ADAPTIVE PRODUCTION SYSTEMS

D. A. Waterman

Department
Carnegie-Mellon

ABSTRACT

Adaptive production systems are defined and
used to illustrate adaptive techniques in produc-
tion system construction. A learning paradigm is
described within the framework of adaptive produc-
tion systems, and is applied to a simple rote
learning task, a nonsense syllable association and
discrimination task, and a serial pattern acquisi-
tion task. It is shown that with the appropriate
production building mechanism, all three tasks can
be solved using similar adaptive production system
learning techniques.

[. INTRODUCTION

This paper presents results in the design and
use of adaptive production systems (PS's). A PS
(Newell & Simon, 1972; Newell, 1973) is a collec-
tion of production rules (PR's), that is, condition-
action pairs, C => A, where the left side is a set
of conditions relevant to a data base or working
memory (WM) and the right side is a list of actions
which can modify WM. The PS's to be discussed are
written in PAS-II (Waterman & Newell, 1973; Water-
man, 1973) and each is a set of ordered PR's. The
control cycle consists of selecting one PR from
the set and executing its actions. The first rule
(in the ordered set) whose conditions match WM s
the one selected. After the actions of the selected
rule are executed the cycle repeats. This process
continues until no conditions match.

An adaptive PS is one which can modify its own
There are three ways this can take place:
by adding new rules, deleting old rules, and chang-
ing existing rules; however, the PS's described

here use only addition of new rules.

PR's.

We now postulate a common machinery for learn-
ing: (1) a PS interpreter for ordered PS's, (2) a
PS representation for learning programs, (3) PR
actions for building rules and adding them to the
system, and (4) the learning technique of adding
new PR's above error-causing rules to correct the

errors. Three learning tasks are investigated:
arithmetic, verbal association, and series comple-
tion.

The programs for the tasks are written as short
PS's which access a single WM composed of an ordered
set of memory elements (ME's). When PR's "fire,"
i.e., their actions are executed, they modify WM by
adding, deleting, or rearranging ME's. Such changes
may cause different rules to fire on the next cycle
and new memory modifications to be made. Thus the
system uses WM as a buffer for holding initial data
and intermediate results. Most actions modify WM
Some modify the PS by assembling WM elements into
a PR and adding it to the PS. These actions give
the PS its self-modification capability.

The arithmetic task consists of learning to
add two integers given only an ordering over the
set of integers. From this ordering, PR's which

296

of Psychology

University

define the successor function are created and then
used to calculate the desired sum. The verbal
association task is a PS implementation of EPAM
(Feigenbaum, 1963). Instead of growing an EPAM
discrimination net, the system creates a set of PR's
equivalent to such a net. The series completion
task consists of predicting the next symbols in a
sequence, such as AABBAABB.. Here PR's are created
which represent hypotheses about which symbol con-
texts lead to which new symbols, i.e., "two A's al-
ways lead to a B." These rules constitute the con-
cept of the series and are used to predict new
symbols.

1. PAS-II PRODUCTION SYSTEM

The PAS-II PS interpreter is modeled after PSC
(Newell, 1972, 1973). PR's in PAS consist of condi-
tion-action pairs, where the condition side is a set
of conditions with implicit MBVBER and AND functions
and the action side is an ordered list of independ-

ent actions. A rule to deposit (C) and (D) into WM
if it already contains (A) and (B) is:

(A) (B) => (DEP (C)) (DEP (!))), where the action DEP
deposits its argument into WM. The control cycle

of the PS interpreter consists of two mechanisms:
RECOGNIZE and ACT. A cycle is defined to be a
single RECOGNIZE-ACT sequence, and is repeated un~
til either no rules match WM or a PS halting action
is executed.

RECOGNIZE. RECOGNIZE selects a rule to be
executed. When many rules match WM a conflict oc-
curs, as RECOGNIZE must produce one rule for ACT to
work on. Conflict resolution consists of applying
a scheme to select one rule from those that match
WM. The only conflict resolution used here is
priority ordering. Thus the rule recognized is the
highest priority rule whose conditions match WM.

The match mechanism assumes implicit MEMBER
and AND notation and scans condition elements
(CE's) in order from left to right to see if each
element is in WM. When all the CE's in a rule
match corresponding ME's, the ME's are brought to
the front of memory (just before actions are exe-
cuted) in the order specified in the rule. A ME
can match only one CE in any rule and the order of
the ME's does not have to correspond to the order

of the CE's. For example, the conditions (A) (B)
(A) will match WM, (B) (A) (A), but not WM (A) (B).
A CE will match a ME if the ME contains all items

the CE contains, in the same order, starting from

the beginning of the ME. Thus CE (A T) will match
ME's (A T), and (A T E) but not (A), (T A), or
(TAT). The match routine searches for the absence

of a ME if the CE is preceeded by a minus sign (-).
Thus (A) - (B) will match WM if it contains (A) but
does not contain (B). Free variables can be used

in the CE's and are denoted x1, x2,...xn. When a
match occurs each item in the ME which corresponds

to a variable is bound to that variable. For example,
with WM, (A) (B(L)) and PR: (xI) (B x2) -> (DEP x2),
x|l is bound to A, and x2 to (L). The action taken
will be to deposit (L) into WM

ACT.

and executes all
der from left to right.

ACT takes the rule specified by RECOGNIZE
its actions, one at a time, in or-
Actions in a PS are criti-

cal since they determine the grain of the system.
If the grain is too coarse a single action may em-
body all interesting activity, obscuring it from

view. The criterion in defining actions
them primitive enough so the PS trace will exhibit
the activity deemed interesting.

BAS1C ACTIONS

(DLEP a): Deposit a into front of WM.
(REM 3] : Remove first occurrence of i from WM,
(REP a b n}: Replace a with b in nth ME.

befault n is 1. -
(SAY 4} Print a. Handles multiple arguments.
(CLLAR a): All ME's except a are removed from WM.
(ATTEND) : Read from terminal, to let user

modify WM,
(STOP)}: Stop production System execution.

MODIFICATION ACTIONS

(COND a): Deposits (COND a) into WM. Is the
same as {DEP (COND a)).

(ACTION a}: Deposits (ACTION a) into WM, Is
the same as (DEP {ACTION a)).

(MARK a): Marks each ME that just matched
the CL's of the rule containing
(MARK a). Element e is marked by
changing it to (a e).

(USED) : Exactly equivalent to (MARK USED)}.

(OLD): Exactly equivalent to (MARK OLD).

(PROD a): Creates a PR from a1] ME's marked
{COND...) and (ACTION...) and inserts
it into the PS just in front of the
first PR that contains an element
identical to any arguments of PROD.
1f PROD has no arguments the rule is
inserted at the front of the PS. If
1t has argument END, it is inserted
at the end. In all cases all ME's
marked (COND...) and (ACTION...)
are removed from WM,

SPECIAL ACTIONS

(S3UCC): Changes every ME beginning with a
nusber by replacing that number
with its successor.
(PERCEIVE 8 b): Breaks syllable a into letters
and tags the letters with b and a
nurber specifying their order in a.
a b): Breaks word a into letters and
tags the letters with b.
b c d): Here b is the hypothesized
period (initially 1), and c is the
series. As in PROU, ME's marked
{COND...) and (ACTION...) are combined
and removed from WM to create a new
rule. This rule is generalized accord-
ing to the template heuristic (see
text) and placed just above the first
rule containing a. The d is the number
of rules already added to PS by PRODS.

(OBSERVE

(PRODS &

vable FAS Poade o0 0 Lon Wb

The three types of PAS actions are: basic,
modification, and special, as shown in Table 1.
They assume WM is an ordered list of ME's going

from left to right. Thus DEP places ME's into WM

at the left, and REP counts ME's starting from the
left. The modification actions will now be
illustrated.

is to make

297

WM: (B) (A) (C) (ACTION (SAY DONE) (STOP))(COND (C))
PS: 1. - (B) => (DEP (B))

2. (A) (B) => (MARK COND) (PROD (A))

3. (C) => (DEP (A))

When PS is fired, rule 2 is the first to match WM.

The (MARK COND) marks (A) and (B) and memory

becomes :

WM: (COND (A)) (COND (B))(C)(ACTION (SAY DONE) {STOP
(COND (C))

Then (PROD (A)) creates a PR out of the elements

marked COND and ACTION, removes them from WM, and

puts the new PR just above the first rule contain-

ing (A), rule 2.

WM:
PS:

(€)
1. - (B} => (DEP (B))

1.5. (A) (B) (C) => (SAY DONE) (STOP)
2. (A) (B) => (MARK COND) (PROD (A))
3. (C) => (DEP (A))

After the insertion of rule 1.5, execution con-
tinues, terminating with the firing of 1.5.

Implicit actions are implemented in PAS, i.e.
predecessors and successors on letters can be ac-
cessed implicitly by placing apostrophes before
or after PR variables. Thus the value of x1' is
the successor of the value of x1, and the value
of '"'x1 is the double predecessor of the value of
x1.

IIl. PRODUCTION SYSTEM FOR ADDITION

The addition PS is designed to illustrate
adaptive techniques and to compare PS programming
with conventional methods. It does not attempt
to model data on human performance in this task.
Figure 1 shows the ADD PS.

1. (READY) (ORDER X1) => (REP (READY) (COUNT X1))
(ATTEND)

AN X1) = (NN) - (S NN) = (DEP (NN X1)}

. {COUNT X1) (M X1) (NN X2) (N X3) =
(SAY X2 IS THE ANSWER) (COND (M X1} (N X3))
(ACTION (STOP)) (ACTION (SAY X2 IS THE ANSWER))
(PROD) (STOP)

. (COUNT) (NN) => (REP {COUNT) (S COUNT))

(REP (NN) (S NN) 2)

(ORDER X1 Xx2) = ({REP (X] X2) (X2)) (COND (S X3 X1))

(ACTION (REP (S X3 X1) (X3 X2)}) (PROD)

Lo]

Figure 1. ADD: A Production System for
Addition of Integers

When ATTEND is executed the system is given
two integers, (M a) (N b). It calculates a + b
and prints the answer. The algorithm used is
shown below,

add{m,n) = count « 0, nn + n;

L1 if count = m then return{nn};
count « successor(count};
nn + successor(nn);

go(L1).

2.1
2.2
2.3 (2)
2.4
2.5

Count and nn are local variables initialized to
zero and n respectively. Count and nn are con-
tinuously incremented by one, using the successor
function, until count equals m. At this point the
answer is nn.

ADO performs these steps with some differences.
First, it has no successor function, so it creates
a PR representation of that function. Second, once
a sum is calculated it adds a rule that produces
the answer directly the next time. Thus it builds
the addition table for integers.

There is a direct mapping, however, between
the code in (2) and that in Figure 1. Rules 1 and
2 in Figure 1 correspond to line 2.1. Rule 3 cor-
responds to 2.2, and rule 4 to 2.3 and 2.4. Rule
5 has no correspondent in (2) since the code assumes
the existence of the successor function, while the
PS creates it. Note that 2.5, the GOIO statement,
has no correspondent in Figure 1. In ADD the func-
tion of the GOIO and label is handled by control
cycle repetition, which permits looping, and memory
modification, which in this case makes rules 1 and 2
inoperative. A trace of ADD solving 4 + 2 is shown
in Figure 2.

V. PRODUCTION SYSTEM IMPLEMENTATIONS OF EPAM

EPAM (Feigenbaum, 1963; Feigenbaum & Simon,
1964) is a program which simulates verbal learning
behavior by memorizing three-letter nonsense sylla-
bles presented in associate pairs. The program

learns to predict the correct response when giver

a stimulus syllable by growing a discrimination

net composed of nodes which are tests on the values
of certain attributes of the letters in the syl-
lable. Responses are stored at the terminal nodes,
and are retrieved by sorting the stimuli down the
net. A paired associate training sequence for this
learning task is shown in Figure 3.

Stimulus Response
PAX CON
BEK LUQ
CIT DER
BUK MAB
NAL LEQ
REB MOL
NOJ PED

Figure 3. Paired Associate Training Sequence
for Verbal Learning Task.

EPAM1. Figure 4 shows EPAMI. This program
grows a PS5 which is analogous to a discrimination
net with tests for stimulus letters (i.e., '"is the
3rd letter R?") at the intermediate nodes and com-
plete responses at terminal nodes.

ememory thapisy ps displey
MEMORY MODE
1.STM « (READY){ORDERQ 1 23456708 9}

PS MODE

1. (READY) {ORDER X1} ~> (REP (READY)
(COUNT Xi)) (ATTEND)

2 (N X1) - (NN) - (§ NN} => (DEP (NN XI))

3 (COUNT X1) (M X1} (NN X2) (N X3) o>
(SAY X2 IS THE ANSWER) (COND (M X1)
{N X3)) (ACTION (STOP)}
(ACTION (SAY X2 IS THE ANSWER))
(PROD) {STOP)

4. (COUNT) (NN) => (REP (COUNT) (S COUNT))
(REP (NN) (5 NN} 2)

5 (QORDER X1 X2) «» (REP (X1 XK2) (X2))
(COND (S X3 X1
(ACTJON (REP (S X3 X1} (X3 X2))) (PRGD)

sfire
! TRUE INPS
OUTPUT FOR {ATTEND) » (dep (m 8)(n 20}
STM. (N 2) (M &) (COUNT ©)
(ORDERC 1 23458789

2 TRUE INPS
STM. (NN 2} (N 2) (M 4) (COUNT 0)
(ORDEROC1234568789)

4 TRUE IN PS
STM: (S COUNT 0) (S NN 2} (N 2) (M &)
(ORCERO 1 234567809)

S TRUE IN PS
NOW INSERTING
(S X3 D} «» (REP (S X3 0) (X3 1))
ON LINE 0S5
STM. (ORDER 1 2345878 W
(SCOUNTOXS NN 2) (N2) (M &)

05 TRUE IN PS
STM. (COUNT 1) (ORDER 1 23438578 9)
(SNN2)(N2){M&Q)

S TRUE IN PS
NOW INSERTING

Figure 2.

(S X3 1} «> (REP (5 X3 I) (X3 2D
ONLINE 028

STM (ORDER 2 34567 8 9 (COUNT)

(SNN 2)(N2) (M8

S TRUE IN PS
NOW [NSERTING
(5 X3 2) «» (REP (5 X32) (X330
ON LINE 013

STM (ORDER 345 6 7 @ 9) (COUNT 1}

{SNN2)IN2Y(MA)

013 TRUE IN PS
STM. (NN 3) (ORDER 34567 B D)
(COUNT 1) (N 2) (W &)

4 TRUE IN PS
STM (5 COUNT 1) (SNN 3)
(ORDER 345678 9)(N2)(MA)

025 TRUE IN PS
STM (COUNT 2) (5 NN J)
(ORDER 34587289 (N 2) (M D)

S TRUE IN PS
NOW INSERTING
(S X3 3) > (REP (S X3 3) (X3 4Y)
ON LINE 005
STM (ORDER 45 6 7 8 §) (COUNT 2)
(S NN 3) (N 2) (M &)

005 TRUE IN PS
ST (NN A) (ORDER A S8 70 D)
(COUNT 2) (N 2) (M &)

4 TRUE IN PS
STM (S COUNT 2) (S NN &)
(ORDER 4587 R 9)IN2)MA)

013 TRUE INPS
STM (COUNT 3) (S NN &)
(ORDER A 56 7 8 9) (N 2) (M 4)
5 TRUE IN PS

NOW INSERTING
(S X3 4) -> (REP (S X3 &) (X3 50

on 4 + 2,

298

DN LINE 003
STM. (ORDER S 6 7 8 §) (COUNT 3)
(SNN & IN2YIMA)

003 TRUE IN PS
STM. (NN S) (ORDER 5 B8 70)
(COUNT 3} (N 2) (M &)

4 TRUE IN PS
STM (S5 COUNT 3} (5 NN 5)
(DRDER S 87 B M (ND(MA)

005 TRUE IN PS
STM: (COUNT 4) (S NN 5)
(ORDER 5 8 7 B9 (N 2) (M Q)

S TRUE IN PS
NOW INSERTING
(5 X3 5) => (REP (5 X3 5) (X3 80
ON LINE 0.02
STM (ORDER 6 7 B 9) (COUNT 4)
(S NN 5) (N 2) (M &)

0.02 TRUE IN PS
STM (NN &) (ORDER 8 7 3 O)
(COUNT 4) (N 2) (M 8)

3 TRUE IN PS
6 IS THE ANSWER

NOW INSERTING
(M 8) (N 2) -> (SAY 8 IS THE ANSWER) (STOP)
ON LINE 001
STM: (COUNT 4) {M 4) (NN 8)
(N2)(ORDER 6 78 9

display
001 (MAY(N2) «» (SAY 8 IS THE ANSWER)
{STOP)

002 (5 X3 5 «» (REP (S X3 5) (X3 &1
003 (S X3 48) > (REP (S X3 &) (X3 8)
0.05 (S X3 3) «> {REP (S X3 3) (X3 4))
013 (S XTI 2Z) »» (REP (S X3 2V (X3 3N

025 (SX31) e (REPSXI DI 2N

08 (SX30) o> (REP(SXIDY NI 1))

Trace of ADD Production System

I. (READY) (STIM X1) = (REM (READY)) (PERCEIVE X1 1) Before the second pair of syllables is pre-
2. (READY)} => {(ATTEND STIM) sented, memory is initialized back to (READY), and
3. (REPLY) -~ (RESP) => (ATTEND RESP) the system is restarted. Again 2 and 1 are fired
4, (REPLY X1) - (RESP X1) => (REP REPLY WRONG) to obtain and perceive the stimulus. But now 5.5
5. (USED X1) (WRONG X2) => (REP USED COND) matches WM and causes (1 P ?) to be marked USED,
6. - (RESP) => (DEP (REPLY 1)) (SAY 1) (ATTEND RESP) and the system to reply CON and add the reply to
7. (X1 X2 7) (RESP X3) (WRONG X4) > (COND (X] X2 1) memory. This is an example of stimulus general-

ization: the system confused PUM with PAX since it

(ACTION (USED) (DEP (REPLY X3)) (SAY X3)) 2 .
was only noticing first letters.

(PROD (SAY X4)} (STOP)
Figure 4. EPAM1: A Production System

Implementation of EPAM 3 TRUE IN PS
QUTPUT FOR (ATTEND RESP) = (dep {resp jes))
EPAM1 learning PAX-CON and PUM-JES is illus- STM: (RESP JES) (REPLY CON) (USED (I P) (3 MT)
trated below. {2 U7T)(STIM PUM)
*ﬁrcz TRUE IN PS 3 TRUE IN PS
STM: (WRONG CON) (RESP JES) {USED (1 P 1)) (I MY
STM: (STIM PAX) (READY)
5 TRUE IN PS
1 TRUE IN PS
STM: (COND (1 P 1)) (WRONG CON) (RESP JES) (3 M T)
STM: (1 P?)(3XT)(2AT)(STIMPAX) (2 U 1) (STIM PUM)
6 TRUE IN PS 7 TRUE IN PS
? NOW INSERTING
(3IMTY(1 PN = (USED) (DEP (REPLY JES)) (SAY JES)
OUTPUT FOR (ATTEND RESP) = (dep (resp con)) ONLINE 53
* TM: (3 M ?) (RESP WRONG CON) (2U T
STM: (RESP CON)(REPLY N {1 PT){3XT){2AT) S ‘51(-“‘ PU)M() SPJES) ON) ¢)
(STIM PAX)
Initially WM (here called STM) contains (READY). Now memory contains a reply but no response,
Rule 2 fires and the system asks for the stimulus. so 3 fires and elicits the correct response (JES)
Then 1 fires, adding stimulus components to memory. from the user. Rule 4 fires, since the reply
Next 6 fires and prints a question mark as the sys- differs from the response, marking the reply wrong.
tem's reply to the stimulus, adds this reply to Next 5 fires, changing the USED label to COND.
memory, and asks for the correct response. Finally 7 fires and creates a new rule with two
4 TRUE IN PS condition elements, one from the COND already in
STM: (WRONG ?) (RESP CON) (1 P?)3X?)(2A?) memory and one from the COND inserted by rule 7,
(STIM PAX) The two rules just added are:
53.3MMN (I PT) = (USED) (DEP (REPLY JES))
7 TRUE IN PS (SAY JES)
NOW INSERTING 55.(1 P?) = (USED) (DEP (REPLY CON)) (SAY CON)
?) -
((;I)NPL|'|2JE>5(;JSED) (DEP (REPLY CON)) (SAY' CON) PAX will now elicit the response CON, and PUM the
STM: (1 P ?) (RESP CON) (WRONG T) (3 X ?) 2 A T) response JES, as desired.
(STIM PAX) EPAM2. Figure 5 shows EPAM2. This complete

Since the reply (?) does not match the response version of EPAM grows a PS in which response cues
(CON), 4 fires and changes the label REPLY to WRONG. rather than complete responses are stored in some
Now 7 fires creating rule 5.5. terminal nodes. These cues (i.e., CN) are re-

trieved by dropping the stimulus through the net,
and are then themselves dropped through the net
to retrieve the responses stored in other term-

xinitialize fire inal nodes.
INITIALIZED
2 TRUE IN PS
OUTPUT FOR (ATTEND STIM} » {dep {stim pum)) 1. (READY) (STIM X1) »> (REM {READY)) (PERCEIVE X1 1)
STM: (STIM PUM) (READY) 2. (READY) = (ATTEND STiIM)
3. (REPLY) - (RESP} => (ATTEND RESP)
1 TRUE IN PS 4. (REPLY X1) - (RESP X1) = (REP REPLY WRONG)
STM: (1 PP} (3MT)(2U T (STIM PUM) 5. (REPLY X1) {RESP X1} => (STOP)
6. (USED) (TEST X1) - (TEST X2) = (REP USED USEDx)
5% TRUE IN PS 7. (TEST X1) (TEST X2) (X3 X4 ?) => (REM (X3 X417))
8. (TEST X1) (TEST X2} - (R-GEN) =
CON (DEP (REPLY X1) (R-GEN)}) (SAY X1)
9. - (RESP) => (DEP (REPLY ?)) (SAY 7) (ATTEND RESP}
STM: (REPLY CON) (USED (1 P 3 M) (2U TN 10. (RESP X1) - (X2 X3 RESP} s> (PERCEIVE XI RESP)
(STIM PUM) 11, {(WRONG) (TEST X1) {STIM X1} « (R-GEN) =

(DEP (R-GEN))
12 {(OLD X1) (R=GEN) => (REP OLD COND) (DEP (HOLD X1))

299

13. (USED X1) (USED=%) (R-GEN) = (REP USED COND) STIMULUS REPLY 1 REPLY 2 REPLY 3 RESPONSE
(DEP (HOLD X1))

1 4. (R-GEN) {COND (X1 X2 1)) (X} X2 RESP) = PAX ? CON CON CON
(REM (X1 X2 RESP)) BEK ? MAB (SG) LUQ LuQ
15, (X1 X2 RESP) (RESP X3) (WRONG X4) - (DONE) = CIT CON (SR) DER DER DER
(COND {X1 X2 1)) (ACTION (OLD) (DEP (REPLY X3)) :ﬂf LWQ (56 "Lag (RG) rgg tgg
(SAY X3)) (PROD (SAY X4) (TEST X4)) (DEP (DONE)) RAL ? e S et O LEQ

16. (USEDx X1) «> (REP USEDx COND}
17. (OLD) (DONE) - (TEST) => (REP OLD COND)
18. (R-GEN) (HOLD (X1 X2 7)) »> (REM (HOLD (X} X2 1))

NOJ LUQ (SG RG)} PAX (SR} PED PED

Figure 6. EPAMZ Output for Three Training Trials

(ACTION (DEP (X1 X2 1))} © et Loy
(S5G: stimulus generalization error,

19. (R-GEN) (X1 X2 RESP) (STIM X3) (WRONG X4} = RG: response generalization error,
{ACTION (DEP (TEST X3))) (ACTION (USED) SR: stimulus-response confusion).

{DEP (X1 X2 1)) (PROD (DEP (TEST X3))) (STOP)

20. (X1 X2 1) (X3 X4 RESP) (STIM X5) (WRONG X6) = The PR's learned by EPAM2 and the correspond-
(COND (X1 X2 1)) (ACTION (USED) {(DEP (X3 X4 1)) ing discrimination net are shown in shorthand
{DEP (TEST X5))} (PROD (SAY X6)} {STOP) notation* in Figure 7. Note that the condition

elements are analogous to intermediate nodes and
Figure 5. EPAM2: A Production System the response elements to the terminal nodes in
Implementation of EPAM the net, and the path through the net from the
top to a terminal node corresponds to the sequence
EPAM2 was given the stimulus-response pairs of conditions tested in the PS to obtain a response

of Figure 3 and produced the output shown in
Figure 6. There were two instances of stimulus
generalization, two of response generalization,
one of both stimulus and response generalization,
and two of stimulus-response confusion.

*Conditions, like (1 P), are elements denoting a
letter and its location in the syllable, and are
ordered (first, third, second) according to syl-
lable location. Actions are response words like
CON, or partial response cues like (1 M).

T I VIR R ST
o JCiv3 o 1 L)

0 T U T Y YUY

. I A T C PR R U
oy > 11y

o O LIs Q> LEg

DER (r Ly => Ly

(1 B)(3 Ry(2 k) =»> 1 L,
(} M}(3 L) > MUl

(1 M) => MaAB
o (1 BY(3 K) > (1 1}
. . (1 P} => PLDb
/ \ {1 N)(53J) > (1l P)yshy

0 o (1 N}Y(3) => (11
oo CON (v L) =>» LUy

(4 B) => (1 L)

’ - (1 L) => LY
PLL c @ 0 (1 N) =) Liioa o)
- - (1 N} => (1 L
(1 M) => MUOL
. . . . (t R} => 1 s 1

(1 RY => .1\

LLQ L1y 0 o L. J'roduction Rules

Learred by LPAM.

* - +
oM OER®
+ - * - + -
L Mo P D L0 O o
* *
ot Pioerarataiien W dguasdlent to Kules
learive 0o TEAMS
MOL MaB M L ”
e . Diseriminavion Net and Product * n Rules for EPAMZ.

300

V. PRODUCTION SYSTEM FOR SERIES COMPLETION

Computer models of series completion (Simon 6
Kotovsky, 1963; Klahr & Wallace, 1970; Williams,
1972) have been complex programs with structures
quite dissimilar from those of more basic learning
models. Here we provide a common structure for
these learning tasks. The essence of their common-
ality is (1) an ordered PS representation of what
is learned, and (2), the technique of adding new
PR's above the error-causing rules to correct errors
A PS will now be described which can solve complex
letter series completion tasks which require the use
of same, successor, or predecessor operations on the
alphabet.

Learning Technique

PR's are created which represent hypotheses
about what symbols come next given a current con-
text of symbols. These hypotheses are tested by
checking the given series to see if the current
set of PR's (the learned PS) correctly predicts
each symbol in the series given the partial series
up to that symbol. When every symbol is correctly
predicted, the system uses the learned PS and the
entire problem series to predict the next symbol
in the series.

For the series CABCAB the rule CA-~B would
be learned. This means "if the last two letters

Before being added to the system, rules are gener-
alized to take into account the relevant letter
relationships. The problem is that rules can be
generalized many ways, each being a hypothesis
about which letter relationships are relevant for

the series. The variations on C A -> B are shown
below.
x1 A+ B
Cxl1-+8
x1 A+ 'x1
C x1 » x1°'
x1 x2+8
xl1 ''x1 - B
x1 x2 - 'xi1
xl ''x1 » "x1

The first rule above means "any letter followed
by A leads to B", the second is "C followed by any
letter leads to B", and the third "any letter
followed by A leads to the predecessor of that
letter."

If for every new rule the system arbitrarily
picked a generalization, intending to backtrack
to try the others when an error occurred, a huge
tree of possibilities would be generated, making
the problem unsolvable. The solution is to use
tree-pruning heuristics to limit the number of
generalizations at each step. The PS to be des-
cribed uses one powerful heuristic, the template

of the partial series are CA, the next is B." heuristic.
EXAMPLE OF LEARNING TECHNIGUL
Line Period 4Y11ze Rule
Number ilypothests Series 0ld Ps Prediction Valid? Components New Rule New PS5
1] A FBHIBICILCH x1 =+ xl A -3 A« B xl - x1° xt - x1' (1}
P b x1l * x1 (default)
2 1 ATR /IRl LCD x1 * x1! c) AB+H xlxl'=H xI x1' *H (D)
f x] = xl x1 + x1' (1)
xl * x1 {defsult)
I i 1
3 2 A/ BHBICICD xl * xl A (<) A~B x1 + P x1 ~B (init)
' x1 *+ x1 (default)
. 2 AB/HBLICD X1 B B (- AB~+H none x) + B (init)
! ' xb * xl xl *+ x1 (defauit)
5 3 A/BHEBCTCD a1+ xl A) A-+B xl ~ B x1 + B (imt)
') x1 * x1 (default)
]
6 3 AB/HWBCLCD xl1 =B B (-) AB=-H xl x2 = H xl x2 *H (init)
x1 * x1 xl1 * B (init)
x1 = xi (defaulr)
7)] AB U /:B C I;C [} xl x2 - H H (-} ABH=B =l x2 x3~»xl' xl x2 x3 * x1' (1)
! ' x1 + B x1 x2 *H (init)
x1 > xi Al *h {init)
x] + x1 (default)
8 3 ABILE FAR S I:C D x] x2 x3 * xI? C (*) none noene same as above
: : al x2 +
x1 = B
xl + x1
9 3 A B H:B C/ IEC b same As above 1 (*) none none same as above
10 3 ABHIBECT /iCD seme a3 above () none none same as above
1 3 AB u‘;s ¢1ic/su same as above n {+) none none same a3 above
12 (period known A B} B L 1 L D same 45 above J

to be 3)

Table 2.

301

Learning Technique I[llustrated for ABHBCICD

The template heuristic consists of hypothe-
sizing period size, and recognizing only relations
between letters which occupy the same relative
position within the period, while generalizing on
all letters. For example, if given the series
ACABA with period 2, then the relations looked for
are shown by the arrows below.

232
ACA IS:A
| I

Learning proceeds as follows: period size is
hypothesized and the series goes through a parti-
tion-prediction cycle. Generalized rules are
added, and the cycle is performed once for each
period hypothesis. A period hypothesis is false

if:
(1) no relation is found between letters
occupying the same relative position within
the period

or (2) the number of inter-period rules added

exceeds the period size hypothesis.

When the period hypothesis is false, it is
increased by 1, and the cycle starts over. Table
2 shows this procedure for the series ABHBCICD.
In line 1 we see the default rule x1 -> x1 (always
considered to generate an error) and the parti-
tioned series. Everything to the left of the
slash (/) is the current context. Context A is
dropped through the rules and A is predicted.
This is not valid (-), as the actual next letter
is B. Now the system takes context A and next
letter B to form A -. B, generalizes it to get

1. (READY) (SERIES X1) => (REP READY CONT)
(DEP {PNUM 2) {COUNTS 0)) (OBSERVES X1 1)

. (READY) => (ATTEND SERIES) (DEP (PERIOD 1))

. (COUNT) (COUNTS X1) => (REM (COUNT))

(REP X1 X1')
.0 X} 1) = (SUCC)
. {FAIL) (PERIOD X1} (SERIES X2) »> (ERASE)
(CLEAR) (DEP (READY) (PERIOD X1'") (SERIES X2))
6. (PERIOD X1) (COUNTS X1') (SERIES X2)
(ERASE) (CLEAR)
(DEP (READY) (PERIOD X 1"} (SERIES X2))

7. {NEXT X1) - (X2 T) - (ACTION) =»> (SAY X1)
{DEP {MATCH) (X1 1)) (STOP)

8. (NEXT X1) (USED) (ACTION (USED) (DEP (NEXT X1)))

= (MATCH) ~ (ERROR) »> (DEP (MATCH))

9. (X1 X2 7} (NEXT) - (DONE) =

(DEP {OLD (X1 X2))) (DEP (DONE))
10. (USED (X1 X2 7)) = (REP USED OLD)
. (DEP (X1 X2 1))
11. (OLD (X1 X2 1)) > (REP OLD COND)
12. (MATCH) (NEXT X1} (SERIES X2) (LOC X3) =
{REP (NEXT X1) CONT 2)
(REM (MATCH) (DONE} (LOC X3)) (PROD (SERIES X2))
3. (LOC X1) (NEXT X2) (PERIOD X3) (SERIES X4)
(COUNTS X5) => (REM (LOC X1) (DONE) (ERROR))
{REP (NEXT X2) CONT) (PRODS (LOC X1) X3 X4 X5)
14. (CONT) (X1 1) (PNUM X2) (X3 7} =
(REP X1 (0 X1) 2) {REP X2 X2’ 3) {REM {CONT)}
(ACTION (USED) (DEP (NEXT X3)) (DEP (LOC X2))}
15. (CONT) (X1 ?)} = (REP X1 (0 X1) 2)
(REM (CONT))
16. (I X1 7} => (DEP (NEXT X1) (LOC 1))

W

[

Production System for Series
Completion Task

Figure 8.

302

x1 -> x1', and places it above the error-causing
(default) rule as shown. In line 2 the number of
rules added (2) exceeds the period size hypothesis
(1) so a new size hypothesis (2) is made in line 3
In line 4 the rule cannot be generalized since no
relation can be found between A and H*, thus size
3 is hypothesized in line 5. Line 11 completes
the learning cycle and line 12 illustrates the PS
making its first actual extension to the series.
The concept of the series is now embodied in the
numbered rules (the inter-period rules). Thus we
say that xI x2 x3 -> x1' is the concept learned by
the system, and the series predicted by this con-
cept is ABHBCICDJDEK...

Production System

Figure 8 shows the PS for letter series com-
pletion. Rules 1 and 2 provide initialization,
rule 16 acts as the default rule, and rule 13
adds productions to the system. Figure 9 shows
concepts learned using the 15 series from Simon
and Kotovsky (1963). The correct predictions are
made in all cases. For more on serial pattern
acquisition see Waterman (1975).

*The system does not search for relations higher
than triple predecessor or successor.

Series Hules Prediction
1. CeDen al x2 - at CIx
2. AAABBR xl »2 x3% » x1' (N
3. ATBATAATB xl x2 x3 x4 x5 x6 +» xl ATA
4. ABMCIMET 1 M x3 x}'" - M ML
xl x2 x3 » x1'!
5. DEFGEFGH x} x2 x3 x4 + x1! F(Gt
6. OQXAPXBUXA x1 x2 x3 x4 x5 x6 -+ x1 PXR
7. ADUACUAEUABUAF xl U A x4 x5 x6 *x1 U A » xd! LUAA
U A X3 xd x5 x6 UA - "x3
A x2 x3 ad x5 x6 A + x2'
xI U x3 x4 x5 x6 'x1 -+ 1)
x] x2 23 x4 x5 af » xl
8. MABMRCMO M M x2 x3 x4 x5 x6 M + x2*! LM
Xl x2 M x4 x5 x6 x1'* x2'' e M
xt x! x3 x4 xK x& xl'' . x2*?
xl x2 x3 x4 x5 xt + x]
9. URTUSTU Uoxd x3I U x2* TTU
xl x2 x3 + x])
10, ABYABXARK B ox2 x3i B » "y KARN
xl ox2 x5 o oxd
11, RsCDSTLE xl al x3 xd - xl* Tk
i hAOUQAPR x1 A x3 x1' - A AYS
2boxd a3} v xlt
13, WXAXYEY al x2 x3 + x1! Co
14, JRQRXLRS k]l x2 x3 x4 + x1°* LMS
15. PORNONMNM al x2 x3 » 'x) LME
Figure 9. Rules Learned by SNeries

Completion Product.on Systen

VI. CONCLUSION ACKNOWLEDGMENTS

The PAS-II system has been described and used The author thanks David Klahr, Dick Hayes,
to illustrate adaptive techniques in production Herbert Simon, and Allen Newell for their sug-
system construction. The focus has been on the gestions concerning this paper. This work was
machinery needed to implement self-modification supported by NIH MH-07722, and by ARPA
within a PS framework. It has been demonstrated (1-58200-8130).
that using a simple production building action in
an ordered PS leads to relatively short, straight- REFERENCES

forward programs.
Feigenbaum, E.A. The simulation of verbal learning

Moreover, it has been shown that one can create behavior. In Feigenbaum, E., and Feldman, J.
a learning paradigm which applies to (1) simple rote (Eds.), Computers and Thought. McGraw-Hill,
learning tasks such as learning the addition table, New York, 1963, pp. 297-3009.
(2) more involved learning tasks like nonsense syl-
lable association and discrimination, and (3) com- Feigenbaum, E.A., & Simon, H.A. An information
plex induction tasks such as inducing the concept processing theory of some effects of simil-
of a serial pattern. In all three cases the para- arity, familiarization, and meaningfulness
digm consisted of creating an ordered PS represen- in verbal learning. J. Verbal Learning
tation of the concept learned by adding new PR's and Verbal Behavior, Vol. 3, 1964, pp. 385-396

(or hypotheses) above the error-causing rules.
Klahr, D. & Wallace, J.G. The development of

Adaptive PS's are quite parsimonious; that is, serial completion strategies: An information
the system which learns the concept is represented processing analysis. British Journal of
in the same way as the concept being learned. Both Psychology, Vol. 61, 1970, pp. 243-257.
are represented as PR's in a single PS. This elim-
inates the need for two types of control in the Newell, A. A theoretical exploration of mechanisms
system; one for activating the learning mechanism for coding the stimulus. In Melton, A.W., &
and another for accessing the concept learned. The Marton, E. (Eds.), Coding Processes in Human
concepts learned are not passive, static structures Memory, Washington, D.C., Winston & Sons,

which must be given a special interpretation, but

rather are self-contained programs which are execut-

ed automatically in the course of executing the Newell, A. Production systems; Models of control

learning mechanism. struetures. Visual Information Processing,
Chase, W. (Ed.), Academic Press, 1973.

The ADD PS is somewhat different from the PS's

for verbal learning or sequence prediction. This Newell, A., & Simon, H.A. Human Problem Solving.
is because ADD is self-modifying but not really Englewood Cliffs, N.J., Prentice Hall, 1972.
adaptive in the strict sense of the word. It

creates new rules, not on the basis of external Simon, H.A., & Kotovsky, K. Human acquisition of
feedback, but rather on the basis of internal concepts for sequential patterns. Psychologi-
information, i.e., the ordering on the set of cal Review, Vol. 70, no. 6, 1963, pp. 534-546.
integers. Furthermore, rules are added only when

needed to solve the problem at hand. This is a Waterman, D.A. Generalization learning techniques
good example of an explicit view of predetermined for automating the learning of heuristics.
developmental potential. The system has the cap- Artificial Intelligence, Vol. 1, nos. 15 & 2,
acity to develop the addition table or the succes- pp. 121-170.

sor function on integers but does so only when

the environment demands it. Waterman, D.A. PAS-Il Reference Manual. Computer

Science Department Report, CMU, June, 1973.
The EPAM and series completion PS's are

extremely compact pieces of code which perform Waterman, D.A. Serial pattern acquisition: A
sizable amounts of information processing. Their production system approach. CIP Working Paper
power comes from the strong pattern matching cap- #286, CMU, February, 1975.

abilities inherent in the PS interpreter and from
the primitive but highly useful memory modification Waterman, D.A., & Newell, A. PAS-11: An inter-

and system building actions employed. The compact- active task-free version of an automatic

ness is due, in part, to the use of ordered PR's, protocol analysis system. Proceedings of the

since much information concerning rule applica- Third IJCAI, 1973, pp. 431-445.

bility is implicit in the location of the rules.

With ordered rules the system can use the simple Williams, D.S. Computer program organization

heuristic "add a new rule immediately above the induced from problem examples. In Simon, H.A.,

one that made the error" to great advantage. & Siklossy, L. (Eds.), Representation and
Meaning, Prentice Hall, Englewood Cliffs,

Finally, the analogy between an ordered PS N.J., 1972, pp. 143-205.
and a discrimination net has been made clear, i.e.,

that the condition elements are non-terminal nodes
in the net, the action elements are terminal nodes,
and the searches through the conditions in the PS

are analogous to the paths from the top element to
the terminal elements in the net.

303

