AUTOMATIC PROGRAM SYNTHESIS FROM EXAMPLE PROBLEMS

L. Slklossy and D. A. Sykes

Computer

Sciences Department

University of Texas at Austin

Austin,

Abstract

Desired algorithms to be synthesized are described
implicitly by example problems that the algorithms
should solve. The example problems are first
solved by the problem-solver LAWALY. The obtained
solution represents a trace of the desired algo-
rithm. From the trace, the algorithm is synthe-
sized by the synthesizer SYN. SYN writes recur-
sive programs with repeat statements, and gene-

rates its own subroutines. Examples of functions
synthesized include repetitive robot tasks and
tree traversal algorithms.

1. Introduction

A program synthesizer transforms the
explicit description of an algorithm

implicit or
into execut-

able code. Although a compiler for a high level
language might be considered a synthesizer, since
it transforms an algorithm written in the language

into executable machine code, generally discuss-
ions of program synthesizers are restricted to

those systems which transform into code descrip-
tions which are "far" from being executable. The
concept of "far" is relative to a state of know-
ledge. For example, some synthesizers accept de-
scriptions of algorithms in
On the other hand, Kowalski (1) has argued
favor of a predicate calculus programming
When a compiler for such a programming
available,
will lose

in
language is
we can expect that some synthesizers
their "raison d'etre".

Approaches to program synthesis can be disting-
uished according to the descriptions of the al-
gorithm to be synthesized. Properties of the al-
gorithm can be given to the synthesizer, expressed
in a programming language (2) or a logical cal-
culus (4-7). A theorem-prover is used to extract
the synthesized program. This approach suffers
from difficulties in obtaining axiomatizations,
and from the lack of power of present theorim-
provers.

Another approach (8,9) starts from the traces that
the algorithm would have produced-if it existed-
on some particular test cases. The traces are
generalized to the synthesized program. In this
way, a variety of looping programs have been ob-
tained. This approach suffers from the tedium ex-
perienced by human beings in producing traces, and
from the errors that all too often manage to creep
into the traces. The above approaches are de-
scribed more fully in section 2.

We present here a novel approach to synthesis.

The program to bo synthesized is described impli-
citly by sample problems that are assumed to be

typical of the class of problems that the program
should solve. The sample problems are first
solved by the problem-solver LAWALY (10-12).
obtained solutions are traces which are general-
ized to the synthesized programs. Other efforts
to synthesize programs given input-output pairs.

The

the predicate calculus.

language.

268

Texas, U.S.A.
but without the use of a problem-solver, arc des-
cribed in (14,15).

Our synthesizer SYN has generated recursive pro-
grams with repeat statements. SYN writes its own
subroutines. The synthesis process is totally
automatic once sample problems, and the elementary

operations necessary to solve the problems, have
been given.
SYN is a running system programmed in LISP. The
behavior of SYN is exemplified by several sample
problems.

2. Approaches to Program Synthesis
2.1 Properties of Programs.
In many approaches to program synthesis, the syn-

thesizer is given a description of properties of
the desired program in some language, for example
logical calculi or a programming language.

2.1.1 Properties in a Programming Language.
Slklossy (2) has described a synthesizer which
accepts properties of algorithms expressed in LISP.
Examples of such properties are: (EQUAL (TIMES A
(PLUS B C)) (PLUS (TIMES A B) (TIMES AC))) and
(EQUAL (APPEND A (APPEND B O) (APPEND (APPEND A
B) C)). The synthesizer uses a property prover
similar to that of Boyer and Moore (3).

Calculi.

2.1.2 Properties in Logical

Several synthesizers accept descriptions of prop-
erties of algorithms in the predicate calculus
(Waldinger, Lee and Manna, 4,5,6). A theorem prov-
er is used to synthesize the algorithm. Other log-
ical calculi have been used, for example by Luckham
and Buchanan (7) in a synthesizer that permits man-
machine interaction.

2.2 Traces of the Algorithm

The approaches described in section 2.1 suffer from
several drawbacks: a) It is often difficult, if
not downright painful at times, to give adequate

axiomatizations of algorithms and their associated
data structures, b) Among the major difficulties
encountered in the approaches via logical calculi
(section 2.1.2) is the requirement that the axio-
matization be complete. If some property of the
algorithm or data structure is not included, the
theorem-prover used by the synthesizer cannot com-
plete a proof, and no algorithm is synthesized.
This difficulty does not exist in the approach via
programming language description (section 2.1,1),
since the synthesizer can produce partial syntheses
which immediately result in demands for additional
properties, c) Presently available theorem-provers
in particular for logical calculi, appear too weak
to synthesize difficult programs. Until the the-
orem-provers become more powerful, the logical
calculi approach has been called "not pragmatic"

by its own supporters (6).

Human beings often understand a given program by
executing (or simulating the executing of) the al-
gorithm on some test cases, i.e. by considering
traces of the algorithm. Similarly, human beings
often prefer to have a desired algorithm (to be
programmed) explained to them by a description of
the behavior of the algorithm on some particular
sample problem, i.e., in terms of traces. Bier-
mann (8,9) has described a synthesizer which ac-
cepts the traces of an algorithm to be synthesized.
The traces are assumed to be equal to the traces
that the desired algorithm (if it existed) would
have produced on the same test cases. The syn-
thesizer generalizes the traces to a program which
does produce the correct traces on the sample test
cases. The programs synthesized include loops,
and subroutines if these were specified in the
traces.

2.3 Example Problems

Biermann (personal communication) has reported
that inputting the traces by hand was not only te-
dious, but could not always be done without the
inclusion of errors in the traces. We have there-
fore been led to automate the production of traces,
both to avoid errors and to eliminate a tedious
task.

In our synthesizer, SYN, the inputs are specific,
sample problems belonging to the class of problems
which the algorithm to be synthesized should solve.
The human being is saved the tedium of producing
traces. In addition, the description of the de-
sired algorithm is not given under any form. The
user of the synthesizer has the same relationship
with the synthesizer as he has with a systems pro-
grammer: he only describes problems to be solved.
It is the synthesizer's task, as it is the system
programmer's,to develop an algorithm that solves
the sample problems, and in addition a reasonable
class of more general problems that include the
sample problems.

The problems input to SYN are solved by the prob-
lem -solver LAWALY (10-12) which produces a solution
which is interpreted as the trace of the desired
algorithm. The trace is then generalized to an
algorithm. The synthesizer proper, also called
SYN, which produces programs from the traces,
bears almost no resemblance to Biermann's synthe-
sizer. While Biermann produced looping programs,
SYN writes recursive programs with repeat state-
ments in a language similar to LISP. SYN also
generates its own subroutines.

Since the problem solver LAWALY has been described
elsewhere in the literature, we shall concentrate
on the synthesizer proper. Since, as we have
argued, programs are best understood by describing
their trace on a sample problem, we shall exhibit
the behavior of SYN on a simple sample problem.

3. SYN on a Simple Sample

We consider a simple problem, illustrated in Fig-
ure 1. A robot is on ground X. She holds a flag
FLAG. She can climb from X on boxes A, B, and C,
one after the other. On the top box C she can
plant the flag. We want the robot to plant the
flag and return to the ground X.

269

Initial State Final State

T

Legend
'? Robot ‘=] Flag:; X Ground;

%
X

[x]

Box K

Figure 1. A Simple Sample Problem

As in (10-13), the world is described by a set of
true facts, and the capabilities of the robot are
given by elementary operators. The format of each
operator is: (operator-name (list of arguments)
(set of preconditions of the operator) (delete
set of the operator) (add set of the operator))
For an operator to be applicable to the world OW,
the preconditions of the operator must be satis-
fied in OW. As the result of the application of
the operator, the world changes into a new world
NW given by:

NW := ((OW - delete-ser) + add-ser), where - and
+ are set difference and union, respectively.

{climb (boxl box2)
({on box2 boxl) (onrbt boxl)) -preconditions
((onrbt boxl)) ~delete set
onrbt =~ on robot

{{onrbt box2)})) ~add set

(unclimb (box2 boxl) ((on box? boxl) enrlt baxl))
{({onrbt box2)) ((onrbt boxl)))

(plantflag (flag box) ((top box) (holding flag)
(onrbt box))

((holding flag)) ((planted flag box)))
Flgure 2. Operators for Simple Sample Problem
Figure 2 lists the operators relevant to the exam-
ple task. In a more complex world, a more careful
axlomatization could be necessary (13). Figure 3
shows the sequence of operators which constitutes
the solution trace found by LAWALY to the problem.
Each step of the solution is indexed by (Ei) for
subsequent reference.

Operator Reference
{climb X A) (El1)
(climb A B) (E2)
(climb B C) (E3)
(plantflag FLAG C) (E4)
{unclimb C B) (ES)
(unclimb B A) (E6)
{unclimb A X) (E7)
Figure 3. Trace of solution to Simple Sample
Problem.
3.1 ODBOL

The synthesized programs are written in ODBOL (no
acronym), which has the flavor of LISP. The syn-
tax of ODBOL is given in Figure 4. We intend to
extend ODBOL as the power of SYN increases.

<fundefn>
<fdnlist>

:= (<identifier>{LAMBDA<1dnlist><body>))
= (<identifier>*) *denotes the

Kleene star.

<body> ::= {COND<block>*)
<block> 1= {<ifpart><opart>)
<ppart> ::= BEGIN <op>* END|
BEGIN <op>* REPEAT END

(TRUE) | (IF <precondition>*) |
(EXISTS <idnlist><precondition>*)
<robot operator>|<function call>

<ifpart> ::=
<op> Tim
Figure 4. Syntax of ODBOL.

The semantics of ODBOL are as follows:

the formal parame-
parameters of

- When a function F is called,
ters of F are bound to the actual
the call.

- Having bound the parameters, each <block> in the
<body> is scanned from left to right until an <if-
part> is found to be true. The corresponding <o-
part> is then executed. (If no <ifpart> is true
and the <body> is exhausted, then an error has
occurred.)

- The <op>s within the block are executed from
left to right, as in the PROG feature in LISP.
the <op> is a function call, the indicated func-
tion is executed with the indicated arguments.
Otherwise the <op> is executed and control passes
to the next <op>. An END Is treated as a RETURN
statement in a LISP PROG. A REPEAT statement is
equivalent to a transfer to the top of the <block>,
unless the block condition is now false, in which
case control is passed to the next statement (al-
ways an END according to the syntax.)

- In the case of EXISTS, the identifiers in the
<idnlist> are bound before entering the block,

If

and

these bindings hold throughout the rest of the
block. If more than one possible binding is found
for an identifier, then one of the bindings is
chosen arbitrarily. (REPEAT statements or recur-
sion will make the system consider several of the

possible bindings.)

3.2 Arguments of the Function.

The function to be synthesized must be given a list
of arguments. To select the arguments, we consid-
er the preconditions of the first operator in the
trace. The preconditions are ranked according to
a hierarchy (see 10). The lowest ranked precondi-
tion, corresponding to the most restrictive pre-
condition, is selected. Its arguments become the
arguments of the function.

In our example, among the preconditions of the op-

erator (climb X A), the most restrictive one is
(onrbt X), hence X is selected as the argument of
the function (call it FF) to be built.

If the first operator is to some extent incidental

to the solution, this approach would appear unsat-
isfactory. However, as is shown in section 4.2,
SYN will then generate a first function which ac-
complishes the Incidental work, and calls another
function which performs the significant tasks.

3.3 Building the Functien.

We shall show how the function FF is builec.
total function FF is

ODBOL Code

The

Line Reference

(FF (LAMBDA (X} (COND (L1)

270

{(EXISTS (A) {on A X)) BEGIN (climb X A) (L2)
(FF A) (L3)
(unclimb A X) (L6)
END) (L)
((EXISTS (FLAG} (top X) (holding FLAG))
BEGIN (plantflag FLAG X) (L4)
END))))
The line references correspond to the order in
which the lines of code are generated.
So far, we have line LI only. The <ifpart> of the
“block> comes from the preconditions for (climb
X A), namely (on A X) and (onrbt X). The latter
provided us with the variable X. (on A X) involves
a new object. A, so an EXISTS construct is intro-

duced. We obtain line L2. Having used EIl, we
consider E2. Since the operators in E2 and EI are
the same, recursion is attempted, yielding line
L3. The recursion is on A, since A occupies the
same position in E2 as X did in EI.

The new program is executed to verify that it con-
forms with the trace. In fact, not only EI and

E2 agree with the program, but E3 ae well. As we
try to execute (FF C), the condition (EXISTS (al-
pha) (on alpha C)) is not satisfied in the world,
hence the test fails, and we need to write new
code. From the preconditions of plantflag in EA4,
we generate a second test in the CONDitional, line

L4. Notice how the constant FLAG becomes a vari-
able. Previously, the ground X also became a var-
iable.

We next consider E5: (unclimb C B). The constants
C and B In E5 are the name ones that were current
in the call (FF B). (As the partial programs are
executed, all contexts are saved for subsequent
examination, if necessary.) Hence, it appears
that a change of recursive level has taken place,
since B is unknown in the call (FF C). Hence, we
terminate the plantflag part of the program by

adding END, line L5 -which forces a return to the
previous recursive level- and by Inserting an un-
clilmh, line L&6.

Looking at EG: (unclimb B A), we notice that the

recursive context is changed again. Hence, an

END is inserted after the unclimb, line L7. Ae
before, new code must be checked against the trace.
In fact, even E7 is generated, hence the synthe-

sized program is found completely satisfactory.

3.4 Comparison with Human Programs.

The authors have asked several friends and collea-
gues to describe a generalization to the simple
sample problem of Figure 2. Invariably, the so-
lution was of the form:

-make a loop as the robot climbs to the top;
-plant the flag;
-make a loop as the
ground.

robot unclimbs down to the

It is remarkable that the program synthesized by
SYN is in fact "better" than the version proposed
by all humans (including ourselves!) as the most
"natural” solution. The solution FF can be des-
cribed as follows: a series of recursive calls
leads the robot up to the top; she then plants the
flag. Then, as the recursive calls are undone,
the robot climbs down. So, in particular, the

operators (climb X A) and (unclimb A X) are paired
in the same function call, and their complementary
relationship is made transparent. By contrast,
the "climb" and "unclimb" operators are separated
in the two distinct, separate loops in the human
program.

The above example does not illustrate all the cap-
abilities of SYN. Some modifications of the simple
sample problem will give a more complete picture of

SYN.

3.5 REPEAT statements.

If the robot holds several FLAGS, and plants all of
them on the top box, the second block of FF would
be synthesized as:

((EXISTS (FLAG) (top X) (holding FLAG)) BEGIN
{(plantflag FLAG X)
REPEAT END)

Recursion could also have been used, but it would
define (FF X) in terms of (FF X), the infinite re-
cursion being avoided because of side effects.
Hence, a REPEAT statement appears "cleaner" and
easier to implement. Some synthesized programs
contain several embedded REPEAT statements, see
section 4.4.

3.6 Placemeunt of <block»s within a <body>.

Let us assume that the robot can plant a FLAG while
standing on the box just below the top box, with

the help of the operator plantflag2. The trace
would be:
{(climb X A)} (E1)
(climb A B) (E2)
(plantflag2 FLAG C B) (E3)
(unclimb B A) (E4)
(unclimb A X) (E5)

Hence the robot climbs only to B, then plantflag2's
(sic!). Synthesizing the procedure, we would gen-
erate lines L1, L2 and L3 of code. When X is
bound to B, FF would make the robot climb on C,
which is not in the trace. Hence, an <ifpart> is
inserted to prevent the execution of (FF C). The
partial definition of FF3 now becomes:

(FF3 (LAMBDA (X) (COND (L1)
((EXISTS (FLAG C)(on C X)(top C)(holding FLAG))
BEGIN (plantflag2 FLAG C X)...) (L4")

followed by L2 and L3. Of course, SYN must verify
that this new insertion does not change the agree-
ment of the program with the earlier parts of the
trace.

3.7 Writing new functions.

ODBOL does not allow the binding of variables past
the <ifpart> of a <block> If we want to test whe-
ther there is a nice cube on A (which should be
picked up If it is already melting) before calling
FF again, we must have access to a variable that
can be bound to nice cubes. SYN would call a new
function GG with a definition similar to:
(GG (LAMBDA (A) (COND

((EXISTS (NICECUBE) (melting NICECUBE AT

BEGIN (pickup NICECUBE A)...
Hence, we can see that SYN fights the increased
complexity due to additional bindings within a
<block> by creating new functions that absorb the
bindings. The creation of new functions is also
helpful when the original choice of function

271

parameters is inappropriate (see sections 3.2 and
4.2).

4. Some Additional Synthesized Programs

In this section we describe some additional prob-
lems that were given to SYN, and the resulting
synthesized programs in ODBOL. Each problem was
synthesized independently and the actual computer
outputs are given.

4 1 Returning to the First Step.

We modify the final state of the first example
problem by letting the robot finish on step A in-
stead of the ground X. The synthesized program is
(FO0001 (LAMBDA (X) (COND

((EXISTS (A) (ON A X)) BEGIN
(CLIMB X A)
(FODOO2 A)

END) W

where F00002 is identical to FF except for vari-
able names. In the solution F00001, a step is
climbed and an auxiliary function is created, es-
sentially identical to FF, which does the sym-
metric climbing and unclimbing, and plants the
flag. The symmetry of much of the solution is
apparent.

4.2 Picking up a backpack before planting the
flag-

Before accomplishing the same task as in Figure 1,
we require that a backpack be picked up as a first
step. Hence this first step is irrelevant to the
main problem to be solved. The synthesized pro-
gram is F00006:

(FOO006 (LAMBDA (BACKPACK X) (COND
({(TRUE) BEGIN
(PICKUP BACKPACK)
(FO0007 X}
END) X))

Where FO00007 is identical to FF. F00006 picks up
the backpack (now a variable) and calls an auxi-
liary function F00007, essentially identical to
FF, which does all the work.

This problem shows that SYN was not misled by in-
cidental early actions in the trace.

4.3 Binary Tree Traversals.

Tree traversal algorithms are popular recursive
algorithms. We start with a tree, and describe
the order in which the nodes should be traversed.
We shall describe results for postorder (inorder)
and preorder traversals. The tree is shown in
Figure 5.

A Sample Tree

Figure 5.

4.3.1 Postorder Traversal.

The input problem indicates that the branches
should be MARKed in the order: A BCEDTG F H.
LAWALY uses operators CLIMBLeft, CLIMBRight, and

MARK to indicate when the branch is actually visi-

ted. Predicates LBR and RBR test for Left and

Right BRanches. The solution is F00001 and the

output 1s:

(FO0001 (LAMBDA (T) {COND

((EXISTS (B) (LBR B T)) BEGIN (CLIMBL T B)

(FO0001 B)
(UNCLIMB B T)
(MARK T)
(FO0O002 T) END)

((TRUE) BEGIN (MARK T) END) 3))

(FO0002 (LAMBDA (B) (COND
((EXISTS (E} (RBR E B)) BEGIN (CLIMBR B E)
(FO00O0L1 E)
(UNCLIMB E B)END)))

4.3.2 Preorder Traversal.

The branches are traversed in the order: T B A E C
DFGH. The same operators as hefore are used
by LAWALY ta generate the trace of the solution on
the sample tree. The synthesized solution by SYN
is FOO0001l and the output is:
(FO0002 (LAMBDA (T) (COND
((EX1STS (B) (LBR B T)) BEGIK

(CLIMBL T B)

(FOO001 B)

(UNCLIMB B T)

(FOO003 T) END)
((TRUE) BEGIN
END } 33) -
(F00003 (LAMBDA (B) (COND
((EX1STS (E) (RBR E B)) BEGCIN
(CLIMBR B E)
(FO0O001 E)
(UNCLIMB E B)
END))))
(FOO001 (LAMBDA (T) (COND
((TRUE) BEGIN
(MARK T)
(FO0002 T)
END))))

F00002 and FOO003 jinitiate traversal towards the
left and right, respectively, and FOO00l does the
marking.

4.4 Embedded REPEAT Statements,

With a house as in Figure &, the robot is asked to
move boxes X, Y,Z and W into the HALL. She picks
up one by one all the boxes in one room, moves
them into the HALL and puts them down one by one,
then repeats the same operations for all the rooms.

HALL

Figure 6. Moving Objects into the HALL.

272

The aynthesized program is F0OO0O01:
(FO0001 (LAMBDA {HALL) (COND
((EXISTS (A D1) (CONNECT HALL A D1) (UNVISITED A))
BEGIN (ENTER A DI HALL)
(FODO02 A)
(EXIT A D1 HALL)
(FO0O003 HALL)
REPEAT END))))
{FOOD02 (LAMBDA (A) (COND
((EXISTS (X) (INROOM X A}) BEGIN (GONEXT X A)
(PICKUP X)
REPEAT END)
((TRUE) BEGIN
END})))
(FO0003 (LAMBDA (HALL) (COND
((EXISTS(X) (HOLDING X))BEGIN(PUTDOWN X HALL)
REPEAT END)
{ (TRUE) BEGIN
END))))
FO0002 does the picking up, FO0003 the putting
down. D1, D2 and D3 are doors.

S. Conclusions

In Our approach to program synthesis, a program is
described implicitly by typical problems that it
should solve. This description is sometimes very
natural and compact, as in the case of tree traver-
sals, for example. We have described only a few
programs among the many that SYN synthesized. The
principal difficulties of the approach are tied
with axiomatizations and the problem-solver, syn-
theses from several problems, and the question of

the correctness of the resultant programs.

In all our examples, the trace was obtained by our
problem-solver LAWALY. If we insist that LAWALY
(and not a human) generate the trace, we can syn-
thesize only those programs which solve problems
in a class typified by some problems that LAWALY
can solve. Of course, we could always bypass
LAWALY and give the trace of a solution by hand.
Moreover, the trace should include the relevant
operators and predicates. For example, the traces
of the tree traversal algorithms must include the
notions of left and right branches, and directions
for climbing. The importance of a good axiomatiza-
tion must once again be emphasized (13).

our syntheses all proceeded from a sim-
ple trace. Some programs might be so complex that
no single problem would exemplify fully the class
of problems to be solved. We are attempting to
extend SYN to such cases.

Until now,

Once the program has been synthesized, we know that
it is a generalization of the trace input to SYN,
but do not know whether it is "correct". To decide
whether the program is correct, we must give addi-
tional properties of the program, besides typical
problems that It should solve. The language ODBOL
has a structure which would make proofs of correct-

ness of ODBOL programs fairly easy

We do not think that any single approach to program
synthesis is fully satisfactory. As we mentioned,
the problem-solver may be too weak to solve some
problems, and it might be necessary to input traces
by hand. Sometimes, some aspects of the program

to be synthesized are best described as properties
of the program, given either in a programming lang-
uage or a logical calculus. Finally, the various
approaches to program synthesis and correctness

should be embedded in a man-machine environment be- 15- Project MAC Progress Report X, Massachusetts

fore significant advances in the automatic produc- Institute of
tion of complex, quality software can be achieved. 151-156.

10.

11.

12.

13.

14.

6. References

Kowalski, R., "Predicate Logic as Programming
Language," Proc. IFIP Congress 74, Stockholm,
569-574.

Siklossy, L., "The Synthesis of Programs from
their Properties, and the Insane Heuristic,"
Proc. Third Texas Conference on Computing Sys-
tems, Austin, Texas, 1974.

Boyer, R. S., and Moore, J. S., "Proving Theo-
rems about LISP Programs," Third International
Joint Conference on Artificial Intelligence,
Palo Alto, California, 1973, 486-493-

Waldinger, R. J., and Lee, R. C. T., "PROW:

A Step Toward Automatic Program Writing,"
International Joint Conference on Artificial
Intelligence, Washington, D.C., 1969, 241-252.

Manna, Z., and Waldinger, R. J., "Toward Auto-
matic Program Synthesis," Comm. A. C. M., 14,
3, 1971, 151-164.

Lee, R. C. T., Chang, C. L., and Waldinger,
R. J., "An Improved Program-Synthesizing Algor-
ithm and its Correctness," Comm. A. C. M.,

A7, 4, 1974, 211-217.

Buchanan, J. R. and Luckham, D. C., On Automa-
ting the Construction of Programs, Technical
Report STAN-CS-74-433 Computer Science Depart-
ment, Stanford University, 1974.

Biermann, A. W., "On the Inference of Turing
Machines from Sample Computations," Artificial
Intelligence, 3, 1972, 181-198.

Biermann, A. W., Baum, R., Krlshnaswamy, R.,
and Petry, F. E., Automatic Program Synthesis
Reports, Technical Report OSU-CISRC-TR-73-6,
Computer and Information Sciences Research

Center, Ohio State University, October, 1973.

Siklossy, L. and Dreussi, J., "An Efficient
Robot Planner which Generates its own Proced-
ures," Third International Joint Conference on
Artificial Intelligence, Palo Alto, California,
1973, 423-430.

Siklossy L. and Roach J., "Collaborative Prob-
lem-Solving between Optimistic and Pessimistic
Problem-Solvers," Proc. |[FIP Congress 74,
Stockholm, 1974, 814-817.

Siklossy, L., "Procedural Learning in Worlds
of Robots," Proc. NATO Advanced Study Insti-
tute on_Computer Oriented Learning Processes,
Bonas, France, 1974, 423-436.

Siklossy, L. and Roach, J., "Model Verifica-
tion and Improvement using DISPROVER," Artifi-
cial Intelligence, 6, 1975.

Green, C. C., et al., Progress Report on Pro-
gram-Understanding Systems, Technical Report
AIM-240, Computer Science, Stanford University,
1974.

273

Technology,

Cambridge,

1973,

