FROM DYNAMIC PROGRAMMING TO SEARCH ALGORITHMS WITH FUNCTIONAL COSTS

A. Martelli and U Montanari
Istituto di Elaborazione dell'Informazione

Cunsiglio Nazionalc delle Ricerche

Pisa, Italy

Abstract

In this paper we approach, using artificial intelligence methods, the
problem of finding a minimal-cost path in a functionally weighted graph,
i.e a graph with monotone cost functions associated with the arcs This
problem is important since solving any system of functional equations in
a general dynamic programming formulation can be shown equivalent to
it. A general heuristic search algorithm with estimate is given, which is a
nontrivial extension of algorithm A* by Hart, Nilsson and Raphael. Put-
ting some constraints on cost functions and on the estimate, this algorithm
can be simplified until the classical version, with additive cost functions,
is reached.

I. Introduction

Dynamic programming is a well-known methodology for representing
optimization problems in terms of the so-called functional equations and
for solving them. While in the artificial intelligence literature dynamic
programming is often described reductively as a static, breadth-first tech-
nique for searching cycle-free graphs, a general model for the discrete,
deterministic case has been given by Karp and Held [1]. This model,
called sequential decision process consists essentially of a finite automaton
with cust functions associated with the transitions. If the cost functions
arc monotone, and if a limit condition is satisfied, searching the transition
graph of the finite automaton is equivalent to solving a suitable set of
functional equations. The authors have shown how both the functional
equations model and the Karp and Held model can be derived from a
quite primitive problem-reduction schema [2,3] which directly interprets
the Bellman's concept of problem embedding and shows how the optima
lity principle holds if and only if the cost functions are monotone.

In this paper, we approach the problem of searching a functionally
weighted graph with methods proper of artificial intelligence, in particular
we extend the heuristically guided search method by Hart, Nilsson and
Raphael [4] Since here the cost of an arc is represented by a generic
monotone function, the extension is nontrivial, and it may happen that
no simple or no finite optimal path exists. Putting further constraints on
the cost functions and on the estimate (strict monotomcity, positive mo
notonicity) it is then possible to simplify the general search algorithm
until the classical version is reached.

The relevance of bridging the gap between dynamic programming
and heuristic search methods is twofold. On one hand, the Karp and
Held model provides a framework where search problems can be stated
in quite general terms and (heuristic) search algorithms can be proved
effective under well specified constraints. On the other hand, if good
estimates can be derived from the problem domain, the solution of prob-
lems amenable to a dynamic programming representation can be greatly
sped up.

2- Djynarmic Programming

Dynamic programming [5[is an optimization technique based on
the representation of a problem as a process which evolves from state to
state. When the cost structure is appropriate, the determination of an
optimal solution may be reduced to the solution of a system of functional
equations. A general form of such equations is the following [1]

n

Y, % min (mr‘r.l_l‘lTn f.u.(y'.). a,) i=1l....n

where variables y can assume anty value in the complete lattice®

* The preseniation of funclionsl equaiions given here s based on a model of
dynsmic programming developed by the authors in {2].

345

L =R U (+=)} U (-}, consisting of the real numbers together with a
bottom element -=° and a top element +w; the functions f:L~+Lare
monotone (i.e. x, Sx, = f(x,) < f(x,)}. continuous from above; the
values a_ are real constants.

The solution of system (2.1} is the maximal n-tuple (;l . ;n)
satisfying the given inequalities. Although for general functions such a
maximum does not exist, it is possible to prove, by using the fixpoint
theorem of lattice theory, that in the monotone case the maximum exists
and satisfies (2.1) with the equal sign. Furthermore, the fixpoint theory
provides an iterative algorithm for computing the solution.

The relationships between dynamic programming and search
algorithms can be made clear by introducing 8 model of dynamic prog:
ramming, due to Karp and Held |1}, called sequential decision process
This model is a finite automaton with functions associated to its transi-
tions, but it can also be presented as a graph (the transition graph of the
automaton).

We have a directed graph G with n+1 nodes N, ... N . N__ . A
monotone funclion continuous from above fh(x), called cost function. is
associated with each arc (N’ N.). The node Npes s called the solved node,
has no outgoing arcs and has a constant €pes (its cosr) associated with 1t.
The graph G with cost functions it called a functionally weighted graph
An example is given in Fig. 1.

Giwven a functionally weighted graph G, we can obtain from it a
system of functional equations by asocisting a variable y, to each node
NG=1,., n) and by writing n system of the type (2.1) where the
functions I'ij are the cost functions of the arcs (N, Nj) in G. Furthermore,
we put a, = fmm (.). for each i such that arc {N, N,..,) cxists. Con-
versely, we can obtain a functionally weighted graph from a system of
functional equations. For istance, the functionally weighted graph of
Fig. | corresponds to the following system of functional equations, if
3 = f,(c,)

y, =min(f {y,), f,(y,))

y, = min{f,(y,), a)

Given a path in a functionally weighted graph from node N, to the
solved node N o, its cost is obtained by applying in the reverse order 10
constant ¢_ . the cost functions of the arcs of the path. The next theo-
resn shows how the solution of the functional equations is related to the
costs of the paths in the corresponding functionally weighted graph. (See
[3] for a prool).

Theoren 2.1, The solution y, of functional equations for node N, is

cqual to the greatest lower baund {(glb) of the costs of all paths in the

functionally weighted graph from node N; to the solved node N

This theorem shows that a dynamic programming problem can be
reduced to a minimal-cost path problem, if the cost of a path is suitably
defined Therefore such a problem could be solved by using algorithms
for finding minimal-cost paths in a functionally weighted graph. These
algorithms are well-known in the case of additive costs, i,e. where the
cost functions have the form f(x) = x+a [4,6] In the next section we
give a general search algorithm which uses heuristic information to guide
the search

Conversely, this theorem says that a minimal-cost path problem can
be solved by solving a system of functional equations with, for example,
the iterative algorithm. Such a result is well-known in the additive case,
and several iterative algorithms have been given for finding the shortest
path in a graph [7].

We point out that the model of dynamic programming presented in
this section is general as far as monadic functions are considered. However
there are dynamic programming problems which are better modelled by
assuming that the functional equations contain polyadic functions [8]

In this case our model can be generalized to an AND/OR graph (9).

3. A General Propagation Algonthmwith Estimate

In the previous section we have described a general model for dy-
namic programming and an iterative solution algorithm. No better method
is available, unless special assumptions are made on the functions f and/
or an estimate is supplied for the cost of all intermediate problems based
on information from the problem domain This line of development cor
responds to merging the branch-and-bound idea with dynamic program-
ming and has been originally pursued by Hart, Nilsson and Raphael [4]
in the special case of additive functions with positive weights. Here we
give a general algorithm for searching functionally weighted graphs and
we show its validity when the estimates arc lower bounds

Let G be a functionally weighted graph with n+1 nodes N;, ...

.. N, N * and monotone cost functions f , Given a path p from
node N to node Ni (p = Nis Nj2 N.k) *c define the cost function of
path p as the (monotone) function f (x) obtained by composing the cost
functions of the arcs of p

fp("‘) = fivuz (a5 ""fl(-l.ilt(x” =)

Furthermore we define the distance function d, (x) from node N to node
N’ as

d; {x) = "Eb"u ((x)

for every x

where P.. is the (possibly infinite) set of paths from N to N . Notice that
the distance is defined, for every x. as the greatest lower bound and not
simply as the minimum, because, in some cases, it can only be obtained
as a limit, i.e. with an infinite path

Finally wc can define the solution cost ¢ of a node N* (i=1,.... n)
as the gib of all values which can be achieved by applying the cost func
tion of every path from N 1o Nm to the cost €l of the solved node
N

1
fie] :
t"i - di_nol (tuﬂ)

We give now an algorithm for finding the solution cost ¢ of a
given node N(of G. called the top node, and a path for which this cost
is achieved, called solution path Note that, when the solution cost ¢ is
obtained as a limit, no (finite) solution path exists. This algorithm is a
bottom-up propagation algorithm, i.e. it propagates toward the top node
starting with the solved node N which, from now on, will also be
called bottom node and denoted with N; No restriction is made on the
generality of the algorithm by having only one bottom node and one top
node. In fact, if more than one top node were present, we could add to
the graph a new node Ny connected to each top node through an arc
with the identity function associated with it, and we could consider Ng
as the top node of the new graph

*

Usually, in the artificial intelligence literature, aearcti algorithm* are given for
infinite graphi Must results of thes paper can he extended to this casc.

At each step, the algorithm selects a node N; and expands it gene-
rating all of its parents, i.e. all nodes N. such that (N N) is an arc of G.
The selection of the node to be expanded is made according to a total
estimate e associated with each node N , which is an estimate of the

solution cost c¢; of node N;, with the constraint (hat the solution path
passes through node N The total estimate e can be expressed as follows

¢, = h ()

where g; is an estimate of the solution cost ¢; of node N and h. (x) is a
monotone function which gives an estimate of the distance function
¢ . (x) fiom N; to N; . This estimate can be obtained using the heuristic
information available from the problem domain, whereas g; will be
constructed step by step by the algorithm

Our algorithm is an extension to the case of monotone cost func-
tions of algorithm A* by Hart, Nilsson and Raphael (4.10), which consi-
ders the case of additive cost functions with positive weights, i.e.

l'” (x) =x + ¢ (c;, > 0}

for every arc (N N). Furthermore, algorithm A* assumes that the bottom
node N,. has a cost € = 0 and that the estimate h (x) is also an additive
function, i.t. hI(x) = x+ hi Thus, the total estimate becomes, in this ca-
se,e, =g *h

Since our algorithm deals with the general case of monotone cost
functions, the extension is nontrivial and some new features have to be
added First of all we point out that the solution path can contain the top
node N more than once This happens when the distance function from
the top node to itself is smaller than the identity function (dy (Xx) < X,
for soir.c x), i.e. the top node belongs to a cycle which can reduce its
cost This fact is taken into account by adding a new node N, to the
graph and an arc (N,N) with the identity function lix) associated with
it. The algorithm will stop only when this node will be encountered.

Furthermore, a solution path can contain the same node several
times. Therefore, if we want to obtain the solution path by tracing back
through the pointers from the top node, we must have more than one
pointer for each node. This is achieved by associating with each node a
stack of pointers, to which a new element is added every time the node
is reopened.

Algorithm SEARCH

1) Add a new node N, to the graph and an arc (N, N,). Let the
cost function of this arc be fon {(x) = 1{x) = x and hy{x} = 1{x).

2) Put the bottom node Nb on a list called OPEN and let By * <
and e, + h (¢,).

3) If OPEN is empty, cxit with failure, otherwise continue.

4) Remowe from OPEN that node N‘. whose tota) estimate ¢ 3
smaliest and put it on a list called CLOSED. In case of tie on the e values,
choose the node N, whose g, value 15 smallest. Resolve further ties arbi-
trarily, but always in favor of node N, .

5) If N is node N exit with the solution path obtained by tracing
back through the pointers; otherwise continue.

6) Expand N, generating all of its parents. For each parent N,.
compute g; < (@)

7) Associate with the parents N, not already on either OPEN or
CLOSED the values g + g; and e, = h (g,). Put thesc nades on OPEN
and put on top of their stacksa pointer back to the top of the stack of N,

8) I a parent N, is on OPEN and g, < g, let

g, wg and ¢+ hig). .

Replace the pointer on top of the stack of N, with a pointer to the top
of the stack of N, .
9) If a parent N is on CLOSED and g; < g, put it on OPEN and let

g "8, and e« hj(B;)-

Adad on top of the stack of N.i a pointer to the top of the stack of N,.
10) Go to 3.

346

It is possiblc to prove that the above algorithm is admissible (o if N
{1 terminates cleanly i finds an optimal solution), if the estimate hl{x)
is 4 lower bound on the distance d”{x‘ for each node (h, (x) < d, (x)
for each x and for cach i). The proof is contained in the Appendix.
The proof is based on a lemma which states that, if the eshimate
h,{(x} is & lower bound on d . (x). then at any iteration of algorithm N _
SEARCH there i an open node N, with ¢, < ¢, . This result is not trivial 2 UMLY S S
since the solution cost ¢, might be achicved only as a hnut, and thus [, Fx/442
infinite paths have 10 be considered. 4 FaixF=2x+d
Notiwe that, in general, there s ne way of deciding whether the]
algorithm will stop, Special classes of functions and estimates for which fo(xF xfa+1
such a deasion can he made will be presented later un. I (xF2x
As a further remark we point out that the bottom-up structure of N3 [(x)=x
our algorithm 1s the must patural cheice for the general case. In fact, ®
. c =10
when no estmate is available, with our slgorithm we propagate costs, ie, 5
constanis, from the solved node toward the top node, whereas, by using
8 top-down approach, we should propagate functions. Such a difference
between buttom-up and top-down is nol present in the case of additive
cost funitions, where functions can be propagaled very casily. In fact, E
bidirectional search algorithms have been given for this case [12]. ' Fig.2
Algorithm SEARCH can be casily extended to the case where the
estimalc h (x} is not a lower bound on d“(x}, but the maximal amount @
)

f”(xF)H}

by which hl(x) can exceed d'l {x) is known. This case has been studied
in | 13] for additive cost funchons.
Assumnc that a strictly monotone* error function b(x} 1s given such
that b (x) < b(d, {x)) for every x and for every nude. Algorithm SEARCH
can be modihed by associating with the arc (N, N,) the cost function b(x).
It is easy lo see (hat the new algorithm finds the solution cost of node N,
In fact, the distance function from N, to every nade N. doi(x)=b(d“(x}) N 7
and the estimale hl(x] can be considered as a lower bound on dm(x).
Thercfore the slgorithin finds the solution cost of node N, , but, since
cevery solution path for N is a solution path for N, as well, for the sirict
monotomcity of b, it finds slso the solution cost of N . @ e
In urder to see how algorithm SEARCH works, Jet us consider the ™
following problem. A functionally weighted graph is given with n ¥)
nades, where esch node N, (i = 1, ..., n} corresponds 10 a different cur-
rency C,. A directed arc (N, N,) denotes the possibility of exchanging
currency ¢, into €. To each arc (Ni Nj) Gi,j =1, ..., n) we associale »
cost function f;(x}=a, x+b (3 >0, b, > 0), which means that, il 0 17 N,
we want to have the amount x of currency C,. we have to change an
amount of currency C, proportional to x plus a fixed amount for taxes.

Furthermore, the solved node N corresponds tv some goods and, for Fig. 3a
cach arc (N, Nn”). the value fi‘n (cmI) gives the cost of these goods
in the currency C,.
Qur problem is that of buying the given goods with the smallest s No
amount of currency C, . Notice that, if we are quite optimistic, we can
hope of finding a cycle which gives us some gair, and thus the solution
path may confain some cycles.
An cxample is given in Fig. 2. The operatorfin the cost functions
denotes integer division. The given estimates imply that very little heuristic
information is assumed. However it is clear that they are lower bounds if
the domain of the cost functions sre the nonnegative integers.
In Fig. 3 we give some steps of the execution of algorithm SEARCH. /
In Fig. 3a we show the stacks of pointers after node N, has been expanded N,
for the first time. Each elemcni of a stack has a number associated with a LA
pointer. This number is the g value of the node, and it gives the cost of 4
the path obtained by following the pointers. Furthermore, the encircled Egz, N,
numbers arc the total estimate e of the open nodes. Notice that every e
timne a node is reopened, a new clement is added 1o the stack of pointers. -
Finally, in Fig. 3b we give the tast step of the algorithm. We sec
that the sotution cost of node N, is B and the solution path, obtained by
tracing through the pointers, is N, N, N, N, N, N, Thus we have oblained h\
a solution path with a cycle.
We wani to sce now how algorithm SEARCH behaves when no
cstimale is availabic. This means that, if we do not put any restriction on
the cost functions, we must have h (x) = - <= for cach node. At each step [10 || Ng

Ad

“z
3als]

* A function { s strictly monotone il x, < x‘-ofu.) < fix,) Fiﬂ- 3b

347

I\J\Fx
hzt'&)-d()
h,lx)—-(l
hotx) Ix

hsix}tﬂ

of the algorithm, each node N; has a total estimate c,. = -~ @0, except for
node Ny for which we h a Ve, T Rg-OF ding to the condition on ties
in step 4 of the algorithm, the node whose g; value is smallest is expanded
at each step Since Ny is the only node with total estimate # -, the
algorithm will stop only after all other nodes have been closed. In this
case it is clear that the solution cost of all nodes is determined simulta-
neously. Thus the estimate h [x) = -~ for each node can be always
assumed when the above more general problem must be solved.

Note that this algorithm may be used in the case of additive cost
functions, if negative weights are allowed and no estimate is available.

4 Positively Monotone Cost Functions, and Consistent and Strictly
Monotone Estimates

The first case we examine is when all cost functions are positively
monotone. A monotone function is called positively monotone iff for
all arguments x we have

fix) > x
Examples of positively monotone functions are as follows

fix)=x+c¢ c>0
f(x) = ax a>!
f{x) = max (x.c)

x>0

It is easy to sec that the composition of two positively monotone
functions is still a positively monotone function, and thus the cost func-
tion of every path is also a positively monotone function As a conse-
quence, the estimates can also be assumed positively monotone without
restrictions

For positively monotone cost functions we have the following
theorem, (For the proofs of all theorems in this section, see the Appendix).

Theorem 4.1. Let C be a functionally weighted graph with positively
monotone cost functions Then there always exists a simple solution
path from the top node.

From the above theorem it lollows that algorithm SEARCH cm
take into account only temporary solution paths without cycles Thus
the algorithm can be simplified by eliminating the slacks of pointers and
by replacing them with only one pointer for each node (as in algorithm
A*).

When the estimate h is strictly monotone, looking at g values in
step 4 of algorithm SEARCH for solving tics is no longer useful since
h,(8)=h (@) implig =ghus in this case algorithm SEARCH
behaves exactly as A®.

Note that positive monotonicity alone, while insuring termination,
does not guarantee that all closed nodes are never reopened. This case is
well-known in the special, classical case of a graph weighted with positive
constants, with estimate |4|. Following |4|. we thus introduce consistent
estimates An estimate hklx), k =),n is ctinsistent iff for all arcs

(N; Ni) and lor all x we have
h, (x) < h’(fji(xn

In the case of consistent estimate, but not necessarily for positively
monotone cost functions, we can prove the following theorem

Theorem 4.2
estimate hu(")' k = I,n. Then the values of the total estimate e of

Let (i be a funchonally weighted graph with consistent

the nodes closed in the successive iterations of algorithm SEARCH form
a (possibly infinite) nondecrcasing sequence
The above result does not mean that closed nodes are never reope-
ned. In fact a node N; could he closed a second time with the same esti-
mate c¢; but with an improved cost g (8ince g, < §,. otherwise N would
not be reopened, the monolonicily of h does not allow t'i > cl).
For instance, let us consider the graph in Fig 4 The exact distances
arc as follows
d“(x} “mm (x, 4)
d,, (X)) min {(x+4, 4)
d WX} 7 min (x+3. 4)

Fig. 4

Let us take as estimate the following lunclions

hl(x) =min (x-1, 5/2)
h.(x)-'= min (x+3, 5/2)
h.b(x)'—"min {x+1, 2)

is casy to see that this cstimate is consistent. For instance, for the loop
node N_ we have
min (x+3, 5/2) < min (x/2+3, §/2)

pwever algorithm SEARCH does not stop, even if a solution path exisls,
id reopens node N infinitely many tirses. The values of the costs snd
“the total estimates for nodes closed in successive iterations arc as
Alows.

) node N, g =0 ¢, = |

) nodeN g =3 e, =12

) node N g =1 e, = 5/2we do not stop since ¢, =g =3>¢ =5/2
) nodeN g =1/2 e =5/2 "

) nodeN g =1/4 e =3/ "

u so on.

The followmng sesult allows to characterize the sct of closed nodes
hich could possibly be reopened.

heorem 4.3, Let G be a functionally weighted graph with consistent
Timate hi{x). k = 1. ... n. At some stage of ajgorithm SEARCH, let Ni
» a closed node with cost g, and total estimate ¢, smaller than the total
timatc ¢, of alt open nodes. Then node N, will never he reopened, and
s solution cost is g .

If the estimate is consistent, the above theorem allows to add a new
termination condition to algorithm SEARCH: "If the top node in closed
and has a total estimate snwilcr than the node currently under closure,
stop with success". This condition allows for instance to slop at the third
iteration of the previous example.

If the two conditions of positive monotonicity of the cost functions
and of consistency of the estimate are taken jointly, we can prove the
following theorem, which is an extension of a result bv Hart. Niluon
and Raphael |4]. <

Theorem 4.4. Let G be a functionally weighted graph with positively
monotone cost functions and with a consistent estimate Then when
algorithm SEARCH closes a node N.. its cost g; is the solution cost of
N . Thus algorithm SEARCH never reopens a node.

The above theorem provides an obvious termination condition for
algorithm SEARCH "Stop when the top node is closed".

The above results apply, as pointed out before, to the well-known

case of additive cost functions. However their generality allows also the
application to cost functions of different form, where the standard A*
algorithm cannot be used An example is provided by the so called
secondary optimization problem which arises when we want to find the
best ordering of vanahlc elimination in non-serial dynamic programming
[14] The problem can be stated as that of finding the minimal cost path
in a weighted graph, but where the cost of a path is the maximum among
all the weights of its arcs Therefore the cost functions of this graph are
of the form

f”(x} = max [x.c”.}

i.e. they are positively monotone functions and algorithm SEARCH can
be used for finding the solution path, if suitable estimates are provided*

A further example of positively monotone but nonadditive cost
I unctions is the so called [-dimensional stock cutting problem [1], where
we want to determine the minimum number of standard pieces of material
of length L from which it is possible to cut a; pieces of length 1,, a,
pieces of length 1,, and a, pieces of length | In the graph represen-
tation (if this problem, the meaning of an arc is "cut a piece of length
I ' and the cost (unction associated with it is

x + Il i x4+ Ii< LTx/L
F{x) =
Lix/L 1+ I: atherwise

The second case in the definition of f(x) corresponds to the situation in
which the current standard piece does not have enough material remaining
for the next cut, and a new standard piece is required

According to Theorem 4.2 and 4.3, if the estimate in consistent,
then a closed node N can be reopened only with the same total estimate
¢ - ¢ and with a better cost g < g. Thus it is clear that, if the estimate
is strictly monotone, then no closed node can be reopened Thus the same
result proved in Theorem 4 4 holds also in this case

As a conclusion, we point out that in this paper we have given
algorithm SEARCH for searching functionally weighted graphs which is
an extension of algorithm A*, and we have shown that, for generic mo-
notone functions, this algorithm requires some new features such as the
addition of node N,, the stack of pointers and the tie handling procedure
in Step 4. Furthermore, we have shown that, by considering restricted
classes of cost functions and estimates, simpler versions of algorithm
SEARCH can be given
tion of A* is extended cither to the case of strictly monotone estimates

In particular, the validity of the trivial generaliza-

and positively monotone cost functions or to the case of strictly mono-
Properties of algorithm SEARCH for
another special class of cost functions (stricly monotone cost functions)

tone and consistent estimates

arc described and proved in [11].

Appendix

Lemma 3.1, i h, ()< d (x) for every x and for every nodce, then atany
step of the algomhm and fur any path p from N, to N_. there exists an
open node N, on p with e, < fp((.b).

Proof. Let N'. he the first open node we encounter by following path p
backwards from N 10 N, . There must be such a node because otherwise
N, is closed and the algorithm has terminated. Let p* be the part of path

pfrom N, to N, Since all nodes on p’ are closed, we must have
g i fp. (l‘.b))

Since the distance function d”. {x} is a monotone function and since, in

general, p is not a solution path, we have
d,(8) < d, (F, (e, N<Af (c)

Finally, since hj(x} is & lower bound on d”(x). we have

* Notc thet if estimates of the same type h. {3) © max{x.c) arc consdered, the
tic handling proceducc in Step 4 of algorithm SIIAR(‘H is exsential for Theorem 4 4
10 hold. The same happens whenever the estimates are nol strictly monotone,

References

1. Karp. R.M. and Held, M., finite slate processes and dynamic prog
ramminp SIAM J Appl Math, 15. 1967, pp. 693-718

2. Martelli, A. and Montanari, U., On the foundations of dynamic prog-
ramming, N.I B73-11,1.fc.l , Pisa, Oct 1973, to appear in Topics in

CombinatorialOptimization. S Rinuidi ed.. CISM, Springer Verlag.

3. Martelli.A, and Montanari U., Dynamic programming schemata, Proc.
second Coll. on Automata, Languages and Programming. Saarbrucken,
July 1974, Springer Verlag. pp 66-80

4 Hart, P., Nilsson, N. and Raphael, H , A formal basis for the heuristic
determination of minimum cost paths, /t\t'E Trans, on Svs. Sci
Cybernetics,SSC-4,N 2, July 1968, pp 100-107

5. bellman, R.E., Dynamic Programming, Princeton University Press,
Princeton N J. 1957.

6 Dijkstra, E., A note on two problems in connection with graphs,

NumenscheMath.. I, 1959. pp. 269-271

7 Johnson. D.B., Algorithms for shortest paths. Ph. 0. Thesis. Cornell
University, Ithaca, NY., May 1973

8. Martelli, A and Montanari, U., Additive AND/OR graphs, Proc Third
Int. Joint Conf. on Art. int, Stanford. 1973. pp. 1-11

9. Martelli.A and Montanari, U.. Programma/ione dinamicac punto
fisto,AttiConv. 1974, pp. 1-19
(in Italian)

dilnformatica Teorica, Mantova, Nov.

10 Nilsson, N J , Problem-solving methods in artificial intelligence,
McGraw-Hill, NY.. 197 |

11. Martelli, A. and Montanari, U., From dynamic programming to search
algorithms with functional costs, IEI Internal Report B75-1, January
19'75

12. Pohl, I , Bi-directional and heuristic search in path problems, Ph.D.
Thesis, Stanford University, Stanford, 1969.

13. Harris, L.R., The heuristic search under conditions of error. Artificial
Intelligence, 5.N. 3, Fall 1974, pp. 217-234

14 Bnoschi, F and Even, S., Minimizing the number of operations in
certain discrete-variable optimization problems, Operations Research,
18, N. 1, 1970, pp. 66-81

e]=hj(gj)<d"(gj)<fp(cb) Q.ED.
Lemma 3.2. H h {(x) <d,(x) for every x and for cvery node. then at
any step of the algorithm there exists an open node N}. withe <c .

Proof. Il ¢, is achieved with a fimite path p, then ¢, =1 (c,) and the
lemma is proved by Lemma 3.1. Assume now that ¢ is obtained as a limit,
and let p,. p,, p,.... be an infinite sequence of paths from N, to N

such that

fpi(cb) > f'pz{cb] P I'pj[::b) - -] e,

and lim rpi(ch)z <

j—b =

Let us apply now the construction of Lemma 3.1 to each path of
the sequence and let us consides the subsequences of paths for which the
same nodce is obtained. Among these subsequences, there must be an infi-

nite subsequence Py Pz Pyyee such that
E.".L { {cb) =

Let Nj be the node obtained with the construction of Lemma 3.1 from
these paths. We have

349

e ef (c) i=1,23,..

) pii
Therefore we have
e K¢ QED.
i t
Theorem 3.1. I h, (x) € d, (x) for every x and for every node, and if
the algorithm terminates clesnly (i.e. without failure), then it finds the

solution cost c, of node N'.

Proof. When the algorithm stops we have ¢, = ho(so) = fm(g') =g, -
Amsume now that ¢, is not the solution cost of N, ie. e, =g, > ¢ .

By lemma 3.2 we know that there existed just before termination an
open node Nl. with e < <, - Thus, Ni , which must be different from No»
would have been selected for expansion rather than N, , contradicting the
hypothesis that the algorithm terminates. Q.E.D.

Theorem 4.1. Let G be a functionslly weighted graph with positively
monotone cost functions. Then there always exists a simple solution path
from the top node.

Proof. Given a nontimple path P, of cost
Pewlcy) = Py, (P, (P, (.)}
there always exists a simple path P, cf not larger cost
ProlCy) = Py (P lc,))

In fact, p“(x), being the composition of positively monotone functions,
is positively monctone and thus

P (Sp) S P (P, (€,)
But p“(x) is monotone, so we have
Prp(6y) = Py By, (€, < p (P, (P (e,) = P (5,)

A3 a consequence, any path of minimum cost in the finite set of simple
paths is optimal. QED.

Theorem 4.2. Let G be a functionally weighted graph with consistent
eatimate hk(x}, k =1, ..., n. Then the values of the total estimate e, of
the nodes closed in the successive jterations of algorithm SEARCH
form a (possibly infinite) nondecreasing sequence.

Proof. When a node N, is closed by algorithm SEARCH its total estimate

e, = h,(g;) by construction is not larger than the total estimates ¢, of all
open nodes. In the updating phaze, the total estimate of some node N,
adjacent to N,, may be decreased as follows:

e, =h (@)

and, if N. was closed, it will be reopened. However, the new value € is
not r than ¢, by the consistency assumption. Thus, the total esti-
mste of the next closed node, which is the minimal among the tota)
estimates of all open nodes after updating, will not be smaller then e .
Q.E.D.

Theorem 4.3. Let G be a functionally weighted graph with consistent
estimate h (x), k = 1, ..., n. At some stage of algorithm SEARCH, let N,
be a closed node with cost g, and total estimate e, ymalier than the total
estimate e of all open nodes. Then node N, will never be reopened, and
its solution cost is g..

Proof. The cost g is clearly not worse than the costs of all paths visiting
only closed nodes. Let now P be any path from N, to N, which passes
through at least one open node, and let N, be the last open node on P.
Wc have

Pinlcy) = P, (R e,)
and

pfb{ch) - g -

From the consistency assumption, exiended to the part of P from Ni to
N‘ we have

h,(g) <h (p,;(g)) < h(p,, (c,).

But since

h, @) < h, (g,

by assumption, we have

and fipally, since h, is monotone,

B <Py lcy) -
Clearly, since g, is already the optimal cost, node N, will never be reope-

ned. Q.ED.
Theorem 4.4. Let G be a functionally weighted graph with positively
monotone cost funclions end with a consistent estimate. Then when
algorithm SEARCH closes a node N, its cost g, is the sulution cost of N,.
Thus algorithm SEARCH never reopens a node.

Proof. The proof is quite similar to that of Theorem 4.3. We can write
again
Piw(S) = Py (R, ()
and
P (ch) » g -
Now if *
h,) <h)
the result of the proof of Theorem 4.3 is valid and the thesis foliows,
On the other hand, if
h,(g) = h,(g)
then we have
B <8

since N, was closed before N]. Thus we have
8 S pylc,) .
But since p”(x) is now pogitively monotone we have

g, < P“ (pu'(ch)) = Pib(cb) Q.ED.

350

