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Abstract

Recent results in induction theory are reviewed
that demonstrate the general adequacy of the in-
duction system of Solomoncff and Willis. Several
problems in pattern recognition and A.l. are in-
vestigated through these methods. The theory is
used to obtain the a priori probabilities that are
necessary in the application cf stochastic lang-
uages to pattern recognition. A simple, quanti-
tative solution is presented for part of Winston's
problem of learning structural descriptions from
examples. In contrast to work in non-probabilis-
tic prediction, the present methods give proba-
bility values that can be used with decision.
theory to make critical decisions.

Introduction

The kind of induction theory that we will
consider rray be regarded as a Bayesian method
which the a priori probability of a hypothesis
related to the shortest descriptions of that
hypothesis that are obtainable by programming a
reference universal Turing machine.

in
is

The probability values obtained are ordinarily
not effectively computable. They car, become
effectively computable if we make certain reason-
able restrictions on the source cf the data, but
in either case they do not appear to be practical-
ly calculable. However, various approximation
methods readily suggest themselves, and indeed,
all known methods of obtaining probability esti-
mates may be regard&d as approximations to the
idealized method and they car be compared and
criticized on this basis.

Several problems in patterr recognition and
A.l. will be discussed with respect, to this
general formulation of induction.

Induction and pattern recognition through
stochastic grammar construction is discussed in a
general way. The best wcrk in this area involves
a Bayesian analysis and the presert induction
theories tell how to obtain the necessary a priori
probabilities of various grammars.

Next we discuss in scmo det.eil part of
Winston's program for learning structural descrip-
tions from exampler. A simple vector model of the
problem is described and various quantitative
results are readily obtained. These agree for the
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most part
discussions of the
models of concepts,
very directly and do not
any kind.

with Winston's qualitative heuristic
relative likelihoods of various
but the results are obtained
involve tree search of

In addition to resolving many otherwise ambi-
quous decisions, the quantitative probabilities
obtained enable ue to use decision theory to make

critical decisions as in the mechanization of
medical diagnosis.
1. Recent Work in Induction
We will present some recent results in the

theory of inductive inference - discussing what is

possible and what is not possible.

For the purposes of this discussion, the pro-
blem of inductive inference will be the extra-
polation of a sequence of symbols emitted by an
unknown stochastic source. It is not difficult to
show that almost all, if not all problems usually
regarded as induction, can be expressed in this
form. Discovery of multidimensional patterns,
curve fitting, time series extrapolation and
weather prediction are but a few of the kinds of
problems that can be readily dealt with.

Although induction has always been the most
important thing going on in science and has con-
stituted a large part of the study of the philo-
sophy of science, there has not, until recently,
beer a rigorous formulation of the process with a
clear understanding of the expected errors
involved. We will discuss these recent results
and what they imply about what is possible,
impossible and approximatable.

in induction has centered about the
"description" of a string of
symbols. A "description" cf a string with respect
to a particular reference computer is an input to
that computer that gives the described string as
output. Solomonoff (8) used the lengths of short
descriptions of a string and its possible continu-
ations to define the a priori probability of that
string. Bayes' Theorem was then used to find the
prcbability of any particular continuation of the
string. He also showed that using a universal
Turing machine for reference made the a priori
probabilities relatively insensitive to choice of
reference computer.

Recent work
concept of the

[ -]
Very approximately, P = z M Here, P is
i=1
the protability of the described string and Ny 1s
the lergthof the ith possible description. We =um
over all possible descriptions of the string and
all rossible contiruations of it. Clearly the
shortest descriptions get most weight, but the



other descriptions can't be ignored.

Later, Kolmogorov (1) and Chaitin (13) proposed
that a random sequence be defined to be one whose
shortest description with respect to a universal
Turing machire is about the same length as the
sequence itself. Martin Lof (2), Loveland (3) and
Schnorr (4) continued work on randomness defini-
tions. For a review of this work as well as
subsequent research in the Soviet Union, see
ZvorMn and Levin (5).

More recently, Chaitin (6) has proposed expres-
sions for entropies of sequences based on descrip-
tions that form a prefix set. The expressions,
however, have error terms that do not occur in the
earlier, more exact formulation of Willis (9).

Willis refined Solomonoff's model and overcame
several difficulties in it. The theorems in the
present paper usually follow directly from his
work. Because of the"halting problem',” it is often
impossible to tell if one string is a description
of another with respect to a specific machine.
Willis dealt with this problem by considering an
infinite sequence of machines, each more powerful
than the last, but all of them sufficiently
limited so that they have no "halting problem."
Associated with each of these machines is a com-
putable probability assigned to the string 1r
question.

One sequence of such machines is obtainable by
considering a universal 3 tape Turing machine with
unidirection input and output tapes and a bidirec-
tional working tape. The Tth machine in the
sequence is obtained by stopping the universal
machine after T steps (if it has not already
stopped). It is not difficult to show that the
sequence of probabilities obtained by these
machines approaches a |limit as T approaches infin-
ity, bt:t that the limit is not effectively com-
putable.

Suppose that A™ s a string of length m, and
that we have a stochastic generator that assigns
a probability P(A(™)) to A!™. Suppose this
generator is describable by a finite string b bits
in length. Then for sufficiently powerful refer-
ence machines,

T(a(m)y 5 27p(alm))

M
Here P T is the probability assigned to A(m) by
the reference machine, Myp. From this, it is clear
that the limit machine must satisfy this inequal-
ity, s¢ if we define

T wow

Then,
PMealm)y s z7bpealm)y

Note that the factor 27D 45 jrdeperdent of m, the

length of the sequence. The error between PM am
P is
M

(m) _
£

Ore interpretatior of the result is given by
the work of Covar (7), who shows that if one
places bets at even odds on a stochastlc sequence

generated by P, but bases one’s bets on PM, then
the ratio of one's fortune to the optimum cbtain-
able {which would use P as basis) will be just

PM/p.

Cover also prgposed a somewhsat different
expression for from Willis', basing 1t upon
Chaltin's {6) definition of prefix code complexity.
I;ﬁ'then showad that for his probability definition,

lim 1P (a™ypa™y - g

M =00 m

which is a somewhat weaker recult than Willis?,
We have been able to show, however, that for a
very broad clases of stochastlic sources, Cover's
probability estimate 3s negligably worse than
Willis”'.

To obtain a different(mjmsure of' the accuracy
of Willis' method, let A'"/ represent I,h? string
consisting of the first n symbols of A\M/,

)

§ =

(1) pM (n+
5,55 P{A - A
n palny 2 On #‘(A(“))

are the comditional probabilities of the n+ith
symbol, given the previous symbols, ard

pa(®)) m Al m ¢

From these definitions we obtain directly,

Then

PMalm)y B ' ~b
p(almly I'T b1 > 2
i 8n

This expression is the ratio of the products of
the conditional probabilities for the nth symbols.

If we want to know the mean error in this

ratio we take the mth root and obtain 2-'9. It is
clear that it must approach unity as m becomes
very large.

Although this is a very powerful result and
gives real assurance tha&'mnverges te&r

very rapidly as m increases, it lacks a certain

intuitive appeal. One asks whether it could not
be possible that the ratio might be<tl for some
factors and »1 for others. While the mean could
be close to unity the individual deviations could
be qvite large.

This diffjculty does not arise, however, and
from the foregoing result it is possible to show
that the expected value of the total squared error
between the conditional probabilities &, and §°
remains € bln V2 n

m<;i‘:_1 (8! - &)%) =

2" m K
=™y 5= 481 - () erndT

k=1 i=1

]I-(Iei'aj E is the axpected value with respect to P.
A'™ 45 the kth sequence of length m. There are
st 2™ of them. k8; ard ksi are the comitior



k
al probabilities for the ith bit of 2™ ror P
arl P, respectively.

The expected value of the mean square error bhe—
tween the conditiorel probabilities is less than

%1.11 ﬁ .

A few objections suggest themselves.
this error is unreasonably smaller than those ob-
tained in ordinary statistical analysis. For a
simple Bernoulli seqvence, the expected squared
error in the mth symbol is proportional to i_ and

First,

the total square error is of the order of lInm
rather than banZ’ .

The reason for this discrepancy is that we have
assumed that the stochastic source had a finite
description. If the source copsisted of zeros and
onet with probabilit%anﬂapectively,we

could, indeed have a firlte description - perhaps
of the order of 4 cr 5 bits. Ordinarily in stat-
istics, however, the stochastic sources are des-
cribable as continuous functions of a finite

number of parameters. The parameters themselves

each have infinitely long descriptions.

For situations of this sort, the expected total
squared error isnotunded, but is roughly pro-
portional to the log of the sequence length as in
conventional statistical analysis. The error
itself, however, approaches zero.

If there are k different
model, the expected total
bounded by

parameters in the

squared error will be

bln\l 2 4+ Aklnm

Here, m is the number of symbols in the string
being described, A is a constant that is charact-
eristic of the accuracy of the model and b is the
number of bits in -the description of the expres-
sion containing the k parameters.

If we are comparing several different models
and we have much data (i.e. large m), then the
terms will be of little significance and we need
only compare the corresponding Ak values to
determine the best model.

'V

A technique very similar to this has been
successfully used by Akaike (10) to determine the
optimum tuimber of parameters to use in linear
regression analysis. The present methods are,
however, usually of most interest -when the amount
of directly relevant data is relatively small.

Another objection is that y s
This makes it impossible to calculate it exactly.
Is there not a better solution possible? We can
obtain progressively more computable solutions by
making more and wore restrictions on the sto-
rhastic source.

incomputable.

If there are no restrictions at all, there is
no prediction at all possible. If we restrict th«
stochastic source only to be finitely describable
then it is well known that there can be no effect-
ively computable solutions, though as we have
seen, there is a ncr effectively computable
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solution.

If we restrict the "computational complexity”
of the stochastic source, sc that we have an upper
bcund on how long it takes the source to compute
the probability of a sequence of length m, then
the probabilities are, indeed computable, and they
converge AS rapidly as they do in incomputable
cases. They are, however, no mere practically
computable than the incomputable solutions.

In any case, we must use approximation method;;.
It is clear that the incomputable method described
converges very rapidlj it is likely that it has
less error for a given amount cf data than any
other probability evaluation method, and so we
will do well to try to approximate it.

In most cases, our approximations consist cf
finding not the shortest description of the string
of interest (this, too, being incomputable), but
rather the set of the shortest descriptions that
we can find with the resources available to us.
All of the methods ordinarily used tr estimate
probability by finding regularities in data can be
expressed in the form of discoveries off short
descriptions cf the data and Mnerefore arp approx-
imations to the ideal method. In this common
format, various approximations car be compared, so
we can select the best ones - the ones most likely
to give good predictions.

I1. Application to Pattern ReconniiAon

Stochastic Language

To illustrate the problem, suppose we are given
a set of strings of symbols, such as aa.abba,
aabbaa, baaabbaaab etc., and we are told that
these strings were acceptable sentences in some
simple formal language. We are required to find a
gammar that could generate these strings.

In general, there will be an infinite nuitber of
gammars that can generate the set even if we
restrict the grammars, say,to be finite state or
to be context free grammars. Early investigators
proposed that, some criterion of "simplicity" be
imposed on the grammar, and various explications
of this concept were devised, but with no basis
for preferring one explication over any other.

By assuming the set of strings was produced by
some unknown stochastic generator, and using
some of the previously described methods to give
an a priori probability distribution over all such
generators, a very general solution to this
problem is obtained , and the concept of "simplici-
ty" is unnecessary. A stochastic language is an
assignment of probabilities to all strings being
considered. A stochastic generator or gamammar is
a means for carrying out this assignment.

Ore very general formm of stochastic gammar
consists of a Turing machine. Ore inserts the
string into the machine and it prints out the
probability of thet string. Many of the strings
may have zero probability assigned to therr.

Another very general form of stochastic gammar
is a generative grammar. Again we have a Turing
machine, but we insert a random strive of zeros
and ones. The output strings of this machine then
have the probability distribution associated with



the desired stochastic language.

To -use stochastic languages to solve induction
problems, such as the one of guessing the grammar
that produced a given set of strings, we first
assume an a priori distribution on all possible
stochastic languages. If P; is the a priori
probability of the ith stochastic language, and
Lij is the probability that the ith language will

produce the jth sample string (there being m
sample strings), then the rrost likely grammar is
the one for which

Pi.ljl Ly g

Often we are not interested in knowing which
grammar produced the set of strings, we only want
to know the probability that a particular new
string is in the set - this new string being the
m + 1th. A Bayesian analysis gives us

is maximum.

for this probability, the suimation being taken
over all grammars for which P; > 0.

The a priori prabability of a language cor-
responds roughly to the earlier concept of
simplicity, but it is a more clearly defined
quantity.

To generate a stochastic grammar from a non-
stochastic generative grammar is usually very
easy. In the generative grammar, at each point in
the construction of the final object, there will
be choices to be made. If we assign probabilities
to each of these choices, we have a stochastic
generative grammar. The probability of any
particular derivation will be the product of the
probabilities of the choices involved in that
derivation. If the language is ambiguous, some
objects will be derivable in more than one way,
and the probabilities of each of these derivations
must be added to obtain the total probability of
the final object-

Many different kinds of grammars have been de-
vAsod for various problem areas (11). In parti-
cular, they have been used for two dimensional
scene analysis, recognition of handwritten
characters, chromosome pattern recognition,
recognition of spoken words, etc.

The basic model that stochastic grammars
propose is a very attractive one. It assumes that
the sample set was created by some sort of mech-
anism and that the mnrhanism had various probabi-
listic elements. It enables us to put intc the
model any information that we have about the
problem, either deterministic or probabilistic.
For some time, however, the assignment of a
priori probabilities to the different possible
mechanisms was a problem of uncertain solution.

Induction theory made an important breakthrough
by providing a gereral method to assign probabili-
ties tc these mechanisms, whether the. assignment
is to be purely a pricri or whether they are
dependent in any way on available information.

If the probability is purely a priori, one
method of probability assignment proceeds by
writing out a minimal description of the non-
stochastic grammar from which the stochastic
grammar is derived. The details of how this is
done for a kind of finite state grammar and for a
general context free grammar are given in Ref. 8,
pp. 232-253.

If there is some data available on the rela-
tive frequencies with which the primitive con-
cepts have been used in the past for other
induction problems, this information can be used
to assign initial "bit costs" to these concepts
when constructing new grammars.

1. Application to A.l.
Learning Structural Descriptions
from Examples

Winston's program for learning various
structural concepts from both positive and
carefully chosen negative examples of those
concepts (12) is perhaps the most competent
induction program yet completed.

The program does much more than learn
concepts, but we shall discuss only this parti-
cular part of the program. It begins with a line
drawing of three dimensional objects. This con-
sists of one or more objects in various positions,
having various relations with respect to one
another. There is a preprocessing program that
translates this drawing into a description that is
in the form of a net.

The nodes of the net are objects in the
drawing, properties of objects and classes of
objects. There are arrows connecting the nodes
that denote relations between them.

For an example, suppose the original drawing
pictured a cube on the left and a vertical brick
on the right. A possible net describing this
scene would have four nodes: a brick; a cube; the
property, "standing" and the class of solids,
"prism". The brick and cube are connected by an
arrow labelled "to the right of". The brick has
an arrow labelled "has the property of" connecting
it to "standing". Both the brick and cube have
arrows going to prism labelled "a-kind-of", indi-
cating class inclusion.

After being shown several scenes that are
given as positive, and several as negative exam-
ples of a certain concept, such as a table, the
program tries to induce the concept by making a
model of it. These models consist of networks
similar to those used to describe scenes, but the
nodes and arrows of the net are usually classes of
objects, classes of properties and classes of
relations. These classes may sometimes be ex-
pressed as negations, e.g. "not a brick", or "
not to the left of".

is

For purposes of comparing scenes to one another
and scenes to models, we will consider a scene



description to be an ordered sequence of objects
and relations - a vector whose components are a
mixture of objects and relations. A "Model" is a
vector whose components are classes.” Formalized
in this way, it is clear that given a set of posi-
tive and negative examples, there will ordinarily
be an enormous number of models such that

1. In each of the positive examples, all of
the components are members of the corresponding
classes in the model.

2, In each of the negative examples, at least

one component is not a member of the corresponding
class in the model.

Winston has devised a system for ordering the

models, so that after each example is given, it
picks the "best" model that is consistent with
the data thus far - i.e. highest in the ordering.

His ordering of models is very close to that of a
priori probabilities as calculated by induction
theory.

Tn one case we are given as a positive example,
a brick that is standing on one end. The nega-

tive example is a brick lying on one side. The
classes that are considered for the "property"
component of the vector of the model are:

1) Standing

2) Not lying

that since most concepts are defined
in terms of properties rather than anti-proper-
ties, "standing" is more likely. In the language
of induction theory, positive concepts that have
names in the language are usually of high a
priori probability. A negative concept consists
of a positive concept with a negation symbol -
which increases description length and decreases
a priori probability. If a negative concept is
of much utility in description, and of high a
priori probability, it will have been useful to
define a special word for it, e.g. "dirty" is the
word for "not clean." Reference 8, pp. 232-240
treats the problem of when it is worth while to
define new symbols.

Winston notes

Another reason why "standing" is a better
choice than "not lying" is that "standing"
probably has fewer members. This is brought out

more clearly in the next example.

Here we have two positive cases; 1) Apple

2) Orange. Three classes for the model are

considered. First, the Boolian sum class of
apples and oranges. Second, the class "fruit".
Third, the universal class. Though this is not

the example Winston gives, the choice he would
make would be "fruit". He regards this as a sort
of middle-of-the-road stand in a difficult in-
duction problem.

Induction theory gives a quantitative discus-

sion. To make this particular problem non-
trivial, we assume that the positive examples
given are in some sense "typical". If they are

then the Universal
Let P, and N;. be the

not constrained in this way,
class is the best response.

*

This differs slightly from Winston's defini-
tion of "model", but should cause no great

difficulty.
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probability of a class and the
number of members in that class. Then if the
positive examples are "typical" or, more narrowly,
if all positive cases of the concept have equal
likelihood of being given as examples, then by

Bayes, the most likely class is the one for which

respective a priori

Pi/NT is maximum, n being the number of positive

cases two in the present situation.

The universal class is of high a priori pro-
bability, but it has very many members. The
Boolian sum class has only two members, but its
a priori likelihood tends to be low. This is
because the symbol for Boolian sum is "expensive"

- i.e. concepts formed using it, tend to be rather
ad-hoc and not very useful in prediction. If the
class "fruit" is, indeed, of fair a priori

probability and there aren't too many kinds of
fruit, it may well be the best choice. We might
also consider "eatable fruit" or "plants"
depending on the sizes and a priori probabilities
of these classes.

From
Winston

these and similar heuristic arguments,

is able to order the possible models with
respect to likelihood. The result is a remarkably
capable program in the problem area he has
selected. However, even in this limited area
is easy to get into complexities that are well
beyond the capacity of the program. Winston deals
with these by arbitrarily cutting off the consid-
eration of certain possibility branches.

it

With expansion of the language to deal with a
larger universe of problems e.g. the inclusion
of facilities for making recursive definitions
the necessary complexity would rapidly get beyond
the capabilities of the heuristic discussions of
likelihood that Winston uses.

We will describe a system of learning concepts
that is similar to Winston's, but obtains quanti-
tative probabilities and appears to be far simpler
to implement. It is hoped that this simplifica-
tion will make it possible to extend Winston's
methods to much richer worlds of problems.

The system consists of a proceedure for ob-
taining an initial model and for modifying the
model as each new positive or negative example is
given. At each point in time several of the best
models are stored and these can be used to give
the probability of any particular object being an
example of the concept being learned.

We start out with a positive example of the
concept.

Our first model has for its components, those
classes of which the corresponding components of
the example are members, and for which P;/N; is
i being the component considered. Often

have but one component and
initial

maximum,
these classes will
Winston uses classes of this kind for his
model.

Subsequently , there are four possible example
situations with respect to the model. A positive
example can be either accepted or rejected by the

model or a negative example can be accepted or
rejected by the model. We will treat these one by
one.



If a negative example is rejected by the model,
we leave the model invariant. Our criterion of

choice of class is maxinP /N?S ince n is the
number of positive examples thus far, the new
negative example does not modify this quantity in
any way for any class, so a class that was optimal
before the example must be optimal after the
example. No change need be made in the model-

On the other hand, if a positive example is
given and this is accepted by the model, the model
may or may not need to be changed- Each of the
components must be examined individually. The

class with m a x iP;y/Nj may r may not be the
class with maximum Pi/N;’ﬂ. The modification of

the model is relatively simple because the compo-
nents are optimized independently of one another®

A similar situation arises if we are given a
positive example that is rejected by the model.
Each of the component classes in the model that
rejects the corresponding example component must
be expanded to include the example component.
There will usually be many ways to expand and in

each case we chose the class for which Pi/N is
maximum, n+1 being the number of positive examples
thus far.

Consider naxt a negative case that is accepted
by the model. Each component class in the model
can ba contracted in various ways so that it will
not include the correspomding component of the
negative example. For each component, 1 there
will be a satisfactory rejecting class with a

maximum Pi/N;’.

Lot o<,y be Py/Nj for the ith component of the
model before the negative case occurred. Letb(i
be P{/N.? for the best acceptable class that can

reject the ith component of the new negative case.
Note that o¢f < oy for all 1. Then we will

modify the single component class for which
O\';/ u(j 15 maximum.
The reason is that the likelihood of the model

before the negative case was "ll oLy - We want to

replace only one of the ©(y with its corresponi-
ing o¢; and to do this we will choose i such that
the new product is maximum - i.e. decreased least.

Modifying more than one component would have to
give a smaller product.

The treatment of these four cases appears to be
simpler and more precise than Winston's heuristic
discussions on the relative likelihoods of several
possible models.

The P; values are readily approximated by
counting the relative frequencies of various
classes. If the samples are small, the accuracy
can be improved by considering how the classes
were constructed.

The N; are obtainable by counting the number of
different members of each class that have occurred
up to now.

There are two other methods of class con-

No tree exploration is necessary.
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struetion that can sometimes be more appropriate.

One possibility is to assume that the positive
examples are not necessarily typical. The pro-
blem is then merely to find the model of highest
a priori probability that accepts all known
positive and rejects all known negative examples.

Instead o Pi/N;‘ the quantity that we want to
maximize is Pi. This is mathematically equiva-

lent to having all of the N; constant - the same
for all classes. The discussions of what to do
when a positive case fits the model or when a
negative case doesn't are similar to those used
before, but if a positive case fits the model,
the model is always left invariant.

The other alternative is to use the more
general model of induction given by stochastic
languages. Here, the classes usually do not have
sharp edges. The description of a stochastic
language (which we will identify with a component
class in our model) at once gives the a priori
probability of that class as well as the proba-
bility of any particular element being chosen.
The latter corresponds to the 1/Ni that was used
earlier.

If Pi is as before and a;; is the probability

that the ith class assigns to the jth positive
example, then we want a class that assigns zero
probability to all negative examples such that

n
Pil | aij is maximum. This criterion
j=
corresponds to the earlier approximation PifN.T .

The three methods of class definition des-
cribed above are not mutually exclusive. It is
possible to describe some vector components by

means of the Pi/N;l model, others by means of the
P. model and still others by means of the stochas-

tic language model.

In the foregoing analysis, we have assumed that
the vector components are statistically indepen-
dent, and the conclusions obtained follow
rigorously from this. If there is reason to
believe that several components are statistically
dependent, a suitable joint a priori probability
distribution for them can be obtained. This
dependent set would be treated as a single vector
component, but the rest of the analysis would be
the same.

If we have training sequences with only posi-
tive examples, neither Winston's system nor the

pi system can operate, but both the Pi/N;" system
and the stochastic language system have no par-
ticular difficulty.

Arother important advantage of the analysis
techniques described is the use of quantitative
probabilities for the vector classes cf the model.
From them it is possible to calculate readily the
probability that any unidentified new example is
or is not an example of the concept being learned.

To compute this, take the total probabilities
of all models of the concept that are consistent
with the data thus far (i.e. they accept all



positive and reject all negative examples)
accept the new example. Divide this by the total
probabilities of all models of the concept that
are consistent with the data thus far,
not they accept the new example.

Quantitative probability estimates are neces-
sary to make critical decisions through decision
theory- The mechanization of medical diagnosis is
one important area. Decisions in economics,

ecology and agriculture are but a few other areas 13

where probabilities of this kind are of paramount
importance.
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