SOME PRINCIPLES OF ARTIFICIAL LEARNING
THAT HAVE EMERGED FROM EXAMPLES

John Knapman

Department

of Artificial

Intelligence

University of Edinburgh.

Abstract

We argue that A.l. should not lose sight of the need
for general principles when working with problems
in specific domains. We also argue the case for
studying Artificial Learning. We present a
computer program with a very limited sense modality
that acquires some facility with the English lang-
uage and learns some numerical concepts. The
principles by which such learning takes place are
expressed in terms of a concept of process and they
prove to be applicable to learning the decimal
numeral system and forming elementary utterances as
well as learning to interpret English sentences.

1. Introduction

Being convinced of the central importance of

learning in intelligent behaviour and believing
that really complex "performance" programs will be
exceedingly difficult to write and even harder to
extend by any other means, we have been addressing
the problem of Artificial Learning (A.L.). The
term "artificial™ is intended to carry connotations
similar to those in "Artificial Intelligence".

The investigation is to be informed by what we
think we know about natural intelligence and its
development but the computer program which is one

depart from the
is expedient.

of the products of the study will
psychological paradigm whenever this

The two alternative approaches to A.L. that we have
considered are to increment a performing system
that already embodies some knowledge specifically
relevant to the material being learned or, on the
other hand, to set up a program endowed with the
minimum of sensori-motor capability and the skills
needed for expansion. Since the incremented
program must possess such skills in any case, the
naive entity is inherently simpler to build. What
is more, it becomes in time a performing system
that can be incremented, thus subsuming the
alternative approach.
The lesson that A.l. has is
that fruitful research is most
specific domains in detail. This point of view is
elaborated by Minsky and Papert (2). That does not
mean, however, that we should abandon altogether the
search for general principles, only that success is
more likely by generalising from some thoroughly
worked particular examples. The need for gener-
ality is particularly obvious in learning, since a
system that learns only a few well-chosen things may
be superficially less impressive that a well
performance program. The methods employed by the
learning program must, as far as possible, be made
non-specific to the examples chosen. Our approach
differs from some (e.g. (3)) especially in that our
program is not given express goals to which a plan
can be related logically. Such would be inappro-

learned since 1960 (1)

priate to a naive entity (apart from general goals
like "associate symbol with meaning" or "carry out
imperatives" which are implicit). Rather it

likely by considering

written

253

its environment, including feedback from
laying down patterns of behaviour
for future use and retrieving them according to a
suitably abstracted representation of what was
perceived. The latter is normally a part of the
pattern of behaviour.

reacts to
its own actions,

The aspects of intelligence which are examined in
the present work involve a dialogue conducted in
English and also some numerical concepts. The

program acquires both semantic and syntactic

knowledge of some words, which it subsequently uses

and "comprehends". It also acquires the meanings
of the numerals in the decimal Arabic system, using
the same basic repertoire of abilities even though
numerals are not conventionally considered to be
part of a natural language.

The domain in which these activities take place

has been selected for the utmost technical sinpli-
city. The program reads from and writes to a
teletypewriter where a person is sitting. The

dialogue is concerned with printing characters,
including letters that make up words and sentences.
So it is also possible to discuss what is being

no unnatural separation arises between
activities.

said;
speech and other

Beginning with no vocabulary and only the general
abilities described in section 2 below, the program
acquires sufficient knowledge to engage in a
dialogue of which the following is an annotated
sample. The convention is that lines entered by
the human tutor are preceded by a colon; the
others are produced by the program.

: PRINT THREE ASTERISKS AND A DOT

* % %

. \WHAT DID YOU PRINT BEFORE YOU PRINTED A DOT
THREE ASTERISK (cf. (4))

. \WHAT DID YOU SAY
THREE ASTERISK
SAY TRIPLE AFTER |

: PRINT THREE CHARACTERS
The word

"triple" is new to the program. "After"
is like "when" in this context but in the domain in
use there is no simultaneity or ambiguous temporal
proximity and so "after" is more appropriate. A
kind of "demon" has been set up to await the
specified condition. These demons are not triggered
by goals like those of Papert (5) but by events as

they can be characterised in the program's
representation. If, later, we enter a group of
three characters, the desired result occurs.

TRIPLE
The program learns the
number system so that
traction and multiplication with

rudiments of the decimal
it can do addition, sub-
two-place numerals,

: WHAT ARE 6 12S

72
The matter is discussed briefly in section 3 .
Before that we describe the principles on which
this work is based and then present a dialogue
demonstrating a complete learning sequence. At the

time of writing, the program to carry out this
dialogue has been checked by hand and is being
computer-tested.

The principles by which the program lays down
patterns of behaviour can be expressed in terms of

process and some primitive operations on procedures.

It is to be hoped that they will prove to be
applicable or extendable to domains other than the
simple teletypewriter situation.

2. Principles

We begin by distinguishing between a procedure and
a process (one of the distinctions drawn by Newell
(6)) and use these concepts to define constructs of
memory. After that we show how these are used to
discern patterns of repetition in events and to
associate words and other symbols with their mean-
ings in a constructive way.

2.1 Processes and Procedures

A procedure consists of a sequence of instructions
in a text. We allow the text of a procedure to be
examined and modified by other procedures and for
this reason the text is maintained in the form of a
list, an idea due to Newell and Simon (7).
Procedures can call other procedures either by
referring in a call instruction to a variable that
contains a procedure or by referring in such an
instruction directly to a procedure (using an
address pointer). In the latter case, we term the
called procedure a subroutine constant. We apply
the same term to any procedure that is directly
addressed by another, whether it is called (i,e,
executed) or not.

A process is
The programming system (8) builds a data structure
to control a process. The execution of a
procedure is governed by an activation record which
points to the procedure and to the next instruction
to be executed. It also contains space for the
contents of its variables and points to the acti-

vation record for the process that invoked it.
Finally, it contains provision for non-local
variables. (Dynamic binding, as in LISP (9) is

the default.)

We want to be able to do several things with
processes and the most important is to save them
for later use. This happens to the caller when-

ever one procedure calls another but it can also
happen on other occasions. If during a process
some vital piece of information is missing, that

process can be suspended until the information is
found. This idea is used for storing the meanings
of words: when a new word is encountered a
procedure is synthesised and called - that process
then suspends itself to wait until the word occurs
again.

Something that can be done with both processes and
procedures is to activate them. But when it comes
to inspecting them they are quite distinct. A
process contains procedures as well as other
processes; procedures do not contain processes.

A process may be accessed and modified; the value
of its variables can be obtained and updated using
a primitive VALUE. These variables may refer to
procedures and processes. The activation record
for the process may be accessed to discover which

the execution of one or more Procedures.

in execution and to
invocation

procedure is
the chain of

link back along

From the current process, the entire state of the

program can be ascertained. The structure into
which all the processes are woven is called the run
time structure.

2.2 Short-term Memory

The run time structure is the store for the first

of our two memory constructs:
(S.T.M.). It holds the run time structure for the
few most recent events, discarding the earliest by
the criteria of storage space and search time.

This seems preferable to lifting something arbitr-
arily out of psychological theory as, for instance,
regulating its size according to Miller's celebrated
"magic number 7 +_ 2" (10).

short-term memory

The crucial question to ask of a memory is not what

is stored or how, but how it is retrieved.
Retrieval keys are procedural text; when presented
with a procedure, the STM interface will search the
run time structure for a match to it. All
processes, including those referenced only by
variables, are included. Their execution
procedures and their variables' contents are

included as are all subroutine constants. Since
the STM is of limited size, efficient performance
is not a fundamental problem although it would
obviously be nice to have some sort of content-
addressable memory device.

Four types of match are allowed when
from the memory,

retrieving

I Exact line for line equivalence.
I The argument is found completely within a
procedure: the parts preceding and following

the common portion are supplied with the result.
Il Exact match apart from a differing subroutine
constant in corresponding position: this is
indicated with the result.
IV Any of the above I-IlIl with a subroutine cons-
tant of a procedure.
The result of | is a reference to a process (i.e.
a variable name or execution indicator and an
activation record). In the other, more complex,
cases results are chained together and always
conclude with a process reference.

No problem arises with establishing the equivalence
of different variable names during comparisons
because in this work all the procedures used against
STM are synthesised by the program and obey

suitable conventions.

The normal event when interpretinga word is for an
operation on STM to take place yielding a result
which can then be made available for others to use
by leaving it in the run time structure in an
execution of a special procedure named RESULT. A
common noun like "dot" initiates an STM search with
argument [.] and passes the result which can be any

of the possibilities I-1V. We often write pro-
cedures in square parentheses and always omit
print instructions for easier reading. More

elaborate words and morphemes generally expect
results of these various types, as well as yielding
further ones in turn; their expectations are
conditioned by the circumstances prevailing at the
time they were initially acquired or subsequently
modified.

254

The following is an illustration.
*,AN ASTERISK AND A COMMA

The phrase "an asterisk" locates [*] within t* I.
This is a type Il match and the result is a
reference to the procedure [*,] showing that [,")

was the part following the common portion.

the conjunctive particle "and" is a
new word to the program at this point. The
procedure for handling new words (known as
NEWENTITY) is called and it sets up code for "and"
in future that will expect a type Il result of this
sort from the left. Interpretation of "a comma"
yields as result a reference to the variable
containing [,] within the current process (for
"and")itself and again code to verify this in
future is incorporated into "and". The verifi-
cation is constructive, which means that in a
similar phrase in future [*,] will be re-assembled
by "and". This step is essential to make
imperatives possible.

Suppose that

restrictions on the processes it
will accept from an STM look-up. For instance,
the morpheme "-ed", once it has been acquired,
insists on a process prior to the present time.
"After" demands a similar relationship between the
two processes referred to by the two clauses in the
sentence. Apart from specifying its relationship
to other processes, one can also assert that the
process found must be the execution of a given
procedure and that the matching procedure must be
in a particular variable.

A word can impose

2.3 Grammar and the Result Mechanism

Before enumerating the possible combinations of
occurrence and expectation we must discuss the

result mechanism and its purpose. The input
stream is being scanned linearly (left to right,
see section 2.4), just as human speech is also one-
dimensional in substance. Grammar imposes a

second dimension so that a sentence is segmented
into units of lesser rank (11). The embodiment of
this phenomenon in our program is the ability of
some word-processes to require (by means of a SEEK)
to interpret the following words in the sentence
before giving their results and of other word-
processes to take results from the interpretation
just conducted on their left (with the option of
closing an outstanding SEEK).

"A dot

As an example consider the sentence: is what

you printed." The indefinite article seeks the
interpretation of its direct object, the following
word. "Dot" will search STM and give a result,

the details of which depend on whether and how [.]
can be found. The verb "to be" in the third person
looks for a result on the left and, expecting a

procedure, will extract [.1 from whatever form the
result may take. "Is" also requires a result from
the right, the complement, and seeks accordingly.

The complement is the clause "what you printed"”.

Each of these words seeks to the right, specifying
certain attributes (or none) of the process to be
located in STM. The last word, although it looks
for one, has no direct object. So the verifying
STM call that it contains becomes, by default, a
search for the example of printing most recently
referred to which will, if the statement is true,
be found first. This is because it will already
have been referenced during the processing for
"dot".

"3 and A", 3 will seek for a
direct object in case a noun, e.g. "dots", is
following. "And" demands a result from the left
and so causes the interpretation of 3 to continue
without an object, thus giving the answer "£££".
(This is a case of closing an outstanding SEEK.)

In an example such as

interpretation a word will expect either one
or two results, depending on how many it received
initially. Words that expect only one are similar
whether that one comes from the right or the left.
If case | (referring to section 2.2) is expected,
process-type conditions will be asserted and
verified with no result being passed on if they
are not satisfied. In the other cases, specific
procedures (e.g. "CALL [3; COPY" for "two") will
be expected in the proper textual relationships
and if these are not forthcoming and a renewed scan

During

of STM fails to realise them, a resolving routine
is called. Another such routine is called if
there is no result at all when one is expected.

A little more is said about them in section 2.7.

At the present time, processes that expect two
results must take one from each side although we

hope to Ilift that restriction later. The left-
hand result can be any of the usual cases I-IV.
On the right, however, it must be a process
(possibly the current process) since only then can

any kind of relationship be established between

left and right. For example, in "A dot is a
character", the word "is" will extract from the
left the procedure [.] and "character" will find it
during its STM look-up, returning as result a
reference to the process for "is" itself. If a
procedure is expected on the left, one will always
be extracted from any of the cases I|-1V. If no
result appears, a resolving routine is called. It

if either of the expected processes
whether or not a procedure

is also called
does not materialise,
has occurred instead.

2.4 Long-Term Memory

We turn now to the second memory construct which,
not surprisingly, is called long-term memory (L.T.M.).
We are not concerned here with a historical record
of events from which a verbal account might be
constructed but with something much more primitive
for the purpose of recognising what has previously
been seen and for acting out patterns of behaviour
that have been laid down by experience.

The basis of matching in LTM is also on procedural
text. The store contains a set of suspended
processes, each waiting for the occurrence of a
particular procedure. The most common example is
that of a process for interpreting a word waiting
for the occurrence of that word (in procedural form)m

One conceivable convention for retrieving and
activating a process in LTM is to make it automatic
upon the appearance of a matching procedure in the
run time structure. A more convenient method, and
the one adopted here, is explicitly to drive LTM
retrieval at strategic times by directing it to
match exhaustively every part of a procedure
referred to in a particular process. The principal
application is the analysis of input (i.e. sensory
data) which proceeds in this fashion. The more
general scheme could be implemented simply by
applying this drive-LTM primitive every time a
procedure is synthesised.

255

and for subroutine
in driving, a
in LTM is possible.

By observing a left to right,
constants top down, discipline
straightforward indexing scheme
In this convention, the record retrieved on each
occasion is the one whose key has the longest
match with the left-hand end of the source
procedure, after which the source is truncated
and recursion takes place until it is exhausted.

2.5 Perceiving Patterns

The program refers to LTM in order to segment data
(presented through the teletypewriter) into
familiar units, typically words or other symbols
and those characters treated as objects because of
past association (e.g. "*"). This is basically
the process of driving LTM but for convenience the
retrieval and activation stages have been separated,
at least for the time being. Before it is
possible to refer to LTM the program converts the
data into the form of a procedure for printing it.

As the segmentation of data takes place, SIM s
used in order to detect any repetition that may be
present. If the entity currently being scruti-
nised has occurred earlier in the data stream, the
program hypothesises that the items intervening
between the present and the most recent occurrence
are about to recur and tests the hypothesis on as
many subsequent items as it will obtain.

This process of recognition we call procedural
abstraction because the end product is a hierarchi-
cally structured procedure that will textually re-
create the original. For example, the procedural
abstraction for "DOT" is "ADD(IDOT))" where ADD is
the primitive for appending a procedure to the one
that is currently being synthesised and "[DOT}"
represents a subroutine constant that would, if it
were executed, print the word "DOT". ADD is one
of a number of primitives introduced in (12).
When a repetition is detected, the unit to be

repeated is placed as a subroutine constant in a
procedure that will call it and copy the result the
correct number of times. For instance, "***"will

be represented as "CALL CADD([*])J; COPY; COPY"
where COPY is defined in terms of ADD; a few
technicalities have been omitted. This procedure
ia now in a convenient form to be verbalised as
"THREE ASTERISK" by methods shortly to be described.

Repetitions can be detected at any level, not
merely at the lowest, For example, the sequence
Mak L RR k" would be represented thus:-

CALL [. 1; COPY; COPY

3 \
CALL [' 1: COPY: CALL [+ 1; COPY; COPY
ADD(I»]) ADD(L[,1)

It might be verbalised: "Two asterisks and three
commas three times" although such an utterance
would be beyond the capacity of this program to
write (as well as being ambiguous).

Once an abstraction has been made from a line of
input, it is used to drive LTM. The associated
processes are retrieved from LTM and activated.
The reason for using the abstracted version rather
than the raw input is to allow patterns to be
perceived and interpreted as such, so that "..."
ia immediately seen as "three dots" rather than as
"dot dot dot". In some languages, the plural is

formed by repeating the noun; our program readily
copes with that form by using the abstraction
principle.

26 SITVMHLTM Complementarity

There is an interesting and perhaps surprising
complementarity between the two memory constructs.
Invoking the SIM interface involves searching the
near past. A process that calls the LTM inter-
face is suspended and stored until the specified
procedural argument occurs. Thus when LTM is
invoked it is effectively the future that is
being searched.

The two interfaces are uniform so that they can be
interchanged in a procedure. This fact is used
to great advantage in the present work where a
process waiting in LTM for a word and then looking
up its meaning in SIM can use the same procedure as
the one that waits in LTM for the meaning to look
up the word in STM. This means that extending the
meaning of a word in comprehension will automati-
cally extend its meaning in utterance because the
same principles govern the interpretation of objects
that are not synbols as govern those that are. The
examples of patterns given in section 2.5 can be
used to drive LIM just as words can. Indeed,
often both are mixed within one line.

We can explain more fully by considering the example
of the numeral 2. To begin with, it is associated
with " " That means that a procedure was created
and initiated. The process then saved itself in
LTM with the key "I21". Note that the LTM and
SIM arguments are called key and signature, resp-
ectively. When 2 is encountered, that process is
restarted and it searches SIM with signature "[ff]".
The same procedure with its variables reassigned is
waiting with key "[££]" and signature "[2] (it is
written in a recursive loop to make both processes
possible). Now it is taught that 2 can also
qualify a noun as in: "**2 ASTERISKS". The program
appends a more complex procedure that includes a
SEEK and has the signature "CALL[]; COPY™ This
addition necessitates the creating of one more
process in LTM with this as key and "[2]" as
signature. Then the program could reply: "2 dot"
to a question such as: "What did you print?".

For this purpose, the procedure must include code
to expect results (e.g. the word "dots") and put
"2" in front of it. This code complements the

SHK in the version where "2" is the key. There

are, in fact, general rules for deriving such
complementary code although they will not be given
here. It is arranged so that in each case the

complementary code is not executed. (The appended
procedure recurses to the original procedure for
this purpose.)

2.7 How procedures are extended

In section 2.3 we referred to the necessity for

resolving routines. If a word is expecting to be
passed a process reference from the adjacent phrase
and the result it receives is procedural that means
that some information in that procedure has not

been explained and a word must be modified to take
account of it. Except where the receiving word is
two-sided, it is the sending word that must be

extended. A procedure known as RESOL\VE sets up a
conditional call in the word-procedure to some new

256

code which is composed along similar lines to the
initial syntheses performed by NEWENTITY (mention-
ed in section 2.2).

The second resolving routine, known as XRESOLVE,
(X for contradiction) is called when an STM look-
up fails. XRESOLVE ends up doing the same as
RESOLVE if it is wunable to use its own special-
ities which are as follows. Very often, the
procedure that has called XRESOLVE will contain a
subroutine constant, known as the signature, that
is the basic meaning of the word. E.g. the
signature of "dot" is [.]. One course of action
is to allow XRESOLVE to create another procedure
with its own signature and then extract the common
portion of the two signatures and adopt this
common portion as the new signature. This is
used for class words like "character" and
"numeral" (the numerals 1 to 9 all contain "£";
0 is a special case and is added on by replacing
the XRESOLVE call with a new procedure).

Special provision is made in XRESOLVE for impera-
tives. The procedure for a word like "print"
specifies to STM that the matching process must be
an execution of the search argument and sub-
ordinate to (i.e. invoked directly or indirectly
by) the current process. This is clearly the
most natural way to say "do it" and XRESOLVE
responds by supplying a pending process, i.e. an
activation record in an initial (unexecuted)
This is entirely consistent with other type |
results. If it survives the processing of the

current line of input it will actually be performed
by the program. For example, in "Print four
dots", "four" expects case IV, i.e. [.] as a sub-

routine constant in "CALL C 1; COPY; COPY; COPY"
so it constructs it and since both verification
and look-up in STM fail, the result is passed on
by XRESOLVE.

There are cases where a process result may have
some attributes different from those expected by

a word. An interesting case arises when apending
process (imperative) is received by a word expec-
ting the execution of another, specific, procedure .
Then it is taken to refer to the future and the
receiving process suspends itself by calling LTM

with the imperative procedure as key. Thus if
the human tutor types in: "I print an asterisk"
(e.g. in: "Do something after | ...") then the
pronoun " | " dictates that the match must be found
in a reading process and that proviso is inconsis-
tent with an imperative interpretation. So it

waits until the procedure does turn up during a

read.

3. Specimen Dialogue

A convention in some examples is that the program
can be made to perform an action by giving it a
procedure enclosed in parentheses. Since in every
case given here the supplied procedure consists of
print instructions, these are omitted.
works by converting all input to the form of a
procedure that would print it (analagous to the
proprioceptive theory of speech perception (13)).
This results in an uniformity of representation
with internally synthesised procedures which is
quite advantageous.

We familiarise the program with items in its
domain by showing it some. After that it is

state.

The program

possible to teach the names, distinguished from the
objects by their unfamiliarity.

*ASTERISK

:*AN ASTERISK

When the unfamiliar "ASTERISK" is encountered, a
procedure is eynthesised that will be activated
when the word is encountered again. This
procedure is also associated with "*" and there are

two corresponding processes waiting in LTM, both of
which share this procedure.
In the next set of examples, the verbs "to print"

and "to say" will be introduced in the imperative,
using the device of indicating the appropriate
action in square parentheses. The procedure so
supplied is executed in a process that has the
attributes of the imperative outlined in section
2.7. We continue with the regular past tense
morpheme "-ed", the strong form "said", and the
personal pronouns "you" and " | "

:PRINT AN ASTERISK [*]

The procedure for "asterisk" locates the execution
of [*] in STM and sets up "print"” sc¢ that in future
it will either verify or bring about the existence
of a process with similar properties,
:SAY COMMA(COMMA)

COMMA
The details are different but the principles are
the same.
:YOU PRINT A DOT (.]
The pronoun's meaning consists of its distinction
from "I"” which appears later.
tPRINT A SEMICOLON

:YOU PRINTED A SEMICOLON

:SAY DOT

DOT

:YOU SAID DOT

+ &

21 PRINTED AN ASTERISK

The personal pronoun " I " adapts the expectation set
up by "printed" to verify that the asterisk was
referred to by a reading process instead of having
been executed. An alternative method of indic-

ating the past imperfect tense in English is to use
the auxiliary verb "to do".

:PRINT AN ASTERISK

:YOU DID PRINT AN ASTERISK

It is quite easy now to exhibit the temporal rela-

tions "before" and "after". Some of the functions
of "when" relating to future time can also be
carried out by "after", as was indicated in

section 1.

:PRINT A COMVA

:PRINT A DOT

'YOU PRINTED A COMVA BEFORE YOU PRINTED A DOT
'YOU PRINTED A DOT AFTER YOU PRINTED A COMVA

Imperatives and the present tense frequently
relate to future events and "after" can work on
procedures to be executed just as it does on those
already used in the past. For example:

:PRINT A DOT AFTER YOU PRINT AN ASTERISK

If the condition in the subordinate clause depends,
on an external event then the program must wait for
it to happen and this is the case in the section 1

examole: "Say triple after | print three characters’,
It works by exploiting the complementary nature of
STM and LTM as was outlined in section 2.7.

Next we deal with the verb "to be" in the third

person singular of the present tense and with the
pronoun "what" both as a relative and an interro-
gative pronoun. If we begin by teaching a class

word then some reasonable "is" statements can be
made.

: *CHARACTER

: , CHARACTER

After "*", "character" is taken as synonymous with
"asterisk" but subsequently the assumption is
violated. The common attribute (i.e. printed or
printable) is extracted and associated with the
word. Now we introduce "is".

A DOT IS A CHARACTER

It
:PRINT A SEMICOLON

A SEMICOLON IS WHAT YOU PRINTED
Winograd (14) noted the computational similarity
between the relative and interrogative pronoun.

"What" as acquired above will do everything
required in the interrogative role apart from the
final stage of verbalising. It would be possible

to make verbalising spontaneous at
the device of supplying the answer

such points but
in square

parentheses the first time is quite sufficient to
achieve the desired effect. It also requires a
simpler initial program. It can be argued that

it bears analogy with guiding a child's hand when
teaching him to write but there is no such
equivalent, of course, in speech.

‘WHAT DID YOU PRINT [SEMICOLON}

SEMICOLON

:PRINT AN ASTERISK

*

:WHAT DID YOU SAY BEFQRE YQU PRINTED AN ASTERISK
SEM1COLON

:WHAT DID YOU PRINT BEFORE YOU SAID SEMICOLON
ASTERISK

In the final part of this dialogue, numbers and
numerals are taught. To begin with, the program
must be acquainted with "two-ness", i.e. it must
encounter two of something, before it can
associate words with it. It immediately
recognises repetition and structures its proce-
dural representation hierarchically to reflect
the pattern naturally. After the initial instance
of two of something, it can learn the plural
morpheme "-s" and some numbers.

**ASTERISKS

COMMAS

:... DOTS

iRk h ASTERISKS

TWO DOTS

‘sss THREE COMMAS

The higher numbers, up to a reasonable level like
ten or twenty, can be taught similarly.

.
L N]

The sequence given for learning the plural
pheme is optimal but the processing (using
XRESOLVE) is quite robust and an arbitrary
sequence of examples which includes these in
various orders will eventually lead to the correct
synthesis. At the stage of four objects, the
resolving procedure notices that the procedure

it is appendirg to is textually equal to the new
procedure and so it puts in a recursive call
instead. That takes care of all cases, of course.

mor-

can be used to construct a simple relative clause .

258

For large numbers the best approach is to use
numerals. A method suggested by the use in infant
education of blocks that clip together is to
associate the numerals with character strings of
appropriate length.

£ 1

£E 2

We continue thus up to and including 10, which is
learned as an entity and not understood as a true
decimal number. Simple addition and subtraction
can now be taught.

The program can also learn to understand the
numerals in the 6ame syntactic role as the verbal
numbers. Because the repetition in "£££" (the
meaning of 3) has been separated in a hierarchi-
cally structured procedure from the root "E", the
same pattern, in e.g. "***", can be recognised
and the meaning of 3 generalised to apply the
repetition to "£" only when there is no direct
object.

:*** 3 ASTERISKS

:PRINT 3 DOTS

WHAT IS 3 2S

6

This has provided a road to multiplication. (We
could easily have taught "are", the plural of "is"

as well: e.g. "Dots and commas are characters".)
The word "times" could have been used if preferred.
We begin teaching the significance of position in
decimal numbers by showing that the presence of
zero just after a numeral means that the number is
applied to ten instead of to one.

TWO 10S ARE 20

‘THREE 10S ARE 30

This continues up to and including 100. Another

complete set of examples must be given to show
that any following numeral and not only zero has
this effect. Typical of these examples are the
following.

:THREE 10S AND 1 ARE 31

:THREE 10S AND 2 ARE 32

This is sufficient for any number from 31 to 39 to
be understood.

Now two-place arithmetic can be done. The notat-
ion itself now carries the program with it for

many place numbers. The program is very simple-

minded in its interpretation, though. Numbers
like 478 are expanded out to a string of that

length. Teaching it the algorithms for arith-
metic in columns would be the next step. That

particular problem has already been tackled by
Badre (15) although his approach is not that of
learning ab initio that is taken here.

of course, a level of abstraction at
which the individual takes account of the procedures
for interpreting the meanings of large numbers
without actually executing them; the symbolism
then becomes the vehicle for higher thought. A
possible direction for future research is to find
out whether the principles described in the present
work would apply also to these more complex
procedures.

There is,

4. Conclusion

There are a number of possible directions that
future research could take within the existing
domain. We could explore negation and another

topic would be units of time, time of day and
extrapolation into past and future. At some
stage too, a language other than English ought
be tried to assess the program's potential for
linguistic wuniversality.

to

It is to be hoped that the methods developed here
will extend to other domains and an obvious
possibility would be to have the program write
turtle procedures in LOGO. Goldstein's (16)
approach to this problem is quite different from
what we are proposing. His philogophy, widely
followed by those engaged in automatic programming,
is to try to find a way of expressing what a
procedure is to achieve so that a system can write
it. This is entirely different from setting a
program loose with only general learning objectives
and then trying to educate or tame it, as it were.

We have not assumed an indifferent environment for

the program that has been described although in
section 3 we were at pains to point out that
learning the meaning of the plural morpheme "-s"
was quite a rugged process and it can be said that

the program will cope with examples
to its stage of development simply by ignoring
them. Children, of course, are normally
encouraged and trained and get things simplified
for them but they do seem able to learn even in
unfavourable backgrounds. The assumption behind
this program is that a good way to work is to
ignore everything you don't understand and wait
for the unambiguous situation.

inappropriate

Helen Keller's (17) widely quoted description of
learning the word "water" aptly illustrates this
idea. It was the unambiguous association of the
word spelt in one hand with the sensation of cold
water on the other than enabled her, at the age of

seven, to begin acquiring language.

Our work may be contrasted with Winston's (18).

There is no counterpart here to his "near miss"
situation. Moreover our procedural represent-
ation seems to offer a better chance of
generalisation than his several types and
relations.

Acknowledgements
| should like to thank Jim Howe and my colleagues
at the A.l. Department for criticism tempered with
encouragement. Financial support is gratefully

acknowledged from IBM United Kingdom Ltd and the
Science Research Council.

References

(1) Newell, A., Shaw, J.C. and Simon, H.A. ‘A

Variety of Intelligent Learning in a General
Problem Solver' in Yovitts, M., and Cameron, S.
(eds) 'Self-Organising Systems', New York,
Pergamon, 1960.

(2) Minsky, M. and Papert, S. 'Artificial Intelli-
gence: Progress Report’. A.l. Memo 252,
Artificial Intelligence Laboratory, M.I.T.,
1972. See section 5.2.

(3) Sussman, G.J. 'A- Computational Model of Skill
Acquisition' (Ph.D. Thesis), AI-TR-297,A.l.
Laboratory, M.I.T., 1973.

(A) Brown, R. and Bellugi-Klima, U. 'Three
processes in the child's acquisition of syntax®
in Bar-Adon, A. and Leopold, W. (eds) 'Child

(5)

(7)

(13)

(14)

259

Language', Prentice-Hall, Englewood Cliffs,
N.J., 1971. Page 308 "Two shoe" or "two shoes".
Charniak, E. 'Toward a Model of Children's
Story Comprehension' (Ph.D. Thesis), AI-TR-266,
A.l. Laboratory, M.T.T., 1972.

Newell, A. 'Process-Structure Distinctions in

Developmental Psychology' in Farnham-Diggory, S.

'Information Processing in Children*, Academic
Press, 1972. He calls it the "material-
activity" distinction.

Newell, A. and Simon, H.A. 'The Logic Theory
Machine: A Complex Information Processing
System', IRE Transactions on Information
Theory, Vol. 1 T-2, No. 3, pp. 61-79 (1956).
Knapman, J.M. 'PROCESS 1.5: Description and

User's Cuide', Bionics Research Reports: No.
11, Department of Artificial Intelligence,

University of Edinburgh, 1973.

McCarthy, J., Abrahans, P.W., Edwards, D.J.,
Hart, T.P. and Levin, M.l., 'LISP 1.5
Programmer's Manual', M.I.T. Press, 1962.
Miller, G.A. 'The Magical Number seven, plus
or minus two: some limits on our capacity

for processing information', Psychological
Review 62, No. 2, pp. 81-97, (1956).
Halliday, M.A.K. 'Categories of the Theory
of Grammar', WORD, Vol. 17, No. 3 (1961).
Knapman, J.M. 'Programs that write programs
and know what they are doing', Proc. of the
AISB Summer Conference, University of Sussex,

Brighton, Sussex, 1974.

Hormann, H. 'Peycholinguistics' translated by
Stern, S.S., Springer-Verlag, Berlin 1971,

p. 62 ff.

Winograd, T. 'Understanding Natural Language',
Edinburgh University Press, 1972, section
8.1.5.

Badre, N.A. 'Computer Learning from English
Text' (Ph.D. Thesis), Memo No. ERL-M372,

Electronics Research Laboratory,
Fngineering,

College of
University of California,

Berkeley (1972).

Goldstein, |I. 'Understanding Simple Picture
Programs', Proc. of the AISB Summer Conference,
University of Sussex, Brighton, Sussex, 1974.
Keller, H., 'The Story of my Life' Hodder and
Stoughton, London, 1958 (original publication
1903), Ch IV

Winston, P.H. 'Learning Structural Descriptions

from Examples’,
A.l. Laboratory,

(Ph.D. Thesis), AI-TR-231,
M.I.T., 1970.

