
AN AUTOMATICALLY COMPILABLE RECOGNITION NETWORK
FOR STRUCTURED PATTERNS

Frederick Hayes-Roth and David J. Mostow
Computer Science Department1

Carnegie-Mellon University
Pittsburgh, Pa. 15213

ABSTRACT
A new method for efficient recognition of general

relational structures is described and compared with existing
methods. Patterns to be recognized are defined by templates
consisting of a set of predicate calculus relations. Productions
are representable by associating actions with templates. A
network for recognizing occurrences of any of the template
patterns in data may be automatically compiled. The compiled
network is economical in the sense that conjunctive products
(subsets) of relations common to several templates are
represented in and computed by the network only once. The
recognition network operates in a bottom-up fashion, in which
all possibilities for pattern matches are evaluated
simultaneously. The distribution of the recognition process
throughout the network means that it can readily be
decomposed into parallel processes for use on a multi­
processor machine. The method is expected to be especially
useful in errorful domains (e.g., vision, speech) where parallel
treatment of alternative hypotheses is desired. The network is
illustrated with an example from the current syntax and
semantics module in the Hearsay II speech understanding
system.

INTRODUCTION
The work described in this paper was motivated by

certain problems involved in the task of recognizing general
structured patterns and, in particular, the problem of parsing
continous spoken speech. From the point of view of the
language parser, an essential quality of speech is its errorful
nature. Ambiguities in acoustic segmentation, phonetic
labelling, word hypothesization, and semantic interpretation
necessitate understanding systems which can deal efficiently
with multiple alternative hypotheses about each portion of the
input. [I I] The usual methods of dealing with such multiple
hypotheses typically entail an expensive search through a
combinatorial space, since they consider only one hypothesis
for each portion of input at a time, and then exploit contextual
relationships to eliminate certain combinations of adjacent
hypotheses as impossible. The data structure and associated
recognition procedure described in this paper can be thought
of as effectively reversing this process by first exploiting
context -- thereby eliminating all but a few combinations from
consideration — and then testing contextuatly related
hypotheses for adjacency. Since the contextual information is
statically embedded in the data structure itself, comparatively
little work needs to be done at recognition time. This work
requires only the computation of a few, simple operations
rather than a complex search. Moreover, the method provides
an efficient way to handle the spurious insertions and
deletions characteristic of speech.

TEMPLATE CRAMMARS
In this section, we define template grammars for

recognizing relational structures. A template normal form
(TNF) for template grammars is defined. An algorithm

1 This research was supported in part by the Defense
Advanced Research Projects Agency under contract no.
F44620-73-C-0074 and monitored by the Air Force Office
of Scientific Research.

246

As an example, consider the sample template grammar
GAp (Table 1) which is part of a much larger grammar for
analyzing spoken queries to a wire-serv ice news ret r ieval
system. [4] GAp's top- leve l relations are REQUEST and REJECT,
An instance of REQUEST is the utterance "Tell me all about
Rocky " An instance of REJECT is the utterance "Tell me
noth ing about Ford, Rockefeller, or Kissinger." The pr imit ive
re la t ion UTTERANCES(I1, t2), used in rules 6, 7, and 8, simply
s igni f ies that the ent i re utterance spans the time interval
[t 1 . t 2] ; this makes the beginning and ending times of the
u t te rance accessible as arguments to other relations, wi thout
v io lat ing the f ramework of the template grammar. Rule 2
i l lustrates the use of features and actions. The feature, expr ,
of TOPIC is the semantic expression eventually passed to the
actual news ret r ieval routine. The action of Rule 2 gives expr
the value "ROCKEFELLER." Rule 5 is an example of recursion. It
handles phrases of the form " t o p i c j , topic2, •-, t o p i c n _ j , or
t o p i c n " The action of Rule 5 forms a compound semantic
express ion f rom the expressions associated wi th its individual
const i tuents . Thus the instance "Ford, Rockefeller, or
Kissinger** of the relat ion TOPIC* has expr - {"FORD",
"ROCKEFELLER", "KISSINGER"}. Rule 6 shows how context
sens i t i v i ty can be embedded in a template grammar. It states
that any instance of TOPIC which occurs at the end of an
u t te rance, and whose left context is ABOUT, constitutes an
instance of TOPIC*. Rule 8 i l lustrates the use of negation. It
s tates that any utterance of the form "Tell me ... about X" is a
request for information about X unless the gap "..." contains
the w o r d "nothing." Thus "Tell me about Ford," "Tell me all
about Ford, " and "Tell me everyth ing you know about Ford,"
are all instances of REQUEST. This i l lustrates the capacity of a
template grammar to ignore redundant port ions of the input.

A template grammar is in template normal form (TNF) if
the fo l lowing conditions are satisf ied:

(1) The template of each rule has one of the fo l lowing
types:

symbol ic arguments; the relations in a conjunctive or negative
template are connected.

(2) Every non-pr imit ive relation appears on the r ight
side of exact ly one rule. Hence we can define the type of a
re la t ion to be the type of its unique defining template; a
p r im i t i ve re lat ion is simply said to be of primit ive type.

It is clear that any template grammar G can be
t rans la ted into an equivalent grammar G* in TNF by means of
adding new relat ions and rules. The task of the automatic
t rans la tor is to do this in such a way as to minimize the
number of new relations added. The algorithm we employ is
descr ibed in [7] , The result of applying the algorithm to the

sample grammar of Table 1 is grammar G^p , shown in Table 2.
Mnemonic conventions used in GAp* are these: " + " indicates
concatenat ion; " - " indicates temporal overlap; parenthet ical
phrases indicate temporal contexts; and " / k " dist inguishes
d i f f e ren t TNF relat ions arising from occurrences of a single
re la t ion in various di f ferent rules of the original grammar.

THE REC06NITI0N NETWORK
Given a template grammar in TNF, a corresponding

recogn i t ion network (ACORN), as f irst described in [6] , is
cons t ruc ted as fol lows. For each relation r appearing in the
TNF grammar, there is a unique node, node(r), in the network .
(Hence minimizing the number of relations in the TNF grammar
is equivalent to minimizing the number of nodes in the
ne twork .) For every rule [T - > r; A] , an . arc is d rawn f rom

247

node(sj) to node(r) (or each relation Sj in the template T. Each
node(Sj) is said to be a constituent of node(r), and node(r) a
de r i va t i ve of node(S|). A node may have zero, one, or more
der iva t ives . The recognit ion network for the sample grammar
GAp, const ruc ted f rom the TNF grammar GAp*, is shown in
Figure 1.

Node(r) contains various information: its type (i.e., the
t y p e of re lat ion r); the action A in the rule [T => r; A], if any;
and the correspondence between the arguments of relat ion r
and the arguments of its constituent relations Sj. This
cor respondence consists of two parts, a set of tests and a
genera to r . The tests represent any requirements for
agreement between the arguments supplied by the
const i tuents node(Sj). The generator is a list of the arguments
wh ich are to be supplied in tu rn to the derivat ives of node(r).
The arguments are encoded according to a canonical numbering
scheme best described by an example. Consider
node(TELL»ME). Its constituents are node(TELL), which supplies
arguments t1 , t2 , and node(ME), which supplies arguments
t3,t4 Let concatenated argument list (t1,t2't3,t4).
Then node(TELL*ME) can specify its arguments by their indices
in L. Thus node(TELL+MErs only test is L(2) = L(3), denoted by
" 2 : 3 " be low node(TELl*ME> in the network. (See Figure 1.)
Similar ly, node(TELL*ME)'s generator is the list < L (l) , L<4)),
denoted by " (1 , 4)M above node(TELL»ME> in the network.
Arguments which are not supplied by a node*s constituents but
instead or ig inate at the node itself are specif ied by negative
indices. For example, node(T0P!C/2Vs generator is denoted by
" (1 , 2, -1),H the -1 specifies the argument expr, which
or ig inates at node(T0PIC/2). The action s tored in
node(T0PIC/2) assigns this argument the value "ROCKEFELLER"

All of the recognit ion network components descr ibed so
far are static. There is also associated wi th each node(r) a
dynamic instance list 1L. Each instance in the instance list of
node(r) represents a single recognized occurrence
(instant iat ion) of the relat ion r in the input utterance. An
instance has several components: a unique identi f icat ion
number I ; the time interval [x j , x ^] containing the occurrence;
the values X3 xp of additional at tr ibutes of the occurrence;
and a support set SS containing one or two instance
ident i f icat ion numbers. An instance is denoted I : (x i , * n ; SS).
Dur ing the recognit ion process, instances are created and
de le ted dynamically.

The recognit ion process is bot tom-up, as fol lows.
Ini t ia l ly all instance lists are empty. A lexical analyzer is
invoked and begins to scan for occurrences of pr imi t ive
relat ions in the input utterance. Since the lexical analyzer
rece ives imperfect , incomplete information f rom the phonetic
label l ing rout ine, the best it can do is to identi fy possible
occurrences. When it finds a possible occurrence of a relat ion
r, it adds a new element to the instance list of node(r)
containing the appropr iate information. To understand the
recogni t ion process, imagine each node(r) as having a demon.
The node(r) demon continuously monitors the instance list of
each const i tuent node(s t) of node(r). Whenever a new
instance is added to the instance list of node(Sj), the node(r)
demon adds a reference to this new instance to its node(Sj)
add set. Similarly, whenever an existing instance of s f is
de le ted , the node(r) demon saves a copy of it in its node(Sj)
de le te set. Add sets and delete sets are re fe r red to
col lect ive ly as change sets. [9] The demon then activates
(wakes) node(r) itself by invoking code pointed to by node(r).

When node(r) is activated, it updates its instance list
according to the information in its consti tuents' instance lists
and change sets. If node(r) can derive (construct) any new
instances f rom instances of its constituents, it does so, adding
the new instances to its instance list. The support set of each
instance contains the identif ication numbers of the instances
f r om which i t has been der ived. Node(r) deletes f rom its

248

The original motivation which led to the ACORN concept
was the development of a general automatic recognit ion
system for spoken utterances, visual scenes, and other
s t ruc tu red pat terns in which context is a f ru i t fu l source of
in format ion. Since the speech understanding ACORN treats an
u t terance as a relational structure, it is related both to natural
language parsers and to general pattern-matching mechanisms.

The ACORN's closest relative among natural language
parsers is PARRY [2] , a program which simulates a paranoid
indiv idual being interv iewed by a psychiatrist. PARRY employs
a large l ibrary of s tored concept sequence templates which
are compared wi th segments of typewr i t ten input sentences.
General izat ion is achieved by rules which rewr i te words as
synonymous concepts, delete unrecognized words and, if
necessary, delete one recognized word at a time until a
template is matched. While the approach underlying PARRY is
v e r y successful w i th typed input, it appears to be too r isky
for spoken input. Unlike the "per fect" input which PARRY
rece ives, the input to the syntax module of a speech
understanding system such as Hearsay II [9] is highly
imper fect . PARRY can say, w i th confidence, "this por t ion of the

input is such-and-such (e.K„ the word "oh"), so I I I ignore it ;"
Hearsay II can only say "if this port ion of the input is "oh," I
can ignore it; but if it's really the word "no," then HI need it."
An ACORN can be thought of as a non-deterministic version of
a PARRY-ltke system in which aft possible parses are fo l lowed
simultaneously in parallel. On the other hand, an ACORN is
capable of recognizing general graph structures and is more
power fu l than any context-sensit ive language parser (str ing
recognizer) .

Woods' augmented transit ion network (ATN) [1 4] is a
mechanism for parsing natural language. It works top -down,
uses backt rack ing, and produces a formal parse of the input
sentence. In contrast, an ACORN works bot tom-up, does no
backt rack ing, and extracts only those features of the utterance
which are relevant to the particular application. An ACORN can
be thought of as a state-saving, bot tom-up version of an ATN.

Miller [1 0] has proposed a parser for spoken English
which builds multiple part ial parse trees and employs a
compl icated and heuristic search to combine them. An ACORN
d i f fe rs f rom Miller's parser in handling all combinations
simultaneously rather than sequentially, and in the simplicity of
the matching operat ions it uses.

Current artif icial intelligence programming systems such
as PLANNER [8] , QA4 [13] , and SAIL [3] can match a given
relat ional template against a data base. However, the method
they use is an exhaustive, i terat ive, and associative search. If
several templates are to be matched against the data base,
they must be matched one at a time In contrast, the
associat ive matching operat ion performed by ACORNs
e f fec t i ve ly tests all the relations of all the templates
simultaneously.

The ACORN's nearest relative among general pa t t e rn -
matching methods is hierarchical synthesis [1] . Consider the
task of matching a template, such as a schematic
representa t ion of a building, against an input set of line
segments. A recognit ion algorithm employing hierarchical
synthesis replaces the single, many-component template for
"bu i ld ing" w i th a hierarchy of templates for "doors," "windows,"
"s tor ies," etc. A higher- level template can be matched only if
its lower - leve l constituents are. Hierarchical synthesis
considerably reduces recognit ion time for two reasons. First,
it can exploit the repet i t ion of subtemplates by recognizing all
instances of a single subpattern just once. Second, before
consider ing whether or not the entire pat tern specif ied by a
template is present, it can insure that all necessary
subpat terns are present.

However, hierarchical synthesis as described in [I]
depends on a hierarchy defined a pr ior i by the user. This
l imi tat ion is transcended by Hayes-Roth's interference
matching method [5] , which does hierarchical synthesis in
paral le l in all possible directions, thereby obviating the need
for a predef ined hierarchy. In interference matching, a
template is represented as a set of relations. Each relat ion is
a predicate w i th one or more symbolic variables. The input is
also a set of relations, whose arguments are constants. A
par t ia l match consists of an assignment of input constants to
the symbolic variables of a subset of template relations which
makes them all true. Interference matching works by finding
part ia l matches and combining them into complete matches.

Like inter ference matching, the ACORN method is an
improved vers ion of hierarchical synthesis in that it requires
no predef ined hierarchy. The ACORN compiler itself
determines an economical hierarchy, and embeds it in the form
of a recogni t ion network Hierarchy selection can be factored
out into a separate compilation phase because the choice of
h ierarchy depends only on the templates and not on the
individual input utterance. In interference matching, on the
o ther hand, hierarchy selection depends on the input pat tern ,
and is there fore a part of the recognition process. Thus the

249

ACORN method combines the convenience of automatic
h ie rarchy selection wi th the eff iciency which comes from using
a p redef ined hierarchy in the recognit ion process.

In rea l -wor ld applications, input is matched against
severa l top- leve l templates. Current methods of hierarchical
synthesis and interference matching involve matching the input
against one template at a time. Such an approach is clearly
undesirable for tasks such as speech recognit ion, which may
involve large numbers of templates. The ACORN compiler
takes a whole set of templates and produces a single, unif ied
recogni t ion network for it; common subtemplates are shared
not just w i th in top- level templates but also between them. An
instance of a subtemplate ts recognized just once -- not
separate ly for each top- level template in which it occurs.
Hence recogni t ion time depends not on the total number of
templates, but just on the number of templates which match
some por t i on of the input. This proper ty is encouraging, since
the number of templates required to recognize a significant
subset of English would probably be several thousand.

In sum, an ACORN can be looked at as a bot tom-up
vers ion of an ATN; a parallel and non-determinisl ic version of
a PARRY-like system; a general pattern-matcher; or an
improved mechanism tor rMerarchital synthesis, w i th automatic
h ierarchy selection and subtemplate sharing between
templates.

APPLICATIONS. IMPLICATIONS ANP EXTENSIONS
In order for art ACORN to be eff icient, the templates and

input data characteristic of the chosen problem domain should
tend to be asymmetric, so that a template wil l usually match a
g iven por t ion of the input in at most one way. Let us i l lustrate
w i t h a negative example Suppose the template we wish to
match js K 5 (a , c , d, e), the complete graph on five vert ices,
rep resen ted by the conjunction of relat ions
line(a, b) A hne(a, c) A ... A l i n e . Then any occurrence of
K5 (as a subgraph, say) in the input corresponds to 5! =120
instances of T,since there are 5! i f ferent ways to bind the
var iables a, b, c, d, e to the five vertices of the K 5 i n the input.
For symmetr ies on a larger scale, the problem grows
combinator ia l ly worse Clearly, anACORN would be ineff icient
in such a domain, since it would insist on finding all instances
of eve ry template.

Fortunately, many problem domains do not exhibit this
bothersome proper ty . Speech, in particular, is highly
asymmetr ic, par t ly because it is embedded in a one -
dimensional ordered temporal domain. I f t e l l (t1 , t2) is t rue,
then cannot be true. Symmetries at a
higher level can occur only if there is more than one
syntact ical ly and semanticaliy valid way to group the input
words into phrases, i.e,, if the input is inherently ambiguous.

What are the advantages of ACORNs for speech
understanding? The bot tom-up template-oriented approach is
especial ly conducive to handling natural, idiomatic,
conversat ional natural language robustly. Consider the
prob lem in spoken speech of spurious insertions such as "oh,"
"urn," "er." We wish to treat them the same as silences. We do
this by adding rules like [oh(t1,.t2)=> SILENCE(t1, t 2) ;] to our
template grammar, and relaxing the test t2=t3 for temporal
adjacency between two relation instances, such as te l l (t1 , t2)
and me(t 3 , t 4) , to compute t2=t3 v SILENCEttp (t2 , t3).

This example also il lustrates the reason for non-

actual ly contains the word "no," it is still there for the lexical
analyzer to f ind. In contrast, when PARRY ignores informat ion,
it t h rows it away altogether.

Another phenomenon common to conversational speech
is the idiomatic expression, e.g "How $re you?" Using an
ACORN, we can simply include explicit template rules for such
express ions, e.g.,

thereby shor t -c i rcu i t ing the detailed syntactic parse
which would be attempted by a more formal system such as
Woods'.

The two techniques just described can be combined.
Cer ta in idioms such as "by the way" carry essentially no useful
in format ion and can be treated as spurious insertions by rules
l ike

Some expressions occur either as meaningless idioms or
as meaningful phrases, depending on context. Consider, for
example, the ut terance "I see, could 1 see the midnight digest?,"
wh ich occurred in an actual experimental protocol The f i rst
occur rence of "J see" is idiomatic and can be ignored; the
second is essential to the meaning of the utterance. An
ACORN, in processing this utterance, would recognize bo th
occurrences as instances of SILENCE, without discarding any
in format ion. The f irst occurrence would be ignored, as
des i red , but the second one would still be available to match
o ther templates.

Spurious deletions can also be handled by ACORNs. To
handle spurious deletions, we want to permit part ial matching
of templates We can do this within the ACORN f ramework
s imply by adding extra templates corresponding to commonly
occur r ing part ial matches of the original templates. The
obv ious weakness of this method is that it requires a p r io r i
Knowledge of which deletions are likely to occur. The success
of the method might require many iterations over a large
corpus of lest utterances, wi th new templates added as
needed. Hopefully this process would converge, after a
reasonable number of such iterations, to acceptable
per formance wi th respect to handling spurious deletions. (This
method of "massive i terat ion" seems to have wo rked
successful ly for PARRY.)

Part ial templates can be used for another purpose as
wel l . Al though the bot tom-up approach has several
advantages, as described above, it is useful to have cer ta in
p roper t i es associated wi th top-down processing One such
p r o p e r t y is the abil i ty to focus the attention of l ower - leve l
modules on cri t ical port ions of input. Another is the abi l i ty to
hypothes ize words from above, for lower- level modules to
conf i rm or reject. Although we earlier re fer red to a lexical
analyzer which finds all instances of primitive relations (words)
in the input ut terance, this would in practice be too expensive.
The actual Hearsay II system seeks to constra in
h y p o t h e c a t i o n as, much as possible; to do this it applies h i gh -
level informat ion to cut down the number of plausible words
matched against each por t ion of the input. Thus it is desirable
to have a speech understanding ACORN generate intermediate
par t ia l informat ion tell ing the lower level modules which
por t ions of the input they should concentrate on processing,
and which words are l ikely to occur at a given place in the
input , on the basis of the already recognized port ions of the
sur round ing context.

This top -down extension to the basic bo t tom-up
mechanism requires knowledge about the predict ive value of
par t ia l templates. For example, we know that "What t ime"
o f t en occurs in the phrase "What time is it?" We can
incorpora te this information in an ACORN by including a rule

250

where TEST is the action invoked upon recognit ion of
the template The effect of the TEST is to look for the missing
instance of "is i t " start ing at the time t3 in the input utterance.
If it is found, it is added to the instance list for is+it, leading to
the desi red completion of the full template "What time is it."

In the above example, a partial template was used to
predic t downwards in the network. Partial templates can also
be good upward predictors For example, given an instance of
the part ia l template T1 = "time is it," the probabi l i ty P(T 2 IT 1)
that it occurs as part of the template T2= "What time is i t "
may approach certainty. If P(T2 |T1) is high enough, say .99,
we may wish to save processing time by simply predicat ing
that T2 does in fact occur. Such a scheme is current ly being
implemented.

EVALUATION AND CONCLUSIONS A ful l evaluation of the ACORN method must of course
await exper ience wi th large-scale implementations. In the
meantime, there are several propert ies we observe f rom the
cur ren t , part ial implementation.

(1) The recognizer is efficient.
(2) It ts extremely easy to modify, since changes are

res t r i c ted to The template grammar.
(3) Using an ACORN makes it possible to dispense w i th a

formal parse.
(4) Even when an ACORN cannot ful ly parse an

u t terance, it can still provide a partial parse.
(5) ACORNs are organized so as to factor recognit ion

processing into simple, universal, and independent operat ions
pe r fo rmed at the nodes. This has made them tr iv ia l to
implement and, in addit ion, makes them wel l -sui ted to parallel
execut ion on a mult iprocessor.

Finally, we expect ACORNs to have a broad range of
appl icat ions, since they seem well-suited to recognizing any
sort of relational pat tern which manifests few symmetries.
Both spoken utterances and real -wor ld scenes appear to be in
this class. At this point, we have implemented one ACORN
processor for the syntax and semantics in speech (SASS)
module of Hearsay II. Another ACORN processor has been
built for recognizing the occurrence of in ferred pat terns
(abstract ions) in pat tern learning training data. The
abstract ions themselves are produced by a program called
Sprouter which grows a minimal ACORN to recognize all
subtemplates common to two or more relational patterns. [5]
From these experiences, it seems that ACORNs may provide an
e f fec t i ve mechanism for general recognition.

REFERENCES

Hayes-Roth, F. The representat ion of st ructured events and
eff icient procedures for their recognition. Pi t tsburgh:
Department of Computer Science, Carnegie-Mellon
Univers i ty , 1974.

Hayes-Roth, F., and Mostow, D.J. An automatically compilable
recognit ion network for structured pat terns.
P i t tsburgh: Department of Computer Science,
Carnegie-Mel lon University, 1975.

Hewit t , C. Description and theoretical analysis (using
schemata) of PLANNER: a language for p rov ing
theorems and manipulating models in a robot .
Cambridge: MIT Project MAC, 1972.

Lesser, V. R, Fennel, R. D, Erman, L. D., ft Reddy, D. R.
Organization of the HEARSAY II speech understanding
system. Proceedings IEEE Symposium on Speech
Understanding, 1974.

). Mil ler, P.L. A local ly-organized parser for spoken input.
Communications of the ACM, 1974, 11, 621-630.

1. Newel l , A., Barnett, J., Forgie, J., Green, C, Klatt, D.,
Licklider, J.C.R., Munson, J., Reddy, R., ft Woods, W.
Speech understanding systems: final report of a study
group. New York: American Elsevier, 1973.

2. Newel l , A. Production systems: models of cont ro l
s t ructures. In W.C. Chase (Ed), Visual informat ion
processing. New York: Academic Press, 1973.

. Ruhfson, J.F., Derksen, J.A., ft Waldmger, R.J. QA4: a
procedural calculus for intuit ive reasoning. Menlo Park:
Stanford Research Institute, 1972.

1. Woods, W.A. Transition network diagrams for natural
language analysis. Communications o[the. ACM, 1970,
13, 591-606.

251

Bar row, H.G., Ambler, A.P., ft Burstall, R.M. Some techniques
for recognising structures in pictures. In S. Watanabe
(Ed.), Front iers of pat tern recognition. New York:
Academic Press, 1972.

Colby , K M , Faught, B., ft Parkison, R.C. Pattern-matching
rules for the recognit ion of natural language dialogue
expressions. Memo AIM-234. Stanford: Stanford
Art i f ic ia l Intelligence Laboratory, Stanford Universi ty,
1974.

Feldman, J.A., ft Rovnar, F. An Algol-based associative
language. Communications of the ACM, 1969, 12, 4 3 9 -
449.

Frost , M. The news service system. Operating Note SAILON
72 -2 . Stanford: Stanford Artif icial Intell igence
Laboratory, Stanford University, 1974

Hayes-Roth, F. An optimal network representat ion and
other mechanisms for the recognition of s t ructured
events. Proceedings of the Second International Joint
Conference on Pattern Recognition, 1974.

1.

2

3.

4.

5.

6.

7.

8.

9.

10

11

12

13

14

252

