ni) and lor all x we have

In the case of consistent estimate, but not necessarily for positively
monotone cost functions, we can prove the fol lowing theorem

Theorem 4.2 Let (i be a funchonally weighted graph wi th consistent
estimate Then the values of the total estimate e of
the nodes closed in the successive iterations of algorithm SEARCH form
a (possibly inf ini te) nondecrcasing sequence

The above result does not mean that closed nodes are never reope­
ned. In fact a node Ni could he closed a second time wi th the same esti­
mate c i but w i th an improved cost g otherwise N would
not be reopened, the monolon ic i ly of h does not allow

For instance, let us consider the graph in Fig 4 The exact distances
arc as fol lows

If the estimate is consistent, the above theorem allows to add a new
terminat ion condit ion to algorithm SEARCH: " I f the top node in closed
and has a total estimate snwllcr than the node currently under closure,
stop w i th success". This condi t ion allows for instance to slop at the th i rd
iteration of the previous example.

If the two conditions of positive monotonic i ty of the cost funct ions
and of consistency of the estimate are taken jo in t l y , we can prove the
fol lowing theorem, which is an extension of a result bv Hart. N i l u o n
and Raphael | 4 | . <

Theorem 4.4. Let G be a funct ional ly weighted graph w i th positively
monotone cost functions and w i t h a consistent estimate Then when
algori thm SEARCH closes a node N.. its cost g j is the solution cost of
N . Thus algorithm SEARCH never reopens a node.

The above theorem provides an obvious termination condi t ion for
algorithm SEARCH "Stop when the top node is closed".

The above results apply, as pointed out before, to the wel l -known

348

case of additive cost functions. However their generality allows also the
application to cost functions of different f o rm, where the standard A*
algorithm cannot be used An example is provided by the so called
secondary optimization problem which arises when we want to f ind the
best ordering of vanahlc el imination in non-serial dynamic programming
[14| The problem can be stated as that of f inding the minimal cost path
in a weighted graph, but where the cost of a path is the maximum among
all the weights of its arcs Therefore the cost functions of this graph are
of the form

i.e. they are positively monotone functions and algorithm SEARCH can

be used for f inding the solution path, if suitable estimates are provided*
A further example of positively monotone but nonadditive cost

I unctions is the so called I -dimensional stock cutting problem [1], where
we want to determine the min imum number of standard pieces of material
of length L f rom which it is possible to cut a t pieces of length 1 , , a2

pieces of length 1 2 , and an pieces of length I In the graph represen­
tat ion (if this problem, the meaning of an arc is "cut a piece of length
I ' and the cost (unction associated w i th it is

The second case in the def in i t ion of f (x) corresponds to the situation in
which the current standard piece does not have enough material remaining
for the next cut , and a new standard piece is required

According to Theorem 4.2 and 4.3, if the estimate in consistent,
then a closed node N can be reopened only wi th the same total estimate
c - c and w i th a better cost g < g. Thus it is clear that, if the estimate
is str ict ly monotone, then no closed node can be reopened Thus the same
result proved in Theorem 4 4 holds also in this case

As a conclusion, we point out that in this paper we have given
algorithm SEARCH for searching functional ly weighted graphs which is
an extension of algorithm A * , and we have shown that, for generic mo­
notone funct ions, this algorithm requires some new features such as the
addit ion of node No, the stack of pointers and the tie handling procedure
in Step 4. Furthermore, we have shown that, by considering restricted
classes of cost functions and estimates, simpler versions of algorithm
SEARCH can be given In particular, the validity of the trivial generaliza­
t ion of A* is extended cither to the case of strictly monotone estimates
and positively monotone cost functions or to the case of str ict ly mono­
tone and consistent estimates Properties of algorithm SEARCH for
another special class of cost functions (str icly monotone cost functions)
arc described and proved in [11].

References

Karp. R.M. and Held, M., f i n i t e slate processes and dynamic prog
ramminp SIAM J Appl Math, 15. 1967, pp. 693-718

Martel l i , A. and Montanari, U., On the foundations of dynamic prog­
ramming, N.I B73-11,1.fc.I , Pisa, Oct 1973, to appear in Topics in
CombinatorialOptimization. S Rinuidi ed.. CISM, Springer Verlag.

Martel l i .A, and Montanari U., Dynamic programming schemata, Proc.
second Coll. on Automata, Languages and Programming. Saarbrucken,
July 1974, Springer Verlag. pp 66-80

Hart, P., Nilsson, N. and Raphael, H , A formal basis for the heuristic
determination of min imum cost paths, It'.t'E Trans, on Svs. Sci
Cybernetics,SSC-4,N 2, July 1968, pp 100-107

bel lman, R.E., Dynamic Programming, Princeton University Press,
Princeton N J. 1957.

Di jkstra, E., A note on two problems in connection w i th graphs,

NumenscheMath.. I, 1959. pp. 269-271

Johnson. D.B., Algorithms for shortest paths. Ph. 0. Thesis. Cornell

University, Ithaca, N Y . , May 1973

Martel l i , A and Montanari, U., Addit ive A N D / O R graphs, Proc Third
Int. Joint Conf. on Art. int., Stanford. 1973. pp. 1-11

Mar te l l i .A and Montanari , U.. Programma/ione dinamicac punto
f i s to ,A t t iConv . diInformatica Teorica, Mantova, Nov. 1974, pp. 1-19
(in Italian)

Nilsson, N J , Problem-solving methods in artificial intelligence,
McGraw-H i l l , N Y . . 197 |

Martel l i , A. and Montanari , U., From dynamic programming to search
algorithms w i th functional costs, IEI Internal Report B 7 5 - I , January
19'75

Pohl, I , Bi-directional and heuristic search in path problems, Ph.D.
Thesis, Stanford University, Stanford, 1969.

Harris, L.R., The heuristic search under conditions of error. Artificial
Intelligence, 5 . N . 3, Fall 1974, pp. 217-234

Bnoschi, F and Even, S., Minimizing the number of operations in
certain discrete-variable opt imizat ion problems, Operations Research,
18, N. 1, 1970, pp. 66-81

349

3.

4

5.

6

7

8.

9.

10

11.

12.

13.

14

1.

2.

