INDUCTION OF CONCEPTS

IN

THE PREDICATE CALCULUS

Steven A. Vere*

Department of
University of

Abstract

Positive and negative instances of a concept are
assumed to be described by a conjunction of lit-

erals in the predicate calculus, with terms
limited to constants and universally quantified
variables. A graph representation of a conjunc-
tion of literals, called a "product graph", is in-
troduced. It is desirable to merge positive
instances by generalization, while maintaining
discrimination against negative instances. This

is accomplished by an induction procedure which
operates on the product graph form of these pos-
itive and negative instances. The correctness of
the procedure is proven, together with several

related results of direct practical significance.
This work is directed to the goal of providing a
formal model for the inductive processes which

are observed in artificial
in specialized areas.

intelligence studies

1. Introduction

Lnduction may be broadly defined as "reason-
ing from a part to a whole, from particulars to
generals, or from the individual to the universal"
[10]. Consistent with this, we view "induction"
as a computational process, and a "generalization"

as a statement computed by that process.

The present work is guided by the belief that

general purpose induction procedures can be for-
mulated which would be independent of the arti-
ficial intelligence problem domain. It is speci-

fically concerned with the
from positive and negative instances described in
the predicate calculus, with terms limited to con-
stants and universally quantified variables.

induction of concepts

intelli-
aspects:
logic concept

Inductive processes in artificial
gence have been studied from several
visual analogies [3], propositional
learning [4,9], analogies in predicate calculus
theorem proving [S], 1Q test completion problems
[11], theory formation from a data base [2],
visual concept learning from examples [12], and
induction as a dual of deductive theorem proving
in the predicate calculus [1,6,8], or in a gen-
eralizittion of the predicate calculus [7]. The
present work may be regarded as a continuance of
the concept learning research of Hunt and Towster,
amongs others, to the predicate calculus. Its
viewpoint and many of the concepts are derived
from Plotkin.

in-
is assumed to be described by
a conjunction of literals in the predicate calcu-
lus (not necessarily first order). Section 2 de-
fines terminology to be employed, of which the
most significant is the concept of a "maximal,
consistent, unifying generalization", and contains
some general observations on generalizations.
With this background, a problem statement is then

Throughout, each positive and negative
stance of a concept
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given in the defined vocabulary. Section 3 intro-
duces the "product graph", a graph representation
of a conjunction of literals, which serves as a
convenient medium for the discussion of the induc-
tion process. This process is accomplished by
straightforward operations on these product
graphs. Section 4 considers the application of
product graphs to the question of the "consis-
tency" of a generalization in view of negative in-
stances. Section 5 contains concluding remarks.

2. Generalization in the Predicate Calculus

2.1 Introductory Definitions: Properties of

Generalizations

An n-ary predicate will be represented by a
list of n + 1 elements: (ty
updargtood to represment the predicate symgol but
is otherwise undistinguished from other elements.
Each tj is a term, which may be either a constant,
represented by lower case Roman letters, or a
variable, represented by upper case Roman letters.
All variables are assumed to he universally quan-
tified. A literal is such a list of terms,
optionally prefixed by the logical inverse oper-

ator " ~ ". Por example, (a X c) and ~(e f) are
both literals. A product is a conjunction of 1lit-
erals,

A substitution is a finite set of the form

LIV CTO PP tr/Vr(Er)}

where each t. is a term, each V; is a variable,
and each R; 1s a list of positive integers. A
consistency restriction is made that if the same
term appears to the left of the slash in two dif-
ferent elements of the substitution set, then the
associated lists must be disjoint. For example,
{a/X(1,4,5), b/Y(2), a/2(2,3)} is a legitimate
substitution but {a/X(1,4,5), a/Z(2,3,4)} is not.

1f p is a product and 6 is such a substitu-
tion, pB represents the product obtained from p by
simultaneously replacing the occurrences of term
, in the positions specified by the list 2., by
tﬁe variable V For example, for 0 = {a/X[i 2),
b/Y(1}}, the anl1sh interpretation reads: "Re-
place the first and second occurrences of a by X
and the first occurrence of b by Y." Thus if

{(p a b)™~~(e a)"™(g a) then

{(p X Y)AN~(e X)/N(g a)

Note especially that the third occurrence of a in
p remains unchanged.

This work was partially supported by DHBWN Grant
No. US-PHS-R01-MB-00114-01.



An additional restriction will be placed on
substitutions: no variablc in p may appear to the
right of the slash in a substitution applied to p.
For example, if 6, = {a/X(1)}, application of ©
to Py ® (p a X) if prohibited since X already
occufs in p.. This restriction is necessary to
ensure that“p is always an instance of pf. A use-
ful convention is to allow the list £. to be
omitted if all occurrences of t, are to be re-
placed by V.. It should also b& clear that a
substitutiof in general presumes a particular left
to right ordering of the literals of a product.

let p,cp, denote that the literals compris-

ing product py are a subset of the literals compris-
ing product A product p, 1S a generalization

of a product ﬁzjff there exi!ts a substitution 6

such that p, C“p,8. This will be denoted by

Dy £ Py P&r eximplc, (pXY)<{(pab)"Ni(qac)
since
PXVNC(XY)AN(QXe)=(pablAalqgac)

{a/x, b/Y)

A product p_ is a unifying generalization for
a set of productg logs Pyuenisp ! iff o < 0.,
1 <i<r. For example,“(p a XJ is a uRiTyifg
generalization for (p ab), (pac), and (p a g).

A substitution 6 iavan alphabetic variant
substitution, written 8 ', iff each element 86 the
substitution has the form V;,/Vj,, that is 8
merely changes the names of the variables in a
product in a consistent manner. If p, and p, are
two arbitrary products, three elementary and
easily demonstrable properties of generalizationms
are:

Pl: (pyp 2p)) 2 (0, < oﬁ} - (py = p,877)

for spome 8 . In this case p, 1s & trivial

generalization of p, and convgrsely.

P2. 1f py < p, and no p¥V exists such that P =
p283 , ei%her o, C P 81 for some B, or

P1= 0287, wheré O ?s not an alphAbetic

variant substitutign. This situation will be

denoted by Py < Py
P3: (tramsitivity) (8] < py) -~ [pz < 93)

-+ (Dl < 03}
As examples pf the above,
(pab) <(pab) ~ (qac)
(p Xb) < (pab)
(p Xb)y A{qYc) =(pUb)A (q2Zc)
fu/x, z/Y1,
where {U/X, Z/Y)} is an alphabetic variant
substitution.

av

1f v Py and vy 5_02, Y, is a2 maximal
unifying generalizati%n of'p %nd p, 1ff no pro-
. 1 2
duct v, exists such that y,<v,, Yy < Pgs and
Yy £ 0ye There may be a numbef of"distinct max-
i%al un fying generalizations of two products,
ignoring variants caused by alphabetic variant
substitutions. Let MG(ol, 02] represent the set
of all pgeneralizations ¥ such that:
1) vy is a maximal unifying generalization of
p, and p.>
2) n$ generﬁlization y' and 6?Y exiit such
that v' ¢ MG(DI. 02) and vy = v'68 v

Theorem 1: A product vy, is a unifying generaliza-
tion of products p, and p, iff there

exists a product Ym 3 MG(%I, pz) such

that v, < =
Proof (+} 1f vy, is a unifying generalization
of p, and p,, 1t must be either max-

imal or non-mgximal. If it is max-
imal, there is a product Yo ©

MG(p,, p,) such that v, = Ymea”.
Henc%, Y1 £ Y If y;"is non-maximal,
it is because ancother unifying gener-
alization y, exists such that v, < vy,.
Y2 must have more literals or fewer
variables than Y], or both. No uni-
fying generalization may have more
literals or fewer variables than the
extrems of these parameters for pj

and py, which are of course finite.
Consequently, there will in general be
a finite chain of generalizations

Y, € ¥, € . . . €Y_, where Y is a
m&xima unifying geﬂeralizati@n. By
the transitivity property, Y1 £ Yy
From the definition of MG(p,, 0.}, ¥
is either an element of thié se% or 3n
alphabetic variant of an element.

(=) Y is a maximal unifying general-
ization of p, and py, and v, < vy
Since Y < and vy, < py, transi-
tivity gives y; < py and vy < py, and
so Yy is a unifying generalization of
01 and ps.

Thus any of the potentially large number of all

unifying generalizations of p, and p, can be ob-
tained by generalizing some eiement of MG(Ul»Dz)’
a much smaller set.

2.2 Prohlem Statement--Simplification of Concepts
by Induction

A concept may be defined "in extension' by
exhibiting positive and negative instances of the
concept. It is assumed here that each instance is
described by a product in the subset of the predi-
cate calculus defined in subsection 2.1. Hence-
forth, let p; represent a product describing a
positive instance, and v. a product describing a
negative instance. Then the following disjunctive
normal form expressions can represent a concept K:

i Vi i i (1)

1f for some indices i, and i,, Py, = v;,, the rep-
resentation is inconsistent. Eacﬂ o} 1§ a posi-
tive product; each v; is a negative product. On the
other hand, a negative literal is a predicate pre-

fixed by ' 7 "7 a positiye literal is a predicate
not not prefixed by " .

In the above context, a useful generalization
will be one which unifies at least two positive
products or two negative products, since the con-
cept repredentation is thereby simplified. How-
ever, it is essential that this generalization not
destroy discrimination between X and ~K. Because
of problem symmetry, henceforth only generaliza-
tions of positive products will be discussed: iden-
tical arguments will apply te generalization of
negative products. If vy is a generalization of a
product Piy» Y s consistent iff v £ v; for all i.



Problem: Given a concept definition in extension,
as in (1), how can consistent, unifying
generalizations of the positive products
be computed in order to simplify the def-
inition?

It is to this specific problem that the following

discussions are addressed.

3. The Product Graph as an Induction Medium

In this section an induction procedure is for-
mulated with respect to a graph representation of
products, called a "product graph". Unlike some
earlier graph representations of relational infor-
mation, the product graph is not limited to binary
relations. It represents literals of arbitrary
dimension in a uniform manner. The overall effect
of the induction procedure is to merge pairs of
positive products. It may be iteratively applied
tinti 1 all positive products have been merged, or
until no maximal consistent generalizations exist
for any pair of products. This procedure is pre-
cisely described and its correctness is proven.

The product graph representation has proper-
ties that make it useful as an induction medium.
If a product py is a generalization of another pro-
duct p2, the product graph of ps is isomorphic to
a subgraph of the product graph of p2. A "great-
est common subgraph" of two product graphs is the
graph of a maximal unifying generalization of those
two products. Thus the problem of computing max-
imal unifying generalizations is transformed to
the computation of maximal isomorphic subgraphs.
3.

1 Product Graphs

A product praph is a 6-tuple system

(L, ¢, 4 o, ¢, a), where

L is a finite set of literal nodes;

C is a finite set of constant nodes;

& is the literal dimension function: L -+ Z
where Z is the set of positive integers;
o 1s the literal sign function: L ~ {+, -};
¥ is the literal content partial function:

I, *Z - C, such that

if (2, i, c)e «, then i € {1, 2, &2 )
o 1s the Jiteral adjacency relation, a finite
subset of zZ, X Z, * L x L, such that

a) (i,, 12_ 2y iz)i‘ o iff (i,, iy, 27, 2qJ)¢

Q l a symmetry property);

b) if (11, 12. Rl, R )E'. a and [12, 13, Evz,
3)5 a then (1, 13, £, 3)L a (a tran-
sitivity proEerty);
for all &, %, ¢ L and i i, €2, if
Ry, 1y, Cl) € Kk and (%5, 12, Cz)E K then
(i, » 13, Ry, Lr)e o iff ¢y = €, {a con-
51stency property).

(200 S I

c)

Each literal in a product will be represented
by a unique node in L. Each distinct constant
appearing in a product will be represented by a
unique element of C. Variables appearing in a pro
duct will have no explicit representation. Recall
that the variables are universally quantified and
thus are dummy variables: their names have no
significance. The literal dimension function
specifies the number of terms in each literal.
For example, if A4 (a b c), 6(A) 3. The lit-
eral sign function o serves to distinguish posi-
tive and negative literals. For example, with A.

?
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as above and }\2

“(e f), 0(Ay) = ¢« and o(lz) = -
The purpose of the content function « is to
specify the identity and position cf constants
which appear in the literals of a product. Spe-
cifically, if Ay ¢ L and ¢y € C, x3(A1) = ¢y iff
the constant c; appears in the ith position in X,
For example, Ay = {(c Y e) causes the following
specification of x: Kl[,\l) ¢ and “3()“1)

If the same term appears in two literals of
a product, these literals are adjacent in the pro-
duct graph. For example, the two literals in the
product (a b ¢} ~ (c d e) are adjacent, since the
constant ¢ appears in both. To describe precisely
the adjacency of two literals, the position of the
common term in each literal must be specified. 1If
%, and A, are adjacent literals, the adjacency re-
lation a; (A , A.) represents the fact that a
term whlcﬁ agpearg in the ith position in X, also
appears in the jth position im ),. By the Sym-
metry property of ad;acenc1es, Qg M)
CFE , ky) for all i,j, A &onsequently, it
i§’50551b1é to disregard a Jacenc1es for which
i > j as redundant information.

A literal may be adjacent to itself, causing
a sling in the product graph. If the same term
appears in position i and position j in literal
Ay, @ U X;) is significant. However, if
1= J, ﬂo 1nformat10n is provided, since this rela-
tion holds universally; it sill be ignored.

These adjacency relations are the arcs be-

tween literal nodes in the product graph. In an
obvious way, these arcs can partition the literal
nodes into disjoint blocks, with the nodes in each

block forming a connected subgraph of the complete
product graph. These connected subgraphs will be
important in the concept of a "vacuous" general-
ization, which is discussed in subsection 3.4.

3.2 Product Graph Example

As an example, Figure 1 shows the product
graph for the product (g X Y ¢} ™M ~{c Y e) ™ (¢ 1),
with the individual literals identified by A1, X2,
and Ay respectively. Constant nodes are shown as
squares; literal nodes are shown as circles. This
example incidentally demonstrates that an adja-
cency relation due to a common constant in two lit-
erals is redundant information, which could be de-
rived from the content function information. This
mild and occasional redundancy contributes to the
desirable properties of product graphs which are
next discussed.

3.3 Properties of Product Graphs

Two product graphs gy and g, are isomorphic,
written g;= g,, iff they are 1dent1cal except f'or
their literal node identifiers. That g; is a sub-
graph of g, will be denoted hy g, C £ That g
1s iqomorpﬁlc to a suhgraph or a proPcr -:.uhgrapll\

of g, will be denoted by g, < £, OT g c g
eqpectwcly G(p) will dcnotc “the graph of prod-
uct p.

Product graphs have the following easily
demonstrable properties:
P4: G(pl) G[‘:J } iff py 0293" for some
i.e., if pmduct grnphs are isomorphic,thecor-
responding products are alphabetic variants;

BBV
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legend.

Reral Identific:..

the number ot terms in A,

OCA, ) the spn of
tA)

PS: G(py) S Glpy) iff py < oy

Po: G(ol) C G(oy) iff p, < by

?7: A product y is a maximal, unifying general-
ization of p, and py iff:
. Gy € Gloy)
2. G(y) € G(p,)

3. no graph 24 exists such that
a. Gly) @ 84
b. 34 a' {p )
C.

The f1rst two con§1t1ons specify that y is a
unifying generalization; the third specifies
that vy is maximal.
The properties P5, P6, and P7 are significant for
showing that generalizations may be computed with
preduct graphs, as elaborated below.

3.4 Computing Maximal Unifying Generalizations

The procedure for obtaining the graph of a
maximal unifying generalization requires a few
additional concepts. Two literal nodes A{ and X,
arc potentially similar, written psim (X,
i1ff they meet these conditions:

2)’

Cl: o(X) = o(lz), i.e., Ay and A; have the same
sign;

c2: &(3)) = €x,), i.e., A and A, have the same
number of terms;

C3: Xy and A, appear in separate products,

C3 affirms that only literal nodes in separate
product graphs shall bhe eligihle: we do not wish
to merge literals in the same product.

Two literal nodes which are potentially
similar will be called a pair. Two pairs which
have a node in common are alternative paxrs For
cxample, py = (Ay, X3) and py = (Xy, Xg) are al-
ternative pairs since Xy is a constituent of bhoth.
Let P(py, py) denote the set of all pairs for two
arbltrary products Py and Pp. Certain subsets of

Ploy, P2) will be of special importance. We de-
fine s ¢ CP(pl, 02) i ff:

1. s& Plpy, p7)

Z. no two pairs in s are alternative pairs.
Stated differently, cach clement of CP(py, p7)
represents a possible 1-1 mapping hetwcen liferal
nodes of py and Py subject to the restriction that
matched nodes have the same sign and dimension.

There is a class of generalizations which
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will be here called "vacuous'. A vacuous gener-
alization Y is one for which a connected subgraph
of G(Y) contains no constant nodes. For example,
if py = (abc) ~ (d a) and p, = (c a q) ~ [e ¢}
the only maximal unifying gene;alization is (X Y Z
A (U V). It seems desirable to exclude such gen-
eralizations. Their exclusion will also speed the
computation of the remaining non-vacuous general-
ization. For these advantages, we will weed out
additional elements of CP(p,, py) with the con-
cept of "similarity".

p.} be an element of

Let s .
CP(py. Pa). Le% P X ) represent an arbi-
trary pair in s. é A are 51mllar written
sim{Ay, Ao}, iff these con51t1ons ol
C4/\(&S\/C6), where
C4: psim(rq, A,)
cs: di«x. ; (0 )2- K ; (kz). i.e., A; and A have a
common term in' some p051t10n i.
Cé6; :51, j and (AS 4) € s such that

%5, A Ina, (12 A )y ssim(A,, A ),
i.e., A aﬁd As ﬁave an identical ad;acency
to similar nodes.

Now let SP(p,, pz] be defined such that s ¢
SP(oy, py) it
1. s f CP(DI' ﬂz)

2. Vi (p; € s) * sim(p;), i.e., every pair
of literal nodes in s is similar;
3. no s' exists such that s' ¢ SP(o], 92]

and s s’

From each aggregate of pairs s in SP(p, p,), a
product graph g c¢an be obtained by this construc-
tion:

1. Fach pair in s is a literal node of g.

2. For all pairs p; = (Al, 2) £ s ifd) . (; ) =
(l }, then «. (l } is a constant node of g,
and the conten% funct:on ks (p; ) = K () is
defined.
3. For all pairs P, = (A1, X), pp = (Mg Ayq) 1M

s, if a, nz(k% A PN n2(As, Ag) then the
adjacency relation’ X nZtPa’ ph] 1¢ defined
for g.

In this way g reflects all common features of the
pairs in s. Let G'(SP{p,, by }) denote the sct of
graphs g constructed in %hl% way from the pair
agpregates of SP(p;, py), and et G(SP(py, n, 1)
denote a reduced suhse% of G!' (QP(pl, pz) cuch
that g & G(5P(py, pP9)) iff:

1. g G'(SP(oy, p 2)), and

2. neo o' ¢ G (%P(p]. p2)) exists such that
PCiR .

Theorer. 2: A product y is a maximal, non-vacuous,
unifying generalization of products
Q and 02 iff G(y) = gy for some g, €
ulsv(p} 0,)) -

Proof : (+)} Detine C (p1) and G'(p,) svch that
G(y) = G’ (01)<l G(oy) and
G(Y) = 6'(pp) € G(oy)

Then of course G'(py) = G'(by). Let G(¥). G'(ny)
and G'(p») be partitioned into their connected
subgravhs:

Gy} = Giviuc MU . WGL(Y)

G'(p)) = ri(pl}kj Gylry) U - -G (pg)

G'(p2) = Gi(px) UGl LU | | g (Py).
T

It follows that the numher of subgranhs in G(y),
G'(Py), and G'(M2) are identical, as indicated,



and Vi GI(y) ¥ G!(p,) ¥ G}(p,) (2)
Let L{(g) }cprcqenl the litera nodeq of an arbi-
trary product graph g.

Let 1.{G, (y)) = {)0; 1 Aoi,z' o ey Aoi n'),
LG (o)) = A1y 4, A1 77, » AMj nil, and
L(G} (p,)) = {xz K 15 20 - e A2y )

Because of (2), it must be poss1hle to tifghllsh a
1 to 1 correspondence between the nodes of these
conncected subgraphs. Let the binary predicate m
(for match) indicate that its arguments are estab-
lished in this correspondence. Then ¥ i,j m(A0; L
A5 A m(0o. A2, I A MmO, A2 3).

Since Y Lsnnn4wﬁbuoub éach G; (Yj &ust Lu%taln at

lcast one constant nodc, and 30 Yi .131,32
Kj (AO] ,2} {1l = (A2; ;.) Then by
condltlon C4 for q1mlla;1ty, vl 51mfi¥ P A2y i)

Since each of these subgraphs is connecféd. c0n’J2
dition C5 will cause the similarity to propagate

throughout the subgraphs, giving
Vi,j s1m(kli,j. lzi,j) A m(Ali’j, Azi’j).
(3)
For all i and j, let pi; = (Al .}, and let

s represent this sect o#Jpaqu &leariy none of
these pairs is an alternative to any other. Be-
fore determining if s ¢ SP(gy, Py }, we construct g
from s in accordance with rhe spec1f18d const ruc-
tion:

Vi,j a(p; 5) = o0 J>
Vi,j,n [Kn(lli,j) = (12 J)} +

fenlpg, ;) = Kn(lli,J]]
Vi,jl, Jz’ nl, nz

Onyn, gy, MiLgy) Aongny 024,50 22,5,)

-+ ['lnl’nz (pi’Jl’ pi!_lz)
This last fact can be simplified to:
ViLin, jo, m,omp %y,n2Cligy Mgy

"1 n, (Pi iyt PiLiy)
since Vi Gl{p;) = G'(Dz]
Thus g = G'(py)}, and hence g = G(y).

To determine if s is in SP(p,, p;), the three
conditions for membership must be examxned The
first is satisfied, since the nodes matched in
confirming isomorphism must necessarily be of the
same sign and dimension, and be non-alternmative.

s was seen to be composed of such pairs. The
second condition requires that each pair have the
similarity property. This was found to be true in
(3) above. To test the third condition, suppose
s' exists such that s C s' and s'C SP(p,y, 2)
Let g' represent the graph constructed from s

g' is non-vacuous since it is constructed from
similar pairs. Since s (¢ s', it follows that

B E:" g'. but g = G(y), so G(y) ¢ g', which im-
plies that vy is not maximal, contrary to fact.
Thus no such s$' can exist. Consequently, s ¢
SP(ey. 0y ), and hence g € G'(SP(py, py)). Since
Y is manmal, no g' exists such tl!lat 4 E g',and

285

so g ¢ G(5P(p,, P2 1) also.

(«) This half of the proof is accomplished by show-

ing that a) gg is the graph of a unifying general-

ization of py and p -

h) no graph g' can éxist such that pcg’ and g' is
the graph of a unifying peneralization Ofrq and
N2

¢) g satisfies the requirements for the non-vacu-
ous property.

a) It is necessary to show £1

< FQ) ) and g E "
m ). Forall i, ifayr

l(gl) there exists a

palr (} ), where A 3 L(Gﬁj 1) and }k l,
{(Glp )), anﬁ sim (AJ i ). lhlS follows from
the %act that g; is constrULted from pairs of

literal nodes from G(p;) and C(oz] Then a one
to one match can be established m(X;, 1.),
mii;, Ak} This match relation then hag the
property that

Vi G mOG A ) = B 05) = 0 ()
) m{Ay, A3) » ( ﬂll) = & 7))
V i, j,n mfl i' A (e (4 i) is defined)

RN S A (S I
Flndlly, since g is coﬂstructed to reflect all
identical adjacencxeq of paired nodes,

vnl) n21 1’ i? in’ n ()| }1' l 12)*
[ J1s J2 o (X5 % I
1 nz J]: Jz
d ki, kz anl’ n3 ( A l’k k!

where M(All’ )}, m(x . iz, ljz)’mlil’lkl)'
and so gl - G(p,) and gy &G p
b} A g' is assuméd to e:u';f' su(‘:l-l2 that g(j g,
g'€ G(p,), and g’ c G(p ;). Then
G"‘Tp ) and G" (p ) exlst that

256" (o Dc Bln )

g' 3 G (p 2)’" G(o )
The literal nodes of G”(p ) and G"{p ) may be
paired to form a set s' ¢ éP('O . 02) From s’
can be constructed a graph g = G"(o 1) = 6" )
= g However if g~ g' # g", then g is not in
G(CP( py, p2)), which is contrary to fact. Thus
no such g' can exist, and hence y is maximal.

¢) Since G(y) = £ (‘(FP(pl, P2 1} CG'(CP P
and all graphs in G'(CP(0,, D ]) are con—
structed from similar palrs. Y is non-vacuous.

192)) ’

3.5 Example -- Computation of Maximal Unifying

Generalizations

For two simnle hut nontrivial products, the
sets P{py, p CP(P,, Py)s SP(ey» P2), G'{SP(py,
P2)) and G(§$(pl. p2}) will be exhibited.

Suppose PPy + K, where

Py = (b x2)/\ (w x3) A (v x2 1) A (s x3 x2}

02 = (w x6) N (b x5) 7 (5 x6 x5) ™ (d x6 e)

P(py., Pa) = {p1, P2, P3, P4, PS, P6, P7, P8},
where

Pl = (b x2), (w x6)} PS = {c x2 r), (s x6 x5)
P2 = (b x2), (b x5) P6 = (¢ x2 r), (d x6 e)
PI = {w x3), {w x6) P7 = (s x3 x2), (s x6 x5)
Pd = (w x3), (b x5) P8 = (s x3 x2), (d xb e)

Alternative pairs are:
P1/P2, P1/P3, P3/P4, P2/P4,

P5/P6, P6/P8, and P7/8. _ _ )
Hence CP(pl, 02) consists of the six combinations;:



(r1, P4, P35, P7), (P1, P7, PS5, P8),
{P1, P4, P6, P7), (P2, P3, P5, P7)},
{p2, P3, PS5, P8) and (P2, P3, P6, P7),

as well as their subsets. The set CP is always
very large, and has significance only as a theo-
retical construct. In practice, only SP(pl. P2)
need be computed. SP(py, pjy) = {5y, s where
- tp2, P3, P?}, and 3, = {P2, P3. pﬂ}

duct graphs constructed trom sl and s2 are shown
in Figures 2a and 2b respectively. Here each lit-
eral node has been labelled with the pair name
from which it derives. Since 2b is a subgraph of
2a, 2a constitutes the only element of G(SP(p(,

)], and thus represents the only maximal, non-
v cuous, unifying generalization of py and p,.

The linear form of 2a may then be obtained to give:

WYy N Z)N(sYZ)+KXK

2, 3, P7|

Graph constructed from

Figuie 2a

Ao

K, K
O NG D
+Y 2 +Y7 3
a 2,7

Figure ?b Graph construdicd lrom (b2, P3, rB!

4. Determining the Consistency

of a Generalization

Recall from subsection 2.2 that a generaliza-
tion of positive instances of a concept is incon-
sistent if it is also a generalization of a nega-
tive instance. Property P6 of subsection 3.3 sug-
gests a way to determine consistency.

Theorem 3: If y is a generalization of positi*~
products, y is consistent iff G(Y)g
G(vy} for all i.

Proof: If y is consistent, no v, exists such

that Y < v;, and so by pr?erty P6 no

vy exists such that G(y) C G(v;).

In other words, consistency of a generalization
can be determined by verifying that its product
graph is not isomorphic to a subgraph of any
negative product.

The following lemma and theorem demonstrate
the significance of maximal generalizations in
determining the existence of any consistent gener

The pro-

alization.
lemma 1: If vy, is an inconsistent generaliza-
tion, no generalization of y, is con-
sistent.

Proof: Y1 £ 01, Y2 < 05, and a negative pro-
duct v exists such that Yy S Vi

If vy, id any generalization of Y1
Y2 £Y¥p SVioryy 2 S Viy, and so Y,
is also incofisistent.

If for all gy ¢ G(SP(py, 02)).
negative product vj exlsts such that
g8k € G(vj,), then no consistent gen-
eralizatiofl of p, and py exists.
Define vy such tﬁat Glvy ) = gy . By
theorem 'i, if yg is any umfymg gen-
eralization of p; and 0& then v, < Yy
for some Yy - However, (vk) .gk&
G(vj,) and so by theorem 3 v, is incon-
sistént. Hence by lemma 1,7y, is also

inconsistent.,

Theorem 4:

Proof:

To continue the example of subsection 3.5,
suppose a negative product is known: vy -~ ~X,
where v {c x8 rI~A(b x8)~(w x9}. The product
graph o} vy is given in Figure 3. In light of thi:
additional 1nfonmat|on, is the generalization
graphed in Figure 2a consistent? Yes, since it 18
readily determined that Figure 2a 1§ not iso-
morphic to a subgraph of Figure 3.

y
2 1

Ax araz KA,
Y3 at:

Figure 3 Groph of {c x8 rialb x8 A w x9)

e C——— . ——

A, Ao A

5. Concluding Remarks

A precise yet mathematically parsimonious
induction procedure has been described for con-
cepts in the predicate calculus. The product
graph representation accommodates literals having
an arbitrary number of terms. The computation of
generalizations and the testing of their consis-
tency has been achieved by comparison operations
on these product graphs. The information supplied
by negative instances of a concept determines if a
generalization is consistent, and may serve to
select between a number of distinct maximal gen-
eralizations. If all maximal generalizations are
inconsistent, it has been shown that no consistent
generalization exists. If a maximal generaliza-
tion is consistent, it may then be generalized
further, holding short of the point where it would
"cover" a negative product. A SNOBOL4 program has
been written which implements and confirms the
methods of this paper. Exploration of its capa-
bilities is in progress.

Because a generalization replaces just two
products, and a number of distinct maximal gen-
eralizations may exist, there remains the question
of strategies in the application of the induction
procedure in an iterative manner to a large number
of positive products.



Worthwhile departures from present theory
would include concepts which are iterative orpoten-
tially infinite, such as the sequence abbecedddd. ..
as well as hierarchial and recursive concepts, all
of which seem essential to human perception and
thought.
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