INFERRING LISP PROCRAMS FROM EXAMPLES

David E Shaw

William R. Swartout

C. Cordell Green

Artificial

Intelligence Laboratory

Department of Computer Science

Stanford University

Stanford, California

ABSTRACT

A program is described which infers certain recursive LISP

programs from single example input-output pairs Synthesized
programs may recur in more than one argument, and may involve
the synthesis of auxiliary functions An actual user session with
the program, called EXAMPLE, is presented, and the operation

of the program and its important heuristics are outlined.

ACKNOWLEDGEMENTS

The authors wish to thank Richard Waldinger and Doug Lenat

for the fruits of several valuable discussions held early in the

course of this work We are also grateful for the editorial
assistance of Avra Cohn, which made possible the preparation of
this draft This research was supported m part by the Advanced
Research Projects Agency under contract DAHC 15-73-C-CM35
and in part by the State of California through a California State

Graduate Fellowship

SECTION | - INTRODUCTION

A common aspect of many definitions of automatic programming
is the goal of facilitating program specification In this paper, we
consider the specification of programs by examples. To describe a
particular program by example, the user supplies only a sample
The computer then infers a plausible

input and output

candidate program

The inductive inference of programs from input-output examples
has also been explored by Licklider [1973] and Hardy [1974]
More generally, this inference task is related to the problems of
program inference from traces [Biermann. 1973] and grammatical
1969,
Biermann and Feldman. 1972, Blum and Blum, 1973]

inference [Feldman, Crps. Horning and Reder, Horning,

1969;

This paper describes a program, called EXAMPLE, that infers
recursive LISP functions from single input-output pairs. Given
the input-output specification

(ABCD)-{DDCCBRBAA)
input out pur

for instance, EXAMPLE writes the “reverse-and-double™ function
f(x) « if null{x) then nil else
append{f(cdr{x),
hst{car{x)car{x))

260

EXAMPLE is able to infer a class of functions which perform

certain list-to list transformations. In particular, each recursive

function in this class steps through the input list from left to right,

producing part of the output at each step Consider, for example,

the pair
(ABCD)-({(A B)(ACI(AD)BC)BD)(CD)
femeemennnns | -+ e 2-mem| =04
The output is produced in three steps A recursive subfunction

produces the sublists |, 2, and 3 in successive steps and the main

function appends them together

Let us briefly outline the way this function is synthesized First.

EXAMPLE determines which part of the output is produced in
the first step of recursion In the above example, sublist | is
It is assumed that this subhst is

EXAMPLE

produced in the the first step

produced by a subfunction thus attempts to

synthesize the subfunction, generating a new input-output

specification which describes this subgoal The arguments A and

(B C D) are chosen as input The subfunction specified by

A, (BCD)~(ABI{ACKAD

may now be synthesized by calling the EXAMPLE program

recursively Returning to the synthesis of the main function, we

find three remaining steps 1) The recursive call of the mam
function is foimrd, 2) the resulting code is embedded in either a
CONS or

output from each recursive step, and 3) terminating conditions are

APPEND expression so as to properly conjoin the

selected

We will say that an output has been realized when a function has

been synthesized which satisfies the given input-output
specification Unfoitunately, not all syntheses which simply
realize the output will be found acceptable to the user To see

why. we consider a trivial synthesis scheme which can realize any

output by breaking the input arguments down into their

constituent atoms and recombining these atoms mechanically to

form the desired output

Using this scheme, the function specified by

(ABCD)-((A B)(AC)(AD){BC)(BD)(CD)

may be synthesized trivially as

(LAMBDA (ARGI)
(LIST

(LIST (CAR ARGY)

(CAR (CDR ARG1))
(LIST {(CAR ARGI)

(CAR (CDR (CDR ARGH)))
(LIST (CAR ARGI)

(CAR (CDR (CDR (CDR ARG 1))
(LIST (CAR (CDR ARGI1))

(CAR (CDR (CDR ARG)
(LIST (CAR (CDR ARGI1))

(CAR (CDR (CDR (CDR ARG L))
(LIST (CAR (CDR (CDR ARGI))

(CAR (CDR (CDR (CDR ARG1].

The user probably intended, though, to specify a function which
finds all combinations of two elements from an input list of any

length. The above synthesis is implausible since it performs this

function only for lists of four elements As we will see,

EXAMPLE

against implditMble synthesis of this sort.

formulates subgoals in a manner which guards

A discussion of the types of synthesis tasks for which example

specification is appropriate, of the problems associated with

specification by example, and of the relationship between this and

other methods of program specification appears in Green, et

al.[197-11

SECTION 2 - AN ACTUAL SESSION

Let us now examine an actual session in which the EXAMPLE

program synthesizes several user-specified LISP functions.

Material typed by the user appears in lower case and is preceded
().

while our comments appear in italics.

by an asterisk Responses by EXAMPLE are in upper case,
The session begins when
the user types "exampleQO" to initiate the specification process.

* & * & o
nexample()

WHAT SHALL | CALL THE TOP-LEVEL FUNCTION?

weamb2
OK. NOW TYPE IN AN EXAMPLE ARGUMENT LIST.

w{(a b c d))

AND WHAT WQULD BE THE VALUE OF COMB2 WITH
THIS ARGUMENT LIST?

H{abacadbchdcd)

OK,I'LL TRY.

DOES COMB2(BC D)~ (BC BDCD)

T he function of this query will be discussed in section 3.
yes

I HAVE DEFINED COMB2 AS FOLLOWS.

(COMB?
[LAMEBDA (ARGI)
(COND
(NULL ARGI)
NIL)
(T (APPEND (COMB2AUX 1 (CAR ARGI)

261

(CDR ARG1))
(COMB2 (CDR ARGI)

{COMB2AUXI
(LAMBDA {(ARGC2 ARG3Y)
(COND
((NULL ARG?)
NIL)
(T (CONS (LIST ARG2 (CAR ARGY))
(COMB2AUX! ARG?
(CDR ARG3))

T he user may now test COMB2.
wcomb2((a b ()
(ABACBC)

nexample()
WHAT SHALL I CALL THE TOP-LEVEL FUNCTION?

spailrreverse

OK. NOW TYPE IN AN EXAMPLE ARGUMENT LIST.

H{labcdef))

AND WHAT WOULD BE THE VALUE OF PAIRREVERSE
WITH THIS ARGUMENT LIST?

Abadcfe)

OK., I'LL TRY.

DOES PAIRREVERSE(C D E F)) - (D C F EY

wyes

I HAVE DEFINED PAIRREVERSE AS FOLLOWS:

(PAIRREVERSE
{LAMBDA (ARC))
(COND

((NULL ARGI) NIL)

((NULL (CDR ARGI1)) NIL)

(T (APPEND (LIST (CAR (CDR ARGI1))

(CAR ARG1))
(PAIRREVERSE(CDR (CDR ARC1))

rexample()

WHAT SHALL | CALL THE TOP-LEVEL FUNCTION?
HImiX

OK. NOW TYPE IN AN EXAMPLE ARGUMENT LIST.
w{(a b cXd e f))

AND WHAT WOULD BE THE VALUE OF MIX WITH
THIS ARGUMENT LIST?

Kfccebbdaa)

OK, I'LL TRY.

DOES MIX{(BCXDEF)-(FCCEBBDR
2o

DOES MIX{{(B CXE F))« (FCCE B)?

“no

DOES MIX((B CXEF))={FCCEBB)

nyes

DOLES THIS LOOK RIGHT?

(MIX
(LAMBDA (ARG) ARG2)
(COND
((NULL ARG
NIL)
{(NULL ARGCY2)
NIL)

(T (APPEND (MIX (CDR ARGY)
(CDR ARG2))
(LIST (CAR ARG2)
(CAR ARG}
(CAR ARGI)

amix{({a b c dXe f g h))

(MHDDGCGCCFBBEAA)
* * o o ®

A number of other input-output pairs are included in the
appendix, along with the corresponding programs synthesized by
EXAMPLE It should be noted that EXAMPLE can not

synthesize functions involving counting operations or numerical
comparisons (a function that sorts a list of integers by value, for
Further, all termination checks are null tests which can

Thus, for

example)

return only the value NIL. example, the function

which returns the last element of a list,

(A BCD>-»D
can not be synthesized, since an equality test and the ability to
return a non-NIL atom would be required. A function which
finds the first halj of a list, which might be specified by

(A BCDEF)-(ABC)

also falls outside the class of functions synthesized by example.

We have tried only to convey a feeling for some of the programs
EXAMPLE A

characterization of the class of functions attacked by the current

more precise

still beyond the reach of

program is found in sections 4.2 and 4.3.

SECTION 3 - HOW IT WORKS: AN OVERVIEW

The program first determines whether a simple nonrecursive

realization of the target output is possible The programming

constructs available for nonrecursive synthesis will be described in

section 4.1.

If the output can not be realized using available nonrecursive
constructs, a synthesis involving recursive constructs is attempted.
The recursive LISP functions synthesized by EXAMPLE produce
some part of the output during the original top-level evaluation
and the remainder during subsequent recursive calls. Considering
the specification

(ABC)-(AAABBBRBCCDZC),
for example, we see that the initial value segment

(AAA.
Is produced during the first recursive step, while the remainder of

the output.

262

BBBCCC)

is produced by subsequent recursive calls We will refer to the

initially produced output segment as the head of the output. The
remaining segment will be called the recurrate
After the dividing point between head and recurrate is found,

EXAMPLE attempts produces the

head

to synthesize the code that
in the same way it attempted the original (user-specified)
goal. This subgoal is again specified with an input-output pair,

with the head appearing as the output:
A-+(A AA)
(We ignore for now the question of specifying the input part of

the head realization subgoal)

In order to distinguish the head from the recurrate, EXAMPLE

divides the output into equal-length groups of adjacent elements

By way of illustration, we consider a simple variant of COMB2:
(ABCD)-(ABACADBCBDCD)
e L | TR e SR R

EXAMPLE divides the output into groups of two elements, as

indicated above

Successive groups are then compared using a template-matching

procedure This procedure searches for the first major group

which is substantially different in some way from its predecessors,
conjecturing a head-recurrate separation just before this change

Comparing successive groups, EXAMPLE discovers a major

change aftei the third group, and postulates the following
separation

Head - (A BACAD .

Recurrate .- . BC B D C D)
In the case of some input-output pairs, the serial comparison

procedure must in fact proceed backward through the output list

structure. Simple heuristics are used to select a scanning direction

for the output This direction determination is used in several

later stages of synthesis The procedures for grouping, matching,

and detet mining scanning direction are discussed in section 4.3.

EXAMPLE is now able to reduce the synthesis task to several

simpler subgoals The head and recurrate must each be realized,
and the resulting blocks of code combined in an appropriate way.

along with code for terminating conditions |In order to specify

the head-trealization subgoal in input-output form, a new set of

input arguments must be formulated Arguments used in
specifying the subtask must again be carefully chosen to avoid the

possibility of implausible synthesis. Still, some of the arguments
which form the input of the parent goal may be broken down in
specifying input for the subgoal. For example, the initial goal of
realizing
(ABACADBCBDCD) from (A B C D)
spawns the subgoal of realizing
(A BACA D) fromthe rwo arguments

A and (B C D)
The heuristics used to break down parent input arguments are

discussed in section 4 4

Once new arguments have been generated, EXAMPLE attacks
the head-realization subtask exactly as it did the original problem.
If head realization itself requires a recursive synthesis, of course, a

separate auxiliary Junction must be synthesized In this case, a

call to the auxiliary function (with appropriate arguments)

appears as the head realization code

The problems of recurrate realization are different EXAMPLE
synthesizes only recursive calls whose arguments are the tails
(CDR, CDDR, etc.) of the original lambda-varubles. The
number of CDRs within which the original arguments are
embedded is postulated wusing certain clues involving the
propagation of argument elements to the recurrate.

If the head and recurrate are successfully realized, they are
conjoined wusing either CONS or APPEND If the original
output was interpreted in the forward direction, the head

realization appears as the first argument of the joining function,
while in the case of backward scanning, the recurrate realization

appears first The resulting body of code is embedded in a

CONDitional following a set of termination checks.

statement,
involves a null-check on some tail of a

if the

Each terminaiiun form

current argument, with the value NIL returned result is

positive

SECTION 4 HOW IT WORKS: THE WHOLE STORY

41 NONRECURS1VE SYNTHESIS

version of EXAMPLE, nonrecursive synthesis is

In the current

allowed only if the output can be realized simply from the current

input arguments without decomposing those arguments No

the arguments (such as CAR or
The effect of this

constructs which break down
CDR, for example) are considered at this stage
limitation is to prevent the synthesis of an implausible function,
which might be generated by breaking down each argument into
its primitive components and combining them mechanically to

realize the output

At present, EXAMPLE allows nonrecursive synthesis only if the
output can be realized with a composition of the functions CONS

and LIST over the input arguments. More precisely, the class of

functions which may be synthesized without recursion is the
union of
1. The adentity function over the input arguments
themselves

2. All functions of the form (CONS = 3} and
(LIST = =), where :: represents a function which
may be synthesized nonrecursively.

Thus, if the arguments were A and (B C), either (A B C) or
(A (B C) A) couid be realized nonrecursively, but realization of
(B A C) would be not be possible.

Because of these restrictions on nonrecursive synthesis, most user-
specified functions of interest are not synthesized at this stage. As
function of nonrecursive synthesis is the

we wjll see, the importnt

263

realization of very simple EXA MPLE-specified subgoals.

42 THE RECURSIVE FUNCTIONS
The recursive functions synthesized by EXAMPLE have the
form indicated in the following schema:

(function-name
[(LAMBDA argument-list
(COND
((NULL argtaih) NiL)

((NULL argran} NIL)

(T {jomn-functior
head-realizing-code 1 (possibly
{function-name recursive-args]) T reversed)

each "argrail" represents some composition of the function

Here,

input argument "Join-function" may be either

The

CDR over some
CONS or APPEND
nonrecursively synthesized expression or a call to an auxiliary

with

"head-realmng-code" is either some

function "function-name AUX 1" appropriate arguments.

The form of the rectnsive argument list will be discussed Ilater

Finally, we note that the order of the "head realizing-code" and

the recursive call may be interchanged

43 SEGMENTING INTO HEAD AND RECURRATE

Recursive realization requires correct identification of the head

and recurrate of the output We recall that a template-matching

procedure is used to locate the first major change in successive

groups of elements. In the present version of EXAMPLE, each

group initially consists of a single element |If such a grouping

does not allow head-recurrate separation in the template-matching

stage, the size of the groups ts increased

We examine the template-matching procedure in detail.

EXAMPLE loims a template by comparing the first two groups
appearing in the output. Consider COMB2
(ABCD)-(ABACADBCBDCD)

now

(A B) and
where x stands for the

(The first

In this case, the two-element groups (A C) are

compared to form a template (A x).

differing elements which appear in the two instances.
head-recurrate segmentation postulated by EXAMPLE is in fact

an inaccurate guess based on the use of single-element groups, the

correct segmentation discussed here is found upon subsequent

scanning with two-element groups.)

In general, all atoms appearing in corresponding positions are

compared for equality If the two atoms are the same, that atom

the variable

appears in template Otherwise, a unique X,

atoms, A description of the

representing the unequal appears

relationship between the two differing atoms is associated with x
Thus, the COMB?2 template indicates that C, the second instance

of x in the output, is the immediate successor in the input list of

B. A template for the function

the first instance
ABCDEF) »{(ACE),

analyzed with a group size of one. is comprised of a single

variable and the associated information that the second instance

of this variable is the double-successor of the first

The template is then used to predict the third group of elements,

assuming the same relationship between the second and third
groups as was observed between the first and second. To predict
the third group appearing in COMB2, for example, the successor
of C is
instantiated template, (A D), in fact agrees with the third group

This

instantiated for the template variable x. The resulting

does not
EXAMPLE

appearing in the output. template, though,

correctly predict the fourth group from the third
thus correctly divides the head from the recurrate after the third

group For somp function specifications, no major change is

detected using these heunstics. In this case, the first group of

elements is taken to be the head, and the remaining groups the

recurrate. The two initial (one element) groups of

F. (A BC D) ->((F AXF BXF CXF D)).
for example, yield the template (F x), which allows prediction of

all groups Separation after (F A) is thus assumed. While the

head-recurrate separation methods employed by EXAMPLE work

reasonably well, it must be emphasized that tney are not

universally effective A larger class of functions might be

synthesized using better heuristics for this critical decision

It was noted in section 3 that the output must sometimes be

scanned backward (from right to left) in order to effect the proper
head-recurrate separation EXAMPLE chooses a scanning
direction by noting whether elements from the front of the input

list propagate toward the front or the back of the output If they

tend to appear in the end of the output, EXAMPLE assumes that

the head will be found at the end of the output list. In this case,

a reverse scanning direction is used to distinguish the head and

recurrate. In section 4 6, we will see other effects of the decision to

scan backward

44 SUBGOAL REALIZING THE HEAD

Let us review the work EXAMPLE has done so far. A scanning

direction has been chosen heuristically and noted for Ilater

reference. Adjacent groups of elements have been scanned in the

chosen direction and compared wusing a template-matching

procedure. By locating the site of the first major change, that
part of the output generated during the first step of recursion (the
head) has been distinguished from the part produced during all
successive recursive calls (the recurrate) If no major change was
apparent, a default separation point has been assumed Finally,

those atoms appearing only in the head have been distinguished.

EXAMPLE must

generate the head when evaluated with the arguments of the top-

now attempt to synthesize code which will

level function call We implicitly assume that evaluations of this

same code during all subsequent recursive calls will produce the

recurrate. As mentioned before, the head realization subgoal is

specified with an input-output pan, just as the user specified the

original task The target output, of couise, is the head itself

Selection of an appropriate input argument list for the head

realization subgoal is less trivial

264

In certain cases, the original input list is a reasonable choice of
input for the subgoal For example, consider the following input-
output pair

ABCD)-(ABCDBCLGCDD)
Here the head

(ABC D) A trivial

is exactly the same as the original input argument
nonrecursive realization of the head thus

results when
(ABCD)Y-(ABCD)

is specified as the subgoal For a first attempt at head

realization, EXAMPLE always tries this first method, in which
the input for the subgoal is the same as the original input For
some problems, though, the original arguments must be broken
down in some manner in order to realize the head In this case,
EXAMPLE fails to accomplish the first subgoal, and creates a
new subgoal whose input arguments are subparts of the original
To illustrate, the first subgoal generated in trying to

head of COMB2 it

arguments

realize the to synthesize a subfunction

satisfying the input-output relation

(ABCDI-(ABACAD]
This however, can not be realized from the input
(A BCD) EXAMPLE thus generates the new subgoal

ABCD)~(ABACAD)

output,

which will eventually result in the successful synthesis of a two-

argument auxiliary function

by decomposing the
First,

EXAMPLE generates this new subgoal
original input, (A B C D), according to a simple heuristic,

we note that certain atoms from the input list may appear in the

head but not in the recurrate These atoms, called head
diitinguishers, appear as arguments for the head lealization
subgoal. Here A is a head distinguishes since it appears in the

head, (A B A C A D), but not m the recurrate, (B C B D C D),
A is thus chosen as an argument Second, the remainder of the
head distinguisher s

in the head We

original argument after removing the
included unless none of its atoms are found
if EXAMPLE broke down the original

head

remark in passing that

argument completely into its constituent atoms, realization

would always succeed (nonrecursively) A complete decomposition

of this sort, though, is in general dangerous, admitting the

possibility of implausible synthesis This danger is the motivation

for selective input decomposition

Before continuing our discussion of the synthesis of the main

function COM B2, let us summarize the synthesis of its
subf unction The original goal of synthesizing a function
specified by

ABCD)-(ABACADBCBDCD)
spawns the head realization subgoal
A,LBCD)-(ABACAD)
Template mauhnig with single-element groups separates the head
of this subgcul (A B), (ACAD)
EXAMPLE thrn decomposes the argument (B C D) into B and

output, from the recurrate,

(C D), discarding (C D), whose atoms fail to appear in the head.

The resulting subgoal s
A.B - (A B)
The hist (A B) 1 easily synthesized nonrecursively from A and B.

45 REALIZING THE RECURRATE
As we have ndicaled in secion 4.1, all recursive calls synthesized
by EXAMPLE to realize the recurrate are of the form
(function-name vari var2 . varn)
where each vart 15 either the ith lambda variable or a tai! of
(some composition of CDR over) the ith lambda vanable. The
recursive call ot the ALTERNATE function,
(A BCDFEF)-(ACE)
for exaraple, s
(ALTERNATE (CDR {CDR ARG,
while the function FOO described by
F.(A B C D)~ {FAXF BXF CXF D)
employs the recursive call
(FOO ARGIL (CDR ARG?2)).

EXAMPLE must thus determine the number of CDRs within

which each reursive argument should be embedded This
number is assumed equal to the number of atoms from the
beginning of that argument which fail to appear in the recurrate
Unfortunately, this method fails for many input-output pairs in
which the atoms of the input do not all propagate fo the output.
Certain weak heuristics are used to allow synthesis of some such

functions, but the problem is not entirely solved

Once the recursive call has been synthesized, EXAMPLE can
check its decision about head-recurrate segmentation by querying
the user In the case of the above function FOO, for example,
the user is asked if the proposed recursive call in fact realizes the
recurrate

"DOES FOOIF, (B C D)) - «F B)<F C)(F D))>"
are substituted for the formal

(The identifiers

variables used in the actual recursive call)

user specifipd
A negative response is
taken as evidence of faulty segmentation of head and recurrate,
often leading to a revised conjecture regarding scanning group

size

4.6 CONJOINING THE HEAD AND RECURRATE
Now that the head and recurrate have been realized, EXAMPLE
conjoins the two resulting pieces of code using either CONS or

APPEND.

direction, the head realizing code appears as the first argument of

If the output was analyzed using a forward scanning

the joining funrtion, since the head must have been found at the
beginning of the output If reverse scanning was used, the head
must be at the end of the output, and the head realization

appears as the second argument

Several factors are considered in deciding whether CONS or

APPEND

backward scanning, APPEND is always chosen The joining

should be wused tor conjunction In the case of
function will also be APPEND whenever the head contains more

than one element In accoidance with usual human programming

practice, however, CONS is used in the case of a single-element

head forward scanning EXAMPLE adjusts the

outermost list structure of the head to allow the use of the

found by

appropriate joining function

47 SYNTHESIZING TERMINATING CONDITIONS

We saw in section 4 1 that all terminating conditions synthesized
by EXAMPLE rest a tail of some argument, returning NIL if a
NULL tail is encountered The number of CDRs involved in
each tail depends on the number of CDRs used in the recursive
call on that argument Thus COMB2, which is synthesized using

CDR recursion, embodies the single null check

if NULL (ARG) then NiL
but the function specified by

(ABCDEF)~(ACE)
requires the deeper termination check

if NULL {CDR (ARG)) then NIL
SINCe Its recursive argumenl 15

CDR (CDR (ARG)).

acknowledged that this incorrect

It must be heuristic yields
terminating conditions for some functions which are o:herwise

within the target class of EXAMPLE

The resulting block of code is embedded in a function definition
call with the user specified name and list of lambda variables.
defined for system use and

The resulting function is then

evaluated with the user-specified input list |[If this evaluation in
fact yields the user-specified output, the function is presented to

the user for verification and further user testing

SECTION b - CONCLUSION

The EXAMPLE program was written in INTERLISP by David

A number of

Shaw and was

EXAMPLE sessions have been observed during the past year,

revised by William Swat tout.

but no formal study has yet been conducted of the programs users
actually specify or of the way in which such programs are
specified. It seems to us that such further study of actual program

specification would be valuable at this point

The exact role input-output examples will play in facilitating
program specification is not yet clear We believe, however, that
the capacity for specification by examples may be a useful

component of future automatic programming systems

We conclude with several other LISP functions synthesized by the

EXAMPLE program The shorthand notation

<function name> <input list> -» <output>

will represent the user specification of a function <function name>

which returns the value <output> when evaluated with the

arguments on *input list>.

REVDBL: (A BCDN-(DDCCBBA A)

(REVDEBL
[LAMBDA (ARCYH)
(COND
((NULL ARGI1) NIL)
(T (APPEND (REVDBL (CDR ARG)))
(LIST (CAR ARG1H {(CAR ARGID

REVERSE (A BCD)~(DCBA)

(REVERSE
[LAMBDA (ARCI)
{COND
((NULL ARGI) NIL)
(T (APPEND (REVERSE (CDR ARG))
(LIST (CAR ARGI)

DOUBLE - ((ABC)+(AABBCC)

(DOUBLE
(LAMBDA (ARGH
(COND
{NULL ARGI) NIL)
(T (APPEND (LIST (CAR ARG1!)
(CAR ARG
(DOUBLE (CDR ARG}

LISTTHRU : ((A B C D)) » (A} (B} (C) (D)}

(LISTTHRU
[LAMBDA (ARGI1)
(COND
(NULL ARG1) NIL)
(T (CONS (LIST (CAR ARGI))
(LISTTHRU (CDR ARGI))

LISTOFCOMBS : ((A BC D))
~{(ABYAC)AD(BC)BDEDL)

(LISTOFCOMBS
[LAMBDA (ARG
{COND

({NULL ARG1) NIL)

((NULL {CDR ARGI)) NIL)

(T (APPEND (LISTOFCOMBSAUXI
(CAR ARGI)(CDR ARGI))

(LISTOFCOMBS (CDR ARGID

(LISTOFCOMBS AUX]
{(LAMBDA (ARG2 ARGY)
(COND
((NULL ARG3) NIL)
(T (CONS (LIST ARG2(CAR ARGY))
(LISTOFCOMBS AUXI
ARG?2 (CDR ARG3))

TELESCOPE (ABCDN)~(ABCDBCDCDD)

(TELESCOPE
(LAMBDA (ARG
(COND
(NULL ARGI) NIL)
(T (APPEND ARG
(TELESCOPE (CDR ARGI)

266

PAIRZ2 :({(A BCY(DEF)~({(AD(BE(CF)

{PAIR?
(LAMBDA (ARG ARG?)
(COND
((NULL ARG () NIL)
((NULL ARG2) NIL)
{T (CONS {LIST (CAR ARGH)
(CAR ARG2))
(PAIR2 (CDR ARGI)
(CDR ARC2)

ALTERNATE. (A BCDEF) (A CE)

(ALTERNATL
(LAMBDA (ARGCI)
(COND
(NULL ARG1) NIL)
{(NULL (CDR ARG)} NIL)
(T (CONS (CAR ARGI)
{ALTERNATE (CDR {CDR ARGID

PAIRL (FN (A B C D))~ ((FN A) (FN B} (FN C) (FN D))

(PAIR!
(LAMBDA (ARG ARG2)
{COND
((NULL ARG2) NIL)
(T (CONS (LIST ARC) (CAR ARG2)
(PAIR! ARG} (CDR ARG2)D

SHUFFLE .- (A BCY{DEF)~-~(ADBECEF)

(SHUFFLE
(LAMBDA (ARGI ARC2)
(COND

((NULL ARGI) NIL)
{(NULL ARG?2) NIL}

(T (APPEND (LIST (CAR ARG))

{CAR ARGZ)
(SHUFFLE (CDR ARG!)
(CDR ARC2)

FOO - (ABC)(DE)-(ADBDCDAEBECE)

(FOO
(LAMBDA (ARGI ARG?)
(COND
((NULL ARG?2) NIL})
(T (APPEND (FOO.AUX1 ARGI
{CAR ARG2))
(FOO ARG (CDR ARG2))

(FOO AUXI
{(LAMBDA (ARGC3 ARGY)
{COND
((NULL ARG NIL)
(T APPEND (LIST (CAR ARG3) ARGY)
(FOOAUXI (CDR ARG ARG1))

CROSSPROD - ((A BDC)(DELE)
- (A D)(A E)(B D})(B E)(C D)(C E)}

(CROSSPROD
(LAMBEDA (ARGI ARG2)
(COND
({(NULL ARG1) NIL)
(T {(APPEND (CRQSSPROD.AUX I
(CAR ARGI}ARG?)
(CROSSPROD
(CDR ARGI) ARG?2)

(CROSSPRODAUN |
(LAMEBDA (ARG ARGHY)
(COND
{{(NULL ARG4) NIL)
(T (CONS (LIST ARG3 (CAR ARCG4Y)
(CROSSPROD.AUX | ARCS
(CDR ARC4))

REVTELESCOPE ((A B C D))
~-{DCBADCBDCD)

(REVTELESCOPE
(LAMBDA (ARG 1)
(COND
{(NULL ARG1) NIL)
{T (APPEND
(REVTELESCOPEAUX! ARCI)
(REVTELESCOPE (CDR ARG1))

(REVTEILESCOPEAUXI
(LAMEDA (ARGD)
(COND
{((INULL ARGC2) NIL)
(T (APPEND (REVTELESCOPEAUX!
(CDR ARG I
(LIST (CAR ARC1))

267

REFERENCES

Biermann, A W, and Feldman, J A. "On the Synthesis of
Finite-State Machines from Samples of Their Behavior," IEEE
Transactions on Computers, Vol C-21, No 6, June 1972, pp b92-
597. (also "On the Synthesis of Finite-State Acceptors," Memo
AIM-114. Artificial Intelligence Laboratory, Computer Science
Department, Stanford University, Stanford. California, April
1970).

Blum, L., and Blum, M, "Inductive Inference A Recursion
Theoretic Approach”, Information and Control, to appear (Also
Memorandum ERL M386, Electronics Research Laboratory,
College of Engineering, University of California, Berkeley,
California, August 1973).

Feldman, Jerome A., Cips, J, Horning, J. J., Reder, S,
"Grammatical Complexity and Inference,” Memo AIM-89,
Technical Report No. CS 125, Artificial Intelligence Laboratory,
Computer Science Department, Stanford University, Stanford,
California, June 1969

Green, C C, Waldmger, R J., Barstow, D. R, Elschlager, R,
Lenat, D B, McCune. B P. Shaw. D E. and Steinberg, L. I,
"Progress Report on Program-Understanding Systems,” Memo
AIM-240, Report STAN-CS-74-444, Artificial Intelligence
Laboratory, Computer Science Department, Stanford University,
Stanford, California, August 1974.

Hardy, Steven. "Automatic Induction of LISP Functions," AISB
Summer Conference, University of Sussex, Brighton, England,
July 1974, pp 50-62

Horning. James Jay. "A Study of Grammatical Inference." Ph.D.
thesis. Memo AIM-98, Report STAN-CS-69-139. Artificial
Intelligence Labotatory, Computer Science Department, Stanford
University, Stanford, California, August 1969

Licklidei, J C R, in "Automatic Composition of Functions from
Modules. Project MAC Progress Report X July 1972 - July 1973,
Section Il EI. Project MAC, Massachusetts Institute of
Technology. Cambridge, Massachusetts, pp 151-156

