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Abstract 

In this paper we approach, using arti f icial intelligence methods, the 
problem of f inding a minimal-cost path in a funct ional ly weighted graph, 
i.e a graph w i th monotone cost functions associated w i th the arcs This 
problem is important since solving any system of funct ional equations in 
a general dynamic programming formulat ion can be shown equivalent to 
it. A general heuristic search algorithm w i th estimate is given, which is a 
nontrivial extension of algori thm A* by Hart, Nilsson and Raphael. Put­
t ing some constraints on cost functions and on the estimate, this algorithm 
can be simplif ied unt i l the classical version, w i t h additive cost funct ions, 
is reached. 

I. Introduct ion 

Dynamic programming is a well-known methodology for representing 
opt imizat ion problems in terms of the so-called functional equations and 
for solving them. While in the artif icial intelligence literature dynamic 
programming is often described reductively as a static, breadth-first tech­
nique for searching cycle-free graphs, a general model for the discrete, 
deterministic case has been given by Karp and Held [1]. This model, 
called sequential decision process consists essentially of a f inite automaton 
w i th cust functions associated wi th the transitions. If the cost functions 
arc monotone, and if a l imit condit ion is satisfied, searching the transition 
graph of the finite automaton is equivalent to solving a suitable set of 
funct ional equations. The authors have shown how both the funct ional 
equations model and the Karp and Held model can be derived f rom a 
quite primit ive problem-reduction schema [2,3] which directly interprets 
the Bellman's concept of problem embedding and shows how the optima 
lity principle holds if and only if the cost functions are monotone. 

In this paper, we approach the problem of searching a functionally 
weighted graph wi th methods proper of artif icial intelligence, in particular 
we extend the heuristically guided search method by Hart , Nilsson and 
Raphael [4] Since here the cost of an arc is represented by a generic 
monotone funct ion, the extension is nontr ivial , and it may happen that 
no simple or no finite opt imal path exists. Putting further constraints on 
the cost functions and on the estimate (strict monotomci ty , positive mo 
notonic i ty) it is then possible to simplify the general search algorithm 
unt i l the classical version is reached. 

The relevance of bridging the gap between dynamic programming 
and heuristic search methods is two fo ld . On one hand, the Karp and 
Held model provides a framework where search problems can be stated 
in quite general terms and (heuristic) search algorithms can be proved 
effective under well specified constraints. On the other hand, if good 
estimates can be derived f rom the problem domain, the solution of prob­
lems amenable to a dynamic programming representation can be greatly 
sped up. 

2- Djynarmic Programming 

Dynamic programming [5[ is an opt imizat ion technique based on 
the representation of a problem as a process which evolves f rom state to 
state. When the cost structure is appropriate, the determination of an 
opt imal solution may be reduced to the solution of a system of functional 
equations. A general form of such equations is the fol lowing [1 ] 
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functionally weighted graph from node Ni to the solved node N 
This theorem shows that a dynamic programming problem can be 

reduced to a minimal-cost path problem, if the cost of a path is suitably 
defined Therefore such a problem could be solved by using algorithms 
for finding minimal-cost paths in a functionally weighted graph. These 
algorithms are well-known in the case of additive costs, i,e. where the 
cost functions have the form f (x ) = x+a [4,6] In the next section we 
give a general search algorithm which uses heuristic information to guide 
the search 

Conversely, this theorem says that a minimal-cost path problem can 
be solved by solving a system of functional equations with, for example, 
the iterative algorithm. Such a result is well-known in the additive case, 
and several iterative algorithms have been given for finding the shortest 
path in a graph [7]. 

We point out that the model of dynamic programming presented in 
this section is general as far as monadic functions are considered. However 
there are dynamic programming problems which are better modelled by 
assuming that the functional equations contain polyadic functions [8] 
In this case our model can be generalized to an AND/OR graph (9). 

3. A General Propagation Algonthmwith Estimate 

In the previous section we have described a general model for dy­
namic programming and an iterative solution algorithm. No better method 
is available, unless special assumptions are made on the functions f and/ 
or an estimate is supplied for the cost of all intermediate problems based 
on information from the problem domain This line of development cor 
responds to merging the branch-and-bound idea with dynamic program­
ming and has been originally pursued by Hart, Nilsson and Raphael [4] 
in the special case of additive functions with positive weights. Here we 
give a general algorithm for searching functionally weighted graphs and 
we show its validity when the estimates arc lower bounds 

Let G be a functionally weighted graph with n+1 nodes Ni, ... 
.... N , N * and monotone cost functions f , Given a path p from 
node N to node N ik (p = N i1 N j2 .... N t k ) *c define the cost function of 
path p as the (monotone) function f (x) obtained by composing the cost 
functions of the arcs of p 

) 

Furthermore we define the distance function d, (x) from node N( to node 

where P.. is the (possibly infinite) set of paths from N to N . Notice that 
the distance is defined, for every x. as the greatest lower bound and not 
simply as the minimum, because, in some cases, it can only be obtained 
as a limit, i.e. with an infinite path 

Finally wc can define the solution cost c of a node N^ ( i= 1,. . . . n) 
as the gib of all values which can be achieved by applying the cost func 
tion of every path from of the solved node 

We give now an algorithm for finding the solution cost c of a 
given node N( of G. called the top node, and a path for which this cost 
is achieved, called solution path Note that, when the solution cost c( is 
obtained as a limit, no (finite) solution path exists. This algorithm is a 
bottom-up propagation algorithm, i.e. it propagates toward the top node 
starting with the solved node N which, from now on, will also be 
called bottom node and denoted with Nt No restriction is made on the 
generality of the algorithm by having only one bottom node and one top 
node. In fact, if more than one top node were present, we could add to 
the graph a new node N0 connected to each top node through an arc 
with the identity function associated with it, and we could consider N0 

as the top node of the new graph 

* Usually, in the artif icial intelligence literature, aearcti algorithm* are given for 
infinite graphi Must results of thes paper can he extended to this casc. 

At each step, the algorithm selects a node Ni and expands it gene­
rating all of its parents, i.e. all nodes N. such that (N N ) is an arc of G. 
The selection of the node to be expanded is made according to a total 
estimate e associated with each node N , which is an estimate of the 

solution cost ct of node Nt, with the constraint (hat the solution path 
passes through node N The total estimate e can be expressed as follows 

where gi is an estimate of the solution cost ci of node N and h. (x) is a 
monotone function which gives an estimate of the distance function 
c . (x) f iom Ni to Nj . This estimate can be obtained using the heuristic 
information available from the problem domain, whereas gi will be 
constructed step by step by the algorithm 

Our algorithm is an extension to the case of monotone cost func­
tions of algorithm A* by Hart, Nilsson and Raphael (4.10), which consi­
ders the case of additive cost functions with positive weights, i.e. 

for every arc (N N ). Furthermore, algorithm A* assumes that the bottom 
node Nb. has a cost and that the estimate h (x) is also an additive 
function, Thus, the total estimate becomes, in this ca-

Since our algorithm deals with the general case of monotone cost 
functions, the extension is nontrivial and some new features have to be 
added First of all we point out that the solution path can contain the top 
node N more than once This happens when the distance function from 
the top node to itself is smaller than the identity function (dtt (x) < x, 
for soir.c x), i.e. the top node belongs to a cycle which can reduce its 
cost This fact is taken into account by adding a new node N0 to the 
graph and an arc (N o N ) with the identity function l i x ) associated with 
i t . The algorithm wil l stop only when this node will be encountered. 

Furthermore, a solution path can contain the same node several 
times. Therefore, if we want to obtain the solution path by tracing back 
through the pointers from the top node, we must have more than one 
pointer for each node. This is achieved by associating with each node a 
stack of pointers, to which a new element is added every time the node 
is reopened. 
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of the algor i thm, each node N i has a total estimate except for 
node N 0 for which we h a v e A c c o r d i n g to the condit ion on ties 
in step 4 of the algori thm, the node whose gi value is smallest is expanded 
at each step Since N0 is the only node wi th total estimate . the 
algorithm wi l l stop only after all other nodes have been closed. In this 
case it is clear that the solution cost of all nodes is determined simulta­
neously. Thus the estimate h for each node can be always 
assumed when the above more general problem must be solved. 

Note that this algorithm may be used in the case of additive cost 
funct ions, if negative weights are allowed and no estimate is available. 

4 Positively Monotone Cost Functions, and Consistent and Str ict ly 
Monotone Estimates 

The first case we examine is when all cost functions are positively 
monotone. A monotone funct ion is called positively monotone i f f for 
all arguments x we have 

Examples of positively monotone functions are as fol lows 

It is easy to sec that the composit ion of two positively monotone 
functions is sti l l a positively monotone funct ion, and thus the cost func­
t ion of every path is also a positively monotone funct ion As a conse­
quence, the estimates can also be assumed positively monotone wi thout 
restrictions 

For positively monotone cost functions we have the fo l lowing 
theorem, (For the proofs of all theorems in this section, see the Appendix) . 

Theorem 4 . 1 . Let C be a functional ly weighted graph wi th positively 
monotone cost functions Then there always exists a simple solution 
path f rom the top node. 

From the above theorem it lol lows that algorithm SEARCH cm 
take into account only temporary solution paths wi thout cycles Thus 
the algorithm can be simplified by eliminating the slacks of pointers and 
by replacing them wi th only one pointer for each node (as in algorithm 
A * ) . 

When the estimate h is str ict ly monotone, looking at g values in 
step 4 of algorithm SEARCH for solving tics is no longer useful since 

i m p l i e s T h u s in this case algorithm SEARCH 
behaves exactly 

Note that positive monotonic i ty alone, while insuring terminat ion, 
does not guarantee that all closed nodes are never reopened. This case is 
well-known in the special, classical case of a graph weighted w i th positive 
constants, w i th estimate | 4 | . Fol lowing | 4 | . we thus introduce consistent 
estimates An estimate is ctinsistent i f f for all arcs 

(Nj Ni) and lor all x we have 

In the case of consistent estimate, but not necessarily for positively 
monotone cost functions, we can prove the fol lowing theorem 

Theorem 4.2 Let (i be a funchonally weighted graph wi th consistent 
estimate Then the values of the total estimate e of 
the nodes closed in the successive iterations of algorithm SEARCH form 
a (possibly inf ini te) nondecrcasing sequence 

The above result does not mean that closed nodes are never reope­
ned. In fact a node Ni could he closed a second time wi th the same esti­
mate c i but w i th an improved cost g otherwise N would 
not be reopened, the monolon ic i ly of h does not allow 

For instance, let us consider the graph in Fig 4 The exact distances 
arc as fol lows 

If the estimate is consistent, the above theorem allows to add a new 
terminat ion condit ion to algorithm SEARCH: " I f the top node in closed 
and has a total estimate snwllcr than the node currently under closure, 
stop w i th success". This condi t ion allows for instance to slop at the th i rd 
iteration of the previous example. 

If the two conditions of positive monotonic i ty of the cost funct ions 
and of consistency of the estimate are taken jo in t l y , we can prove the 
fol lowing theorem, which is an extension of a result bv Hart. N i l u o n 
and Raphael | 4 | . < 

Theorem 4.4. Let G be a funct ional ly weighted graph w i th positively 
monotone cost functions and w i t h a consistent estimate Then when 
algori thm SEARCH closes a node N.. its cost g j is the solution cost of 
N . Thus algorithm SEARCH never reopens a node. 

The above theorem provides an obvious termination condi t ion for 
algorithm SEARCH "Stop when the top node is closed". 

The above results apply, as pointed out before, to the wel l -known 
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case of additive cost functions. However their generality allows also the 
application to cost functions of different f o rm, where the standard A* 
algorithm cannot be used An example is provided by the so called 
secondary optimization problem which arises when we want to f ind the 
best ordering of vanahlc el imination in non-serial dynamic programming 
[14| The problem can be stated as that of f inding the minimal cost path 
in a weighted graph, but where the cost of a path is the maximum among 
all the weights of its arcs Therefore the cost functions of this graph are 
of the form 

i.e. they are positively monotone functions and algorithm SEARCH can 

be used for f inding the solution path, if suitable estimates are provided* 
A further example of positively monotone but nonadditive cost 

I unctions is the so called I -dimensional stock cutting problem [1], where 
we want to determine the min imum number of standard pieces of material 
of length L f rom which it is possible to cut a t pieces of length 1 , , a2 

pieces of length 1 2 , .... and an pieces of length I In the graph represen­
tat ion (if this problem, the meaning of an arc is "cut a piece of length 
I ' and the cost (unction associated w i th it is 

The second case in the def in i t ion of f ( x ) corresponds to the situation in 
which the current standard piece does not have enough material remaining 
for the next cut , and a new standard piece is required 

According to Theorem 4.2 and 4.3, if the estimate in consistent, 
then a closed node N can be reopened only wi th the same total estimate 
c - c and w i th a better cost g < g. Thus it is clear that, if the estimate 
is str ict ly monotone, then no closed node can be reopened Thus the same 
result proved in Theorem 4 4 holds also in this case 

As a conclusion, we point out that in this paper we have given 
algorithm SEARCH for searching functional ly weighted graphs which is 
an extension of algorithm A * , and we have shown that, for generic mo­
notone funct ions, this algorithm requires some new features such as the 
addit ion of node No, the stack of pointers and the tie handling procedure 
in Step 4. Furthermore, we have shown that, by considering restricted 
classes of cost functions and estimates, simpler versions of algorithm 
SEARCH can be given In particular, the validity of the trivial generaliza­
t ion of A* is extended cither to the case of strictly monotone estimates 
and positively monotone cost functions or to the case of str ict ly mono­
tone and consistent estimates Properties of algorithm SEARCH for 
another special class of cost functions (str icly monotone cost functions) 
arc described and proved in [11]. 
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