AN IMPROVED BI-DIRECTIONAL HEURISTIC SEARCH ALGORITHM

Dennis de Champeaux & Lenie Sint
Instituut voor Bedrijfseconomie en Accountancy
Universiteit van Amsterdam/Netherlands

Mirror Cy; 1974 December; Revised 1975 June

0. Abstract and Keywords 2.0 Bi-directional, Heuristic, Front-to-Front
Algorithm (BHFFA)

A modification of Pohl's bi-directional heuristic

search algorithm is desribed together with a Before going into a precise description of the
simplified implementation. Theorems are proved BHFFA, we give an intuitive sketch. Suppose we
about conditions yielding shortest paths. The have the situation as in fig.l, where S and T
results are given of a worst case analysis of are the sets of closed nodes and 3 and T are the
different algorithms suggesting a rankorder of two fronts of open nodes, and we decide to ex-
their quality. Results that Pohl had obtained pand a node from S. In Pohl's BHPA algorithm a
with a uni-directional heuristic search algorithm node was chosen in S which had a minimum value
on the 15-puzzle are compared with the results of the function g +h ¢ where g was the current
obtained by the new -simplified- algorithm. s s s

mimimum to the start node & and h was an esti-
keywords: artificial intelligence, bi-directional mator of the distance from the node to the goal
neuristic search, front to front guiding, path node t. The h we use is different, h is a mi-
finding. — S S

nimum of H+g over every node in the opposite

1. Introduction front T, where g is like g but with respect

to the goal node t and H is an estimator of the
shortest distance between arbitrary pairs of
nodes. Immediately the disadvantage of this al-
gorithm with respect to BHPA must be clear, sin-
ce the calculation of the function h in our al-
gorithm is much more complicated than the cal-
culation of the distance to t in BHPA. On the
other hand there are gains, but we defer dis-
cussing them to the next'section.

In this paper we limit ourselves to those problems

a) which are representable in the state.-operator-
state,-, paradigm;

b) where the goal can be explicitly represented
as a state in a set of states;

c) whose problem space can be described as a
labelled graph;

d) where it is equally possible to work from the

start state to the goal state as the other way
round; ,'//T\
e) where there is a heuristic function available /?/
B

which can be used to guide the search process. / / €s
TR

As is well known, see e.g./ 1/, a heuristic func-

tion can be used to guidg uni-directional search. n (Pohl) ‘\ﬁ
The property of ending with a shortest path be- B \ h
tween start state and goal state, as can be found »
with breadth first search without heuristic func- e _- e .\ —_
tion, can even be preserved if the heuristic \ \ ?I._../‘F
function is a lower bound on the real minimum ef- N \ £
fort to be made. In /2/ and /3/ an algorithm is S tw
described which generalizes to the bi-directional . \
case. This algorithm in fact performs two inde- RV
pendent uni-directional searches, a forward search \‘{
guided to the goal node, and a backward search
. . fig.?
gu.|dec.1 to the §tart node. The disadvantage of The dashed line distances are estimated
this is, thalt in a search space where more than with a heuristic function,
one path exists from the start node to the goal o =h (BHFFA).
node, the two searches often proceed along two L
different paths, so that the two sets of closed
nodes (for the terminology of 'closed', 'nodes'
and other technical jargon see /1/) grow into In order to describe BHFFA we have to give some
nearly complete uni-directional trees before in- definitions, where we follow as close as pos-
tersecting each other, instead of meeting in the sible the terminclogy of /3/.
'middle' of the space. - 5 18 the start node;
- t is the goal node;
In the next section we discuss another algorithm - 5 is the collection of nodes reached from s
that remedies this deficiency and we give a sim- wvith known f_-velue,
plification of that algorithm which has been im- - T is the colection of nodes reached from t
plemented in a Fortran program. In section 3 we with known f_ -value;)
compare our results with the results of Pohl's - 5 is the coliection of nodes, not in 3, but
uni-directional heuristic search on the 15-puzzle. direct successors of nodes 1n 3,)
In section 4 we mention some possible improve- - T is the collection of nodes, not in T, but
ments of the implemented algorithm. direct successors of nodes in T,

309

- H{x,y) is the minimum distance between node X
and node y;

- fi{x,y) is an estimator of the distance between
x and y with H{x,y)=R(y,x);

- gq(y) is the minimum distance between 8 and y
for yeSuB, with path in 3uE;

- g ly) is like g (y) with respect to t and VY,
- h_(n}) = mip (B(n,y) + gt(y));
yeT
- ht(n) = min (A(n,y) + gs(y));
yel
- f (x) = g {x) +n_(x);
- f(x) = g {x}) +h (x);
- Ttx) is the finité set of nodes obtainable by

applicable operators on Xx;

- r-1(x) is like T{x}, but with inverse operators
ingstead;
£(n,x) is the edge length between n and x.

We now define BHFFA:
1) Place 8 in 8, and t in T, with £ (s):=f (t):=
-] t
RB(s,t).

2) If 3T = @ then stop without & solution, else
decide to go forward, step 3, or backward,
step 10,

3) Select n in 8 with fs(n) * mig fs(y), remove

ye

n from 3 and put n in S, let descendants(n):=

I'(n).

If ne® then halt with a solution path.

If descendants{n)=@ then go to step 2.

Let xe descendants(n) and remove x from it.

If xe8 then {if g_/n)+§(n,x)<g_(x) then

g (xY:i=g (n)+8n,x);
i g {x)¥hn (x)‘fB(xJ then
f (x}:=g_(X) + h:{x);
5 s 8
gd to stép 5].
8) If xS thenl_if gs(n)+C(n,x)<gB(x) then

- W=
[N S

ss(x):=gs(n1+t(n,x3;
if gs(x)+hs(x)<f5(x) then

{r {x):=g_ (x)+h_(x}; remove x
frém 5 and put X in B}
g0 to step 5}.
9) Put x with its value f (x) in B and go to
step 5. 5
Do the same as step 3 upto 9 with (s8,5,3,I')
replaced by (t,T,TP,I=1).

10)

In step 2 nothing is said about the decision to
go forward or backward, As investigated by Pohl,
the most promising procedure is to count the
number of nodes in S and T and to select the
front which has the fewest (but at least one).
Benidea the f-valuo the g-value needs to be
stored at each node, as the g-value might be
updated in step 7 and 6 of BHFFA.

2.1 Some theorems about BHFFA

We give some theorems and proofs about BHFFA
which parallel the theorems and proofs about the
unidirectional A* algorithms of / 1/ .

In this section we also formulate another bi-
directional algorithm BHFFA2 which is interesting
from a theoretical viewpoint and which we com-
pare with BHFFA in section 2.2.

310

Theorem 1

If B(x,y)¢H{x,y) and all edge-labels are not les:
than some positive & then BHFFA halts with a
shortest path between s and t (provided there is
one .

Proof 1: As in the unidirectional case we first
prove a lemma.

Lemma 2 If H(x,y)§H(x,y) then for every iteratiol
of BHFFA and for every optimal path P from s to
t there exist open nodes nel, me?, on P with

f (n)¢H(s,t) and £ _(m)gH(s,t).

Proof 2: Let n be the first node on P, counted
from &, with ne8. let m be the first node on P,
counted from t, with meT (they exist because
otherwise BHFFA had already halted).

fﬂ(n) = gB(n)+h8(n)

= Bsfn)+H(n.y)+gt(y) for some yeT
£ gg(n)+ﬂ(n,m)+gt(m) by definition of h,
£ gs(n)+H(n.m)+gt(m)

= H{s,t) since we are on an optimal path.

ft(m)(H(s,t) is proven in the same way.

Row suppose theorem 3 isn't true. Then we have
three cases:

1)} BHFFA doesn't halt;

2) BHFFA halts without & solution path;

3) BHFFA halts without a shortest path.

Case 1: Let P be an optimal path from s to t.
According to lemma 2 there exists always an open
node n in SuT on P with f (n) or f(n)<H(s,t)

Therefore the nodes expanded must nave an f-value
less or equal to H(s,t). Consequently their g-
values are less or equal to H(s,t). Thus BHFFA
only expands nodes at most H(s,t)/6 steps away
from s or t, and this is a finite number. Let

M and M; be the sets of all nodes which are

]

ever generated from s and t respectively. As
every node has only a finite number of successors
and as the maximum number of steps any node is
away from s or t is finite, both My and M; can
only contain a finite nuaber of nodes, ana so
M=M;UM; is of finite size. Let the number of

s t
nodes in M be v. Let p be the (necessarily fi-
nite) number of different paths from s to m if
mcMs , and from t to m if mcM; , and let p be the
maximum over all p Then p is the maximum num-

ber of different times a node can be reopened.
After p.v iterations of BHFFA all nodes of M are
permanently closed. So SUT=# and BHFFA halts,
which produces a contradiction.

Case 2: We have just proved that BHFFA eventual-
ly halts, and it can only do so for two reasons:
It has found a solution path, or SuT is empty.

If the latter is the case, then the last node
expanded had no successors at all, (otherwise
they would have been placed in 5 or T). But this
means that there is no path from s to t, contra-
dictory to assumption. So BHFFA halts because it
has found a solution path.

Case 3: Just before ending with a node m, there
would, by lemma 2, be anode n inSwith f {n)<
H(s,t)<f (m)=gs (mj+g-dn) and thus n woull be
chosen for expansion instead of m. .
qg.e.d.l

The next theorem proved in /1/ is the optiraality
theorem, which states that if two heuristics, H
and H*, are related by H*(n,t)<H(n,t)*H(n,t) for

all n, and if for both heuristics the consistency

property holds, (meaning that H(n,t)+H{n,x)<
H(x,t)) then every node expanded by H will also
be expanded by Il This theorem doesn't hold for
BHFFA. The reason for that is, that, unlike in
the uni-directional and in Pohl's bi-directional
algorithm, the f-value of an open node is not
static in BHFFA, and the way in which it changes
depends on both the exact form of the heuristic
and the real distances between the nodes in the
opposite front; and without assuming some de-
tailed information about those, the exact be-
haviour of any heuristic with BHFFA is hard to
predict. We haven't succeeded in finding a ge-
neral proof that, if one heuristic is better

(in the above sense) than an other, it will al-
ways finish in less iterations. We don't con-
sider this a great loss, because in most cases

it will nevertheless be true. {Something, for
example, which can be proved is, that if there
are two heuristics, F = H.8 and B"= H.¢ and

Oge<dg1, then H will finish in less iterations).

Now we describe another bi-directional algorithm,
BHFFA2, because it can be easily implemented and
seems to be elegant. The worst case error ana-
lysis, the results of which are described in the
next section, however, suggests that the number
of nodes expanded explodes faster. The notation
of BHFFA2 follows more closely the terminology

of [1/.

BHEFFAZ
1) Place {{s,t,0,0,fi(s,t))} in OPEN.
2) If OPEN=@ then halt without a solution.
3) Select n={x,y,v1,v?,v3) in OPEN with minimal
vi+va+vd,
OPEN:=0PEN-{n}; CLOSED:=CLOSEDu{n};
descendants(n):=T(x)xI"" {x).
L) 1f x=y or yeT(x) then halt with a solution
path.
) 1T descendants(n)=@ then go to step 2.
) Select m=(mi,m?) in descendants{n) and re-
move m from descendants(n).
7} If meCLOSED which means mi=zl, m@=zZ, and
(z1,22,g (zl),gt(zQ),ﬁ(zl,ZE})is in CLOSED
8
then

Lir g (21)7g (x)+8(x,m) sndfor g (z2)>g, (y)+
L y,m?) then
{update g (2z1) and/or g, {z2);
place {(z2%,22.g (z1).gtf22),ﬂ(z1.22)) in OPEN};
go to step 5). °
8} If meOPEN then
{do updating of g (z1) and/or g, (22) as in
. t
step T 1if necessaly;
go to step 5).
9) g (m1):=g_{x)+¥m1,x}; g (m2):=g (y)+tm2,y
OPEN: =0PERU{ (mi1,m2,g (mﬁ),gt(mES,H(ml,mQ))
go to step 5. 5

)
}

Theorem 3
The lemmas and theorems proved in / 1/ for the
uni-directional A* algorithm, including the op-

timality theorem, also hold for BHFFA2.

Proof 3: BHFFA2 is in fact the uni-directional
A algorithm in the product space of the nodes
with itself. g.e.d.3.

2.2 Worst case analysis

A first order comparison of these algorithms may
be done by investigating how they behave in worst
case situations. We have derived formulas for
the uni-directional, Pohl's bi-directional, BHFFA
and BHFFA2 algorithms, assuming that the heurist-
ic function used gives a maximum error between
relative bounds. We will summarize the results
here, an expanded version of this paper contain-
ing their derivations will be sent on request

to readers interested in them. Let the search
space be a countable collection of nodes, with

two nodes, the start and the goal node, having

m edges (m>l), while from all the other nodes
emanate m+1 edges; and there are no cycles. Let
all the edge-lengths be equal to 1, and let there
be a path of length K between start node and goal
node. From a uni-directional viewpoint this space
is a tree with branching-rate m, since the algo-
rithm will not look beyond the goal node. In this
space the following results are obtained:

1. Let R be the real distance from some node on
the solution path to the goal node in the uni-
directional case, to the start or goal node in
Pohl's bi-directional case, and to the other
front in the BHFFA cases. If for each node on
the solution path nodes off the solution path
are expanded until some depth j, and if this

. Juu(Kot)—n jealK) . e - — §mulK) »
- —j=u(K=3) v J=ulKen) ,4
R ‘ -1
1 S:n{K}é‘*i
Lo i e

figure 2, BHFFA,
R decreases with steps

figure 3, uni-
directional.
of 2. R decreases with

figure 4, bi=-directional Pohl,
As at 1 R is still K/2,
j never gets very small,

steps of 1.

j is a monotonically decreasing function of R,
then, no matter what the heuristic exactly
looks like,

J?%HF‘Pﬁ(Ll:ni-diroctionﬁlc "rt:i—directional Pohl;
whereJﬁ denotes the number of nodes expand-
ed by algorithm A.

That this indeed must be the case can be under-
stood intuitively by looking at the figures 2, 3
and 4, where the length of a bar represents the
depth to which nodes off the solution path are

expanded. The total length of all the bars in-
creases from figure 2 to figure 4.
?. Suppose that for two nodes both lying on the

solution path holds that H{n,m)=H{n,m). {148}
forsome §>0,and else (at least one of the two
lying off the path) #{n,m)=H{n,m)}/{1+8). Then
8 is a relative error bound and this is the
worst possible case. Now for the BHFFA, the
uni-directional algorithm and Pohl's bi-di-
rec,tional algorithm nodes off the solution
path will be expanded until a depth j=6.R +
8. (8+1)/(8+2).

So here the monotone condition holds with the
result stated above. Furthermore we give

exact formulas for the number of nodes ex-
panded by the different algorithms in this
worst case:
5-c6 Ké 3
SHFFA = 2.m T
n =
K&
uni-directional = mﬁ_cﬁ. ma = 1
m -1
(K/f2).6
. L] . » - -’1
Jb..l—dll"ef:t]l)n&l Pohl=2m.m(K/2) 6 05.!1__(_5._.._)
m -

where m is the branching-rate, K is the solution
path length, and c6=6.(6+1)/(5+?).

3. The BHFFA2 case 15 less easy to handle, the
way it ranks in the series depends on m and
on K. The analysis, however, shows that with
increasing m and K BHFFA becomes the better
algorjthm in the long run. The exact formula
for the number of nodes expanded is very
complicated and won't be given here, a
reasonable estimate 1s given by

PKS

BHFFA2= m° O-C¢) M=l .

28
m =1
uni-directional formula with the solution path
length halved and the branching rate squared.

In general it underestimates the number of

nodes expanded by BHFFAZ.

this 18 the

3. Experiments with BHFFA

3.1 The program

A modified BHFFA algorithm is implemented as a
Fortran program, geared toward solving the 15-
puzzle. In this search-space all edgelengths are
taken as unity. The most important restriction
made is that if, after having expanded 1000
nodes, the program still has not found a solution
path, it gives up. Another important modification
is that the number of open nodes in a front can-
not exceed some maximum m, which is given to the
program as an input parameter but must be less

312

100. Whenever an (m+1)-th node should be added to
a front, first the open node with the current
worst f—value is deleted from it -unless the node
itself has an f-value even worse, in which case
it won't be inserted. We call thin operation
"pruning", a term also used in/1/. Thin step

is mainly necessary to save time, as the number
of comparisons needed to calculate h (x) for a

node x in S, is equal to the number of nodes in
T and vice versa. But this also means that the
algorithm is not admissable anymore, (an algo-

rithm satisfying theorem 1 is called admissible),
because it is possible that some node on the op-
timal path will be thrown away because it looked
very bad at some iteration. In a search space

where only one path exists from start, to goal
node, some backtracking mechanism would be re-
quired to ascertain that this path is found.

In the case of the 15-puzzle, the actual influen-
ce didn't appear to be very large if m was set at

50 (or larger), as will be seen in section 3-2-
Step 8 of BHFF'A, where occurrence of a new node
in the collection of closed nodes of it's own
front is checked was eliminated. We did this be-
cause we thought the time gained in possibly ex-
panding a few nodes less would not balance the
loss caused by searching through the set of
closed nodes for every new open node, whereas the
solution path found will most likely not be in-
fluenced. Step 9 was done by estimating all
distances to the opposite front, and inserting
node x in one of the ordered fronts of open nodes,
where the ordering is given by the f-values of
the open nodes. A nasty side-effect was that the
insertion of a new node in S could imply a re-
ordering of T and vice versa. The ordering was
done using a square matrix in which all combi-
nations of the H(x,y)-values of the fronts were
stored. Step 4 {the terminating condition) was
eliminated and replaced by a test in step 6:

"If XT'UT then halt with a solution path'. The
testing of x being in TuT instead of just being

in T is a necessary consequence of the pruning,
as it is possible that a descendant of a closed
node is deleted from the open front.

Three heuristic functions were implemented
program: v

1. Pla,b)= Py with 1 being the Manhattan dis-

in the

tance between the position of tile i1 in a and
in b, P oo 5

S(a,b)= 1.piL h."”, where p. is as in 1 and
hi is the distance in a, of tile 1 to the
empty square;

R(a,b) is the number of reversals in a, with
respect to b, where a reversal has the meaning
that a{i)=b(}) and a(j)=b{i), and i and j

are adjacent tiles.

Of these Tunctions the first two originally come
from /L4/, whereas the third comes trom /2/.

3.2 Results, conclusions and remarks

In order to compare our results with the uni-
directional case, the program was run with the
same 15-puzzle problems as were used by Pohl in
/?2/, using the same heuristic functions with the

same -values:

f1 =g + 1P with w= 1,2,3,L,8,106,«

2 = g + w.(P+20.R} withw =1,2,3,4,8,10,o

f3 =g+ w.5 with = .5%, .75, 1, 1.5, 2,3,4,16, «

Table 1.

shortesat path average averags number of
found for each pathlength nodes expanded
problem. (only over the sclved
probleas)
problem Pohl our Pohl our Pohl our
A1 12 12 12 12 12,6 129
A2 26 26 42.8 27.3 161.5 Sl o 4
A3 36 34 64,8 44,0 389.1 320.9
AL 20 20 21.8 24,3 90.2 108.6
AS 38 32 567 39.7 310, 4 2501
Ab 3¢ 3e be.8 371 3357 333.4
A7 36 36 56.6 53e7 365, 4 429,.3
A8 85 61 132.0 93.0 605.6 485.9
A9 86 88 152.9 18,5 591.2 56345
A10 &b 60 92.3 90,0 609.3 53243
Table 2.
number of score for score for number
problems pathlength of nodes expanded
solved.
Pohl our Pohl our Pohl our
£1 36 L7 22 L2 20 37
51 60 30 48 33 28
£3 36 L5 32 39 31 3h
rh 80 88 23 82 31 58
sum 203 240 107 211 115 157 J
fh = g + w.{5 + PO0R) with w = .5, .7%, t, 1.5, 2, counted shorter than no path at all); if the same
3, b, 16, pathlength was found by both programs they both
(whi¢h in fact means fi{x)=g (x) + Min(P{x,y)+ scored 1; if a problem was not solved by either
5 ye'P of the programs they both scored 0. The score

g,,_(y)) for x in 3, ete,).

As there were ten difrerent 15-puzzles, this
amounts to a total of 320 problems, of which our
program solved 240, whereas the uni-directional
program of Pohl solved 203 of them, it can be

seen that in nearly all these cases the heuristic
is not a lower bound on the real effort to be
made. This is the main reason why many of the so-

lutions found are not optimal, both for Pohl's
program and ours.

Tables 1 and 2 summarize the results, the full
results on all ten problems may be found in the
expanded version of this paper already mentioned
in section P.P. In table ?, where the performance
of the different functions is compared, the
score for pathlength was obtained as follows:
The program with the shortest path for some pro-

blem scored 1 and the other 0, (and any path is

313

for the number of nodes expanded was obtained in
a similar way. In so far the solution quality is
concerned, BHFFA is an improvement over the uni-
directional algorithm: it solves more problems,

finds in general shorter paths, and expands less
nodes on the average, although the last effect is
less prominent than we expected. BHFFA performs

particularly well
with f4 the total number of nodes expanded by our
program was 32% less than that by Pohl's program.
The frontlength adequate for the problems was
found empirically. Experimental runs were made
with frontlengths 25, 32 and 50. An increasing
number of problems was solved and a higher sta-
bility was reached. (By stability we mean the
chance that a longer frontlength preserves a so-
lution obtained with a shorter frontlength;
pruning tricks are the obstructing force here).

with a strong heuristic function;

As could be expected, the performance with res-
pect to the frontlength depends on both the so-

lution path length and the heuristic used: The
better the estimator, the smaller the frontlength
required (a length of 1 would suffice for a per-

fect heuristic). All problems were run with a
frontlength of 50, and the least satisfactory
solved were run again with a frontlength of 99,
in order to see whether the maximum number of
1000 expanded nodes or the pruning in the fronts
was the bottleneck. In general the first seems
to bo the case, since no significant improvement
was made, with the exception of f1 on A9 where
six instead of one out of 3even problems was
solved. The main disadvantage of Pohl's bi-di-
rectional algorithm, as mentioned in section 1,
appeared to be remedied. The fronts now did meet
near the middle of the search-space, which we
could see by comparing g and g of the inter-
section nodes.

The large disadvantage of our algorithm is the
very time-consuming calculation of the distance
estimator. With a frontlength of 50, | would
expect the BHFFA-program to take in the average
about 35 times longer to obtain a solution (for
the same problem with the same heuristic) than

a uni-directional program, run on the same
machine. In general, the loss of efficiency will
not be sufficiently set-off by the shorter paths

found. Nevertheless, it may pay off in, for
example, an ABSTRIPS-like environment (see /5/),
where it is crucial to find an optimal path from

among many different existing paths, as the num-
ber of sub-problem searches depends on the path-
length found in the dominating problem-space.
There are BHFFA or a similar algorithm (in the
next section we will suggest ways to make it
cheaper), with a strong heuristic function,
find an optimal path more efficiently than a
uni-directional program with a heuristic satis-
fying the lower bound condition, because this
kind of heuristic tends to be rather weak and
results in a fast explosion of the number of
nodes expanded.

may

4. Open problems and loose ends.

BHFFA can be simplified by not calculating the
heuristic distance to every node in the opposite
front but only to the best half or even leas of
them. This idea is inspired by the fact that,

in the limited number of cases where we checked
it, a node realised its minimum nearly always to
a node which belonged to the best ten of its own
front. A further simplification would be to de-
lete the resequencing of the opposite front as
the consequence of adding a node to a front. The
sensitivity of the solution quality to these
computation time and memory savings should be
tested.

BHFFA? needs implementation to be able to com-
pare its performance with that of BHFFA.

Looping as a consequence of the pruning can be
recognized but which rescue program should be
started then is unclear.

The partly expanded node technique,
in /6/, needs investigating.

A loss technical question however concerns the
selection of the most interesting ones among the
vast amount of pot.cutinl macro-operator sequen-

as suggested

314

ces that appear in a solution.path.

But the real A.l.-question is still:

How can the program improve its heuristic function
beyond simply optimizing some coefficients.
Heavily related to this is the question: How to
find automatically the best representation for

a problem to be treated by heuristic algorithms.

Acknowledgements

This research originated from a grant of the
Netherlands Organization for the Advancement of
Pure Research (Z.W.O.), which enabled the first
author to visit U.T. in Austin, Texas, where

L. Siklosky introduced him to this field.
Discussions with T. Pohl on earlier drafts were
highly appreciated.

References
1/
/2/

N.J. Nilsson, Problem-sclving Methode in
Artificial Intelligence, 1971.

Ira Pohl, Bi-directional Heuristic Search

in Path Problems, 1969.

Tra Pohl, Bi-directional Search, M.I.6, 1971,
J. Doran and D. Michie, Experiments with the
Graph Traverser Program, 1966.

E.D. Sacerdoti, Planning in an Hierarchy of
Abgtraction Spaces, 3IJCAI, 1973.

R.S. Rosenberg, Look-Ahead and One-Person
games, University of British Columbia, 1972.

/3/
/u/

/5/
/6/

