AN AUTOMATICALLY COMPILABLE RECOGNITION NETWORK
FOR STRUCTURED PATTERNS

Frederick Hayes-Roth and David J. Mostow
Computer Science Department’
Carnegie-Mellon University
Pittsburgh, Pa. 15213

ABSTRACT

A new method for efficient recognition of general
relational structures is described and compared with existing
methods. Patterns to be recognized are defined by templates
consisting of a set of predicate calculus relations. Productions
are representable by associating actions with templates. A
network for recognizing occurrences of any of the template
patterns in data may be automatically compiled. The compiled
network is economical in the sense that conjunctive products
(subsets) of relations common to several templates are
represented in and computed by the network only once. The
recognition network operates in a bottom-up fashion, in which
all possibilities for pattern matches are evaluated
simultaneously. The distribution of the recognition process
throughout the network means that it can readily be
decomposed into parallel processes for use on a multi-
processor machine. The method is expected to be especially
useful in errorful domains (e.qg., vision, speech) where parallel
treatment of alternative hypotheses is desired. The network is
illustrated with an example from the current syntax and
semantics module in the Hearsay Il speech understanding
system.

INTRODUCTION

The work described in this paper was motivated by
certain problems involved in the task of recognizing general
structured patterns and, in particular, the problem of parsing
continous spoken speech. From the point of view of the
language parser, an essential quality of speech is its errorful
nature. Ambiguities in acoustic segmentation, phonetic
labelling, word hypothesization, and semantic interpretation
necessitate understanding systems which can deal efficiently
with multiple alternative hypotheses about each portion of the
input. [I1] The usual methods of dealing with such multiple
hypotheses typically entail an expensive search through a
combinatorial space, since they consider only one hypothesis
for each portion of input at a time, and then exploit contextual
relationships to eliminate certain combinations of adjacent
hypotheses as impossible. The data structure and associated
recognition procedure described in this paper can be thought
of as effectively reversing this process by first exploiting
context -- thereby eliminating all but a few combinations from
consideration and then testing contextuatly related
hypotheses for adjacency. Since the contextual information is
statically embedded in the data structure itself, comparatively
little work needs to be done at recognition time. This work
requires only the computation of a few, simple operations
rather than a complex search. Moreover, the method provides
an efficient way to handle the spurious insertions and
deletions characteristic of speech.

TEMPLATE CRAMMARS

section, we define
relational structures.
template grammars s

In this
recognizing
(TNF) for

template grammars for
A template normal form
defined. An algorithm

1 This research was supported in part by the Defense
Advanced Research Projects Agency under contract no.
F44620-73-C-0074 and monitored by the Air Force Office
of Scientific Research.

246

described elsewhere [7] lransiates a given template grammar
into an equivalent TNF grammar which 1s economical in thet il
maximally exploils repeated sublemplaties in the criginal
grammar. The construction of an automatically compilable
recognition network {(ACORN) from a TNF grammar is described
in the next section. The definitions we use are tailored to

natural language understanding, but are immediately
generahizable 10 other applications (e.g., vision)
A relation r(xl. -y 'n) 5 an n-ary predicate

corresponding to same eliement or pattern in the language.
For example, the relation leli(x, x5} holds il the word "tell”
occurs in the input ulterance beginning et time x| and ending
at lime x5 In general, x; and x, are temporal arguments
specifying the time interval containing a recognized occurrence
of the relation, and x5, .., x, are additional attributes of the
pccurrence. A retation is catled primilive il corresponds {0 »
primibive element (terminal symbol) of the language, non-
primitive if it corresponds to a patlern of elements {non-
terminal symbol), and top-level if it corresponds tc a complete
pattern (sentential form).

A tempilale T is a Boolean combinstion of relations r,,
im], .., [T, restricted as follows. [t must be sither a disjunction

Py X)) VP00, X)) Vo

vorglxg, o xph (Tj=d 21,
or a conjunction
ey) e YA LA (g, .. YA
rl 'ﬂll lnl (pllp ’!np

ﬂfp*l(xlp*l, ey xnp‘l) Mo A

~ {xy , .., x.), qzp2l.
q lq "y

In the first case {disjunction), lhe symbolic arguments
(X 11 e Xp,) 7€ the same lor each ry, « = |, ., d. In the second
case, a woaker condition must be satisfied: the relations must
have enough symbolic argumenis in common for the template
to be connected, thal is, for any partilion of the p+q relations

Fir s Fpag iNt0 two non-empty sets A and B, lhers must exist
LA X
relations r.xy ..., x. JEA, FpXy, s ot X y¢B with
a, la "a p b "p

{xlai EEbt | xnai n {“ lb‘ ey xnb} 0-

A template grammar is a set of rules of the form
[<tempiate> »> <relation>; <action>]. The aclion optionally
associated with each rule specifies what should be done in the
event that an instance of the templale is recognized in the
input and the rule is invoked. Thus a lemplate grammar is
actually a production system of the sort described by Newel
[12)

Table 1. Sample Grammar (Gpp)
). [Fordit,, 1) => TOPIC(ty, t5, expr); expr+"FORD"]

2. [Rockefelier(t |, t5) v Rocky(l,, t5) =>
TOPIC(L |, t5, expr); expr+"ROCKEFELLER"]

3. [Kissinger(ty, t5) «>
TOPIC(t, 15, expr); expr+"KISSINGER"]

Q. { or(t, 15) A TOPIC(Y5, b, expr) => TOPICH(t,, t5, expr);]

5. [TOPIC(t, |, expr) A TOPICX(t,, |5, exprp) »>
TOPICx(t, tq, expr); expr « axprq v expry)

6. UTTERANCE(t), t4) A aboul(t,, t3) A
TOPIC(ta, tg, expr) => TOPICx({t,, t4, expr)k]

7. [UTTERANCEC(L), tg) A telllt |, 15) A ma(ty, t5) A
nolhin;(la. 13) ~ aboulity, ig) ATOP]C!(ts. tg. expr) =>
REJECT(t, tg, expr) SUPP?ESS(expr}]

8. [UTTERANCE(L |, tg) A teli(t), 15) A malty, ta) A
~nothing(i5, 14) A aboul(ty, ts) ATOPICK(g, tg, expr) =>
REQUEST(t), t, expr); RETRIEVE(expr)]

As an example, consider the sample template grammar
GAp (Table 1) which is part of a much larger grammar for
analyzing spoken queries to a wire-service news retrieval
system. [4] GAp's top-level relations are REQUEST and REJECT,

An instance of REQUEST is the utterance "Tell me all about
Rocky " An instance of REJECT is the utterance "Tell me
nothing about Ford, Rockefeller, or Kissinger." The primitive

relation UTTERANCES(l4, ty), used in rules 6, 7, and 8, simply
signifies that the entire utterance spans the time interval
[ty.t2]; this makes the beginning and ending times of the
utterance accessible as arguments to other relations, without
violating the framework of the template grammar. Rule 2
illustrates the use of features and actions. The feature, expr,
of TOPIC is the semantic expression eventually passed to the
actual news retrieval routine. The action of Rule 2 gives expr
the value "ROCKEFELLER." Rule 5 is an example of recursion. It
handles phrases of the form "topicj, topic2, -, topic,_j, or
topic," The action of Rule 5 forms a compound semantic
expression from the expressions associated with its individual

constituents. Thus the instance "Ford, Rockefeller, or
Kissinger** of the relation TOPIC* has expr - {"FORD",
"ROCKEFELLER", "KISSINGER"}. Rule 6 shows how context

sensitivity can be embedded in a template grammar. It states
that any instance of TOPIC which occurs at the end of an
utterance, and whose left context is ABOUT, constitutes an
instance of TOPIC*. Rule 8 illustrates the use of negation. It
states that any utterance of the form "Tell me .. about X" is a
request for information about X unless the gap ".." contains
the word "nothing." Thus "Tell me about Ford," "Tell me all
about Ford," and "Tell me everything you know about Ford,"
are all instances of REQUEST. This illustrates the capacity of a
template grammar to ignore redundant portions of the input.

A template grammar is in template normal form (TNF) if
the following conditions are satisfied:

(1) The template of each rule has one of the following
types:

<relation > v <relationy> v ... v <relationg>, dz1

{disjunctive type)

<relation > A <relationy> {conjunctive typs)

<relation|> A - <relationy> {negative type)

The relations in 8 disjunclive templaie have the same

symbolic arguments; the relations in a conjunctive or negative
template are connected.

(2) Every non-primitive relation appears on the right
side of exactly one rule. Hence we can define the type of a
relation to be the type of its unique defining template; a
primitive relation is simply said to be of primitive type.

It is clear that any template grammar G can be
translated into an equivalent grammar G* in TNF by means of
adding new relations and rules. The task of the automatic
translator is to do this in such a way as to minimize the
number of new relations added. The algorithm we employ is
described in [7], The result of applying the algorithm to the

247

constructed as follows.

, shown in Table 2.
"+" indicates

sample grammar of Table 1 is grammar G*p
Mnemonic conventions used in GAp* are these:
concatenation; "-" indicates temporal overlap; parenthetical
phrases indicate temporal contexts; and "/k" distinguishes
different TNF relations arising from occurrences of a single
relation in various different rules of the original grammar.

Table 2. Sempie Grammar in TNF (GAp')

1*. { Ford(t;, 1) =>
TOPIC/i(t, 15, expr) expr+"FORD"]

2* [Rocketeller(t,, t5) v Rocky(t), t5) =>
TOPIC/2(t |, 15, expr); expr+"ROCKEFELLER"]

3% [Kissinger(t, 15) =>
TOPIC/3(t |, t5, expr); expre"KISSINGER™]

4% { or(ly, t5) A TOPIC(t,, to, expr) =>
TOPICH /&1, t5, expr);]

5*. [TOPIC(II. to, exprl) A TOPICH(1,, tg, expry)
=> TOPICw/5(t,, t3. expr); expr « expr; U exprp]
6**. { UTTERANCE(!, t3) A (ABOUT)TOPIC(t5, t3, expr)
=> TOPIC%/6(l5, 15, expr) }

7*%%% [TELLME-UTTERANCE-ABOUT-TOPICS
{to, Ig. Il. tg, expr) A nothing(ty, tg) »>
REJECT(t), t) SUPPRESS(expr))

8**** [TELLsME-UTTERANCE-ABOUT-TQPIC®
(15, 13, 11, 15, expr) A - nothing(ts, 15) w>
REQUESTH

1+ 1g) RETRIEVE(expr))
9. [tell(t), t5) A ma(ty, 1) => TELL-ME(t), t)]
10. [about(ty, t5) A TOPICH(1;, 5) =>
ABOUT«TOPIC(1, t3);]

11, [TELLSME(|, t5) A UTTERANCE(|, ty) =>
TELL+ME-UTTERANCE(1 5, 15, t;);]

12. { TELLeME-UTTERANCE(l,, t4, 1))
A ABOUT<TOPICk(l4, ts, expr) =>
TELL-ME-UTTERANCE-ABOUT+TOPICR
(tz. '3, 11, tq. Gﬁpr)i]

13. [sboul(t |,) A TOPIC(t,, ty, expr)
=> (ABOUT)TOPIC(l,, tq, exprl]

14. [TOPIC/I(1,, t5, expr) v
TOPIC/2(t,, t5, expr} v TOPIC/3(t,, tp, expr) =>
TOPIC“I, }2, expr);]

15. { TOPICk/4(1,, to, expr) v
TOPICII/S(tl. t5, expr) v TOPlCt/G(tl. lz, expr) =>
TOP!C(II, |2, expr);]

THE RECO6NITION NETWORK

Given a template grammar in TNF, a corresponding
recognition network (ACORN), as first described in [6], is
For each relation r appearing in the
TNF grammar, there is a unique node, node(r), in the network.
(Hence minimizing the number of relations in the TNF grammar
is equivalent to minimizing the number of nodes in the
network.) For every rule [T->r; A], an. arc is drawn from

node(sj) to node(r) (or each relation Sj in the template T. Each
node(Sj) is said to be a constituent of node(r), and node(r) a
derivative of node(S|). A node may have zero, one, or more
derivatives. The recognition network for the sample grammar
GAp, constructed from the TNF grammar GAp*, is shown in
Figure 1.

Node(r) contains various information: its type (i.e., the
type of relation r); the action A in the rule [T =>r; A], if any;
and the correspondence between the arguments of relation r
and the arguments of its constituent relations Sj. This
correspondence consists of two parts, a set of tests and a
generator. The tests represent any requirements for
agreement between the arguments supplied by the
constituents node(Sj). The generator is a list of the arguments
which are to be supplied in turn to the derivatives of node(r).
The arguments are encoded according to a canonical numbering
scheme best described by an example. Consider
node(TELL»ME). Its constituents are node(TELL), which supplies
arguments ty, ty, and node(ME), which supplies arguments
ts, 4 Let concatenated argument list (t1,t213,t4).
Then node(TELL*ME) can specify its arguments by their indices

in L. Thus node(TELL+MErs only test is L(2) = L(3), denoted by
"2:3" below node(TELI*ME> in the network. (See Figure 1)
Similarly, node(TELL*ME)'s generator is the list < L(l), L<4)),
denoted by "(1, 4™ above node(TELL»ME> in the network.

Arguments which are not supplied by a node*s constituents but
instead originate at the node itself are specified by negative

indices. For example, node(TOP!C/2Vs generator is denoted by
"(1, 2, -1),H the -1 specifies the argument expr, which
originates at node(TOPIC/2). The action stored in

node(TOPIC/2) assigns this argument the value "ROCKEFELLER"

All of the recognition network components described so
far are static. There is also associated with each node(r) a
dynamic instance list 1L. Each instance in the instance list of
node(r) represents a single recognized occurrence
(instantiation) of the relation r in the input utterance. An
instance has several components: a unique identification
number |; the time interval [xj, x*] containing the occurrence;
the values X3....Xx, of additional attributes of the occurrence;
and a support set SS containing one or two instance
identification numbers. An instance is denoted I:(xi, ... *; SS).
During the recognition process, instances are created and
deleted dynamically.

The recognition process is bottom-up, as follows.
Initially all instance lists are empty. A lexical analyzer is
invoked and begins to scan for occurrences of primitive
relations in the input utterance. Since the lexical analyzer
receives imperfect, incomplete information from the phonetic
labelling routine, the best it can do is to identify possible
occurrences. When it finds a possible occurrence of a relation
r, it adds a new element to the instance list of node(r)
containing the appropriate information. To understand the
recognition process, imagine each node(r) as having a demon.
The node(r) demon continuously monitors the instance list of
each constituent node(s;) of node(r). Whenever a new
instance is added to the instance list of node(Sj), the node(r)
demon adds a reference to this new instance to its node(Sj)

add set. Similarly, whenever an existing instance of s; is
deleted, the node(r) demon saves a copy of it in its node(Sj)
delete set. Add sets and delete sets are referred to

collectively as change sets. [9] The demon then activates
(wakes) node(r) itself by invoking code pointed to by node(r).

When node(r) is activated, it updates its instance list
according to the information in its constituents' instance lists
and change sets. If node(r) can derive (construct) any new
instances from instances of its constituents, it does so, adding
the new instances to its instance list. The support set of each
instance contains the identification numbers of the instances
from which it has been derived. Node(r) deletes from its

248

instance list any instances supporied by (derivad from) the
defunct inslances listed in ils conslituents’ delete sets. The
exact way in which all this is done depends, of coursse, on the
type of node(r).

If node(r) is disjunctive, then it has d constituents
node(s), .., node(sy). For each instance Ixx,, .., x, 55) in a

node{s;} add set, node(r) adds a new element
lnew:(zl, s 23 {11 to its own inslance list, computing 20 2y
trom the values ot ¥{+ 1 X according (0 the ganerator stored

in node(r). 1 o "s support set is {1} because the instance 1,
of r is derived from (supported by, dependent on) the instance

1 of r's constituent relalion 5. for each defuncl instance | in B

node(s;}) detele set, node(r) deleles all instances
lotg*z s 1 25 SS) supporled by |, ie, such thet [¢SS.
(ﬁctually, for disjunctive r, all instances of r wiill have support
sets of size one, so 1¢SS iHf SS = {I}. However, for

conjunctive r, |SS| = 2; hence the set notation)

If node{r} is conjunctive, then it has exactly two
constituents, node(s;) and nodels,), with respective insiance
lists IL; and Lo, add sels AS| end AS,, and delele sets DS
and DS, First node(r) deletes any of ils instances
loid®Z 1y - 2y SS) which were derived from instances in DS
or DS, ie, those for which SSn(DSl u DSy E Q. Then
node(r} looks for new instance parrs 1;:x), ., xpi 5530 in 1L
and 12:(yl, o Y 582) in ILz such that {ul, s X} maiches
(Y] s Ypy) according to the tests stored in nodel(r). For each
such malching pair, node(r) adds a new element
Inewi(Z 11 -+ Zyi {1y, 12D to its instance list, using ifs generator
to select 2|, .., 2, from xp, ., X, ¥|s ¥y I is sufficient
to check only those pairs of inslances Iy, 15 of which one or
both are new, or more formally, such |hat either ll « ASl and
I ¢ ILs or 1 ¢ IL) and 1, ¢ AS,. For example, suppose the
inpul utterance is “Tell me nothing about Rockefeller,” and the
lexical analyzer finds an instance 1;:0, 18;..) of tell and an
nstance [5:(18,23:..) of me. Then the test stored in
node(TELL+ME) bectomes J8 = I8, which s true, so
node(TELL+ME) adds 2 new instance 1,40, 23; {I{, I5}) to its
instance list to represent the occurrence of "tell me" in the
concatenated time interval [0, 23] (Time is measured in
centiseconds since the beginning of the utterence.) Now
suppose the lexical anatyzer mistakenly identities the syllable
"fell" in "Rockefeller” as the word "ell” and adds sn instance
13:(257, 269; ...} to node{leli)’s instance lisl. This may happen,
for example, if the phonelic labeller correctly identifies the
“F* in "Rockefeller” as an unvoiced consonant but can't tell if
it’s an "F," a "T)" or a "P." No harm is done, however, since
when node(TELL+ME) matches I3 against I, the test 269 « 18
fails, and no new instance of TELL+ME is derived from I3. This
example shows how the ACORN automatically weeds out
spuricus instances hypothesized by the lexical analyzer on the
basis of incomplete phonelic information.

Finally, if node(r) is negative, then it has two
constituenls, node(s) and node(sy), where r = (s, A "52)' Let
ILy. Ly, AS), AS,, DS, DS; be the instance lists, add sets, and
delete sets of node(s) and node(s,). First node(r) deletes any
of ils instances lg 442, .., 2y; S5) derived from delunct
nstances in DS,, i.e, those for which SS nDS, # P. Then
node(r) looks for any instance pairs 1j:(x), .., %, SSy) in T
and 15y |, ., Yy SSo) in AS, such that {x;, .., x,) metches
(Y s s Yy according 1o the tesls sliored in node(r). For esach
such parr, node(r} deletes all of its instances lold’("l' o Zyi S8)
which depended on Iy, ie. such that || ¢ 55. This is done
since each such 1,4, previously an instance of {s; A ~s5), is
now invalidaled by a new instance of s,. Adding instances of
nodelr) is also a bit tricky, and proceeds ac follows. First
node(r} constructs the set 1S of all instances 1} < IL; which
malch some lp in DS, Then node(r) iooks for all instances
14:0x)y .y Xy SSy) In AS) UIS which match none ot the
instances in IL;. For each such [{, node(r} adds & new
instance 1., 421, ..., Z; {11 }) to its instance iist.

To illustrate this, lel us continue with our sample
utterance, "Tell me nothing about Rockefeller.” Suppose that at
some point the lexical analyzer has recognized all the words in
the utterance except the word "nolhing,” and node{TELL*ME-
UTTERANCE-ABGUT«TOPICx;} has
14423, 41, 0, 274, "ROCKEFELLER" ...} on its instance list. Since
the inslance list of node(nolhing) is empty, node(REQUEST) wili

have an instance Ig:0, 274, "ROCKEFELLER™; {Iq}) on ils
instance list. Now suppose thalt the lexical analyzer finally
recognizes the word "nothing,” and puts the instance

1¢:(23, 41;) on node(nothing)’s instance List. This activates
both of node(nothing)'s derivatives. Node(REJECT) matches Ig
against Ia, tesls 23 « 23 and 41 = 4], and accordingly adds @

new instance]7:(0, 274, "ROCKEFELLER"; “4. 16}) to ils
instance list. Node(REQUEST) matches Ig agamst I, tests
23 = 23 and af = 41, and sccordingly deletes

Ie, €0, 278, "ROCKEFELLER"; {I4]) from its instance list. This
example shows how informalion 1s accumulated and correcled
dynamically during the ACORN recogmlion process. [l also
Mustrates the ACORN’s ctate-saving nature and its sharing of
informalion between top-level nodes.

Once node(r) has examined its constiluents® change sets
and, if appropriate, revised ils own inslance hsi, it goes back
1o sleep. Meanwhile, the demans sitting on the derivatives of
node{r) have been watching its instance list and, when changes
occur, aclivate lheir nodes. This chain reaction continues,
fuelled by new instances generated by the lexical anaiyzer,
until the lexical analyzer has slopped, all nodes ars esleep, and
ali change sets are emply.

At this point each instance Iifx |, ., x;; S5} of a non-
primitive node, node(r), may be inlerpreted as a partial parse
of the intervat [xy, x5}, with relevant synlactic and semantic
features given by Xy o Xy For example, when the
recognilion of our sample utterence terminates, the instance
I:{41, 274, "ROCKEFELLER"; ..) of ABOUT<TOPICx may be
considered lo be a partial parse of the input interval [4], 274}
containing "ahout Rocketeller” Parse trees can essily be
reconstrucied from the informalion conlained in the support
sels. Parses of the entire utterance are given by instances of
lop-ievel noges. Thus the instance
170, 274, "ROCKEFELLER™, flg, Ig}) of REJECT constitutes a
total parse of the sample utterance, and supplies the semantic
fealure, expr, required by the action SUPPRESS(expr).

RELATIONSHIP 10 EXISTING PARSERS.
AND PATTERN-MATCHERS

The original motivation which led to the ACORN concept
was the development of a general automatic recognition
system for spoken utterances, visual scenes, and other
structured patterns in which context is a fruitful source of
information. Since the speech understanding ACORN treats an
utterance as a relational structure, it is related both to natural
language parsers and to general pattern-matching mechanisms.

The ACORN's closest relative among natural language
parsers is PARRY [2], a program which simulates a paranoid
individual being interviewed by a psychiatrist. PARRY employs
a large library of stored concept sequence templates which
are compared with segments of typewritten input sentences.
Generalization is achieved by rules which rewrite words as
synonymous concepts, delete unrecognized words and, if
necessary, delete one recognized word at a time until a
template is matched. While the approach underlying PARRY is
very successful with typed input, it appears to be too risky
for spoken input. Unlike the "perfect" input which PARRY
receives, the input to the syntax module of a speech
understanding system such as Hearsay Il [9] is highly
imperfect. PARRY can say, with confidence, "this portion of the

249

input is such-and-such (e.K, the word "oh"), so Ill ignore it;"
Hearsay Il can only say "if this portion of the input is "oh," |
can ignore it; but if it's really the word "no," then HI need it."
An ACORN can be thought of as a non-deterministic version of
a PARRY-Iltke system in which aft possible parses are followed
simultaneously in parallel. On the other hand, an ACORN is
capable of recognizing general graph structures and is more

powerful than any context-sensitive language parser (string
recognizer).
Woods' augmented transition network (ATN) [14] is a

mechanism for parsing natural language. It works top-down,
uses backtracking, and produces a formal parse of the input
sentence. In contrast, an ACORN works bottom-up, does no
backtracking, and extracts only those features of the utterance
which are relevant to the particular application. An ACORN can
be thought of as a state-saving, bottom-up version of an ATN.

Miller [10] has proposed a parser for
which builds multiple partial parse trees
complicated and heuristic search to combine them. An ACORN
differs from Miller's parser in handling all combinations
simultaneously rather than sequentially, and in the simplicity of
the matching operations it uses.

Current artificial intelligence programming systems such
as PLANNER [8], QA4 [13], and SAIL [3] can match a given
relational template against a data base. However, the method
they use is an exhaustive, iterative, and associative search. If
several templates are to be matched against the data base,
they must be matched one at a time In contrast, the
associative matching operation performed by ACORNSs
effectively tests all the relations of all the templates
simultaneously.

The ACORN's nearest relative among general pattern-
matching methods is hierarchical synthesis [1]. Consider the
task of matching a template, such as a schematic
representation of a building, against an input set of line
segments. A recognition algorithm employing hierarchical
synthesis replaces the single, many-component template for
"building" with a hierarchy of templates for "doors," "windows,"
"stories," etc. A higher-level template can be matched only if
its lower-level constituents are. Hierarchical synthesis
considerably reduces recognition time for two reasons. First,
it can exploit the repetition of subtemplates by recognizing all
instances of a single subpattern just once. Second, before
considering whether or not the entire pattern specified by a
template is present, it can insure that all necessary
subpatterns are present.

spoken English
and employs a

However, hierarchical synthesis as described in [I]
depends on a hierarchy defined a priori by the user. This
limitation is transcended by Hayes-Roth's interference
matching method [5], which does hierarchical synthesis in
parallel in all possible directions, thereby obviating the need
for a predefined hierarchy. In interference matching, a
template is represented as a set of relations. Each relation is
a predicate with one or more symbolic variables. The input is
also a set of relations, whose arguments are constants. A
partial match consists of an assignment of input constants to
the symbolic variables of a subset of template relations which
makes them all true. Interference matching works by finding
partial matches and combining them into complete matches.

Like interference matching, the ACORN method is an
improved version of hierarchical synthesis in that it requires
no predefined hierarchy. The ACORN compiler itself

determines an economical hierarchy, and embeds it in the form
of a recognition network Hierarchy selection can be factored

out into a separate compilation phase because the choice of
hierarchy depends only on the templates and not on the
individual input utterance. In interference matching, on the

other hand, hierarchy selection depends on the input pattern,
and is therefore a part of the recognition process. Thus the

ACORN method combines the convenience of automatic
hierarchy selection with the efficiency which comes from using
a predefined hierarchy in the recognition process.

In real-world applications, input is matched against
several top-level templates. Current methods of hierarchical
synthesis and interference matching involve matching the input
against one template at a time. Such an approach is clearly
undesirable for tasks such as speech recognition, which may
involve large numbers of templates. The ACORN compiler
takes a whole set of templates and produces a single, unified
recognition network for it; common subtemplates are shared
not just within top-level templates but also between them. An

instance of a subtemplate ts recognized just once -- not
separately for each top-level template in which it occurs.
Hence recognition time depends not on the total number of

templates, but just on the number of templates which match
some portion of the input. This property is encouraging, since
the number of templates required to recognize a significant
subset of English would probably be several thousand.

In sum, an ACORN can be looked at as a bottom-up
version of an ATN; a parallel and non-determinislic version of

a PARRY-like system; a general pattern-matcher; or an
improved mechanism tor rMerarchital synthesis, with automatic
hierarchy selection and subtemplate sharing between
templates.

APPLICATIONS. IMPLICATIONS ANP EXTENSIONS

In order for art ACORN to be efficient, the templates and
input data characteristic of the chosen problem domain should
tend to be asymmetric, so that a template will usually match a
given portion of the input in at most one way. Let us illustrate
with a negative example Suppose the template we wish to
matchjs Ks(a, c, d, e), the complete graph on five vertices,
represented by the conjunction of relations
line(a, b) A hne(a, ¢c) A .. A line. Then any occurrence of
K5 (as a subgraph, say) in the input corresponds to 5! =120
instances of T,since there are 5! ifferent ways to bind the
variables a, b, ¢, d, e to the five vertices of the Ksin the input.
For symmetries on a larger scale, the problem grows
combinatorially worse Clearly, anACORN would be inefficient
in such a domain, since it would insist on finding all instances
of every template.

Fortunately, many problem domains do not exhibit this

bothersome property. Speech, in particular, is highly
asymmetric, partly because it is embedded in a one-
dimensional ordered temporal domain. If tell (t4,ty) is true,

then tl < t2, 50 I.II“Q. ll) cannot be true. Symmetries at a

higher level can occur only if there is more than one
syntactically and semanticaliy valid way to group the input
words into phrases, i.e,, if the input is inherently ambiguous.
What are the advantages of ACORNs for speech
understanding? The bottom-up template-oriented approach is
especially conducive to handling natural, idiomatic,
conversational natural language robustly. Consider the

problem in spoken speech of spurious insertions such as "oh,"
"urn," "er." We wish to treat them the same as silences. We do
this by adding rules like [oh(t4,.t)=> SILENCE(t;, t;);] to our
template grammar, and relaxing the test t,=t; for temporal
adjacency between two relation instances, such as tell(ty, t»)
and me(ts, t4), to compute t,=t; v SILENCEttp (t,, t3).

This example also illustrates the reason for non-
delermimistic application of Colby’s methods in a8 speech
understanding system. Even if 3 spurious inserlion is

recognized, the corresponding portion of the input must not be
discarded, since it may have been recognized incorrectly. |f an
ACORN recognizes an instance of “oh” in the interval [ty, 5], it
puts the inslance (t|, 12; ..} on the instance list of SILENCE,
without discarding any informalion. That way, it the interval

250

actually contains the word "no," it is still there for the lexical
analyzer to find. In contrast, when PARRY ignores information,
it throws it away altogether.

Another phenomenon common to conversational speech
is the idiomatic expression, e.g "How $re you?" Using an
ACORN, we can simply include explicit template rules for such
expressions, e.d.,

[hownrooyou(ll, 12) ">
GREETING(t,, 15); REPLY("Fine, how are you™}),

thereby short-circuiting the detailed syntactic parse
which would be attempted by a more formal system such as
Woods'.

The techniques just described can be combined.
Certain idioms such as "by the way" carry essentially no useful
information and can be treated as spurious insertions by rules
like

two

[by(t), 15) A thelts, 19) A way(ly, 1g) =>

Some expressions occur either as meaningless idioms or
as meaningful phrases, depending on context. Consider, for
example, the utterance "I see, could 1 see the midnight digest?,"
which occurred in an actual experimental protocol The first
occurrence of "J see" is idiomatic and can be ignored; the
second is essential to the meaning of the utterance. An
ACORN, in processing this utterance, would recognize both
occurrences as instances of SILENCE, without discarding any
information. The first occurrence would be ignored, as
desired, but the second one would still be available to match
other templates.

Spurious deletions can also be handled by ACORNs. To
handle spurious deletions, we want to permit partial matching
of templates We can do this within the ACORN framework
simply by adding extra templates corresponding to commonly
occurring partial matches of the original templates. The
obvious weakness of this method is that it requires a priori
Knowledge of which deletions are likely to occur. The success
of the method might require many iterations over a large
corpus of lest utterances, with new templates added as
needed. Hopefully this process would converge, after a
reasonable number of such iterations, to acceptable
performance with respect to handling spurious deletions. (This
method of "massive iteration" seems to have worked
successfully for PARRY.)

Partial templates can be used for another purpose as
well. Although the bottom-up approach has several
advantages, as described above, it is useful to have certain
properties associated with top-down processing One such
property is the ability to focus the attention of lower-level
modules on critical portions of input. Another is the ability to
hypothesize words from above, for lower-level modules to
confirm or reject. Although we earlier referred to a lexical
analyzer which finds all instances of primitive relations (words)
in the input utterance, this would in practice be too expensive.
The actual Hearsay Il system seeks to constrain
hypothecation as, much as possible; to do this it applies high-
level information to cut down the number of plausible words
matched against each portion of the input. Thus it is desirable
to have a speech understanding ACORN generate intermediate
partial information telling the lower level modules which
portions of the input they should concentrate on processing,
and which words are likely to occur at a given place in the
input, on the basis of the already recognized portions of the
surrounding context.

This
mechanism

top-down extension to the basic bottom-up
requires knowledge about the predictive value of
partial templates. For example, we know that "What time"
often occurs in the phrase "What time is it?" We can
incorporate this information in an ACORN by including a rule
[Whlt(tl, lz) A |lm.“2, |3, -
WHATSTIME(|, 13); TESTtg, 1,3 "is it),

where TEST is the action invoked upon recognition of 6. Hayes-Roth, F. The representation of structured events and

the template The effect of the TEST is to look for the missing efficient procedures for their recognition. Pittsburgh:

instance of "is it" starting at the time t; in the input utterance. Department of Computer Science, Carnegie-Mellon

If it is found, it is added to the instance list for is+it, leading to University, 1974.

the desired completion of the full template "What time is it." /. Hayes-Roth, F., and Mostow, D.J. An automatically compilable
In the above example, a partial template was used to recognition network for structured patterns.

predict downwards in the network. Partial templates can also Pittsburgh: Department of = Computer Science,

be good upward predictors For example, given an instance of Carnegie-Mellon University, 1975.

the partial template T, = "time is it," the probability P(T2IT) 8. Hewitt, C. Description and theoretical analysis (using

that it occurs as part of the template T,= "What time is it" schemata) of PLANNER: a language for proving

may approach certainty. If P(T,|T4) is high enough, say .99, theorems and manipulating models in a robot.

we may wish to save processing time by simply predicating Cambridge: MIT Project MAC, 1972.

that T, does in fact occur. Such a scheme is currently being 9. Lesser, V. R, Fennel, R. D, Erman, L. D., ft Reddy, D. R.

implemented. Organization of the HEARSAY Il speech understanding

system. Proceedings |IEEE Symposium on Speech
Understanding, 1974.

EVALUATION AND CONCLUSIONS A fullevaluation of thelcOMN pbthBd must ofeeadtyesorganized parser for spoken input.

await experience with large-scale implementations. In the Communications of the ACM, 1974, 11, 621-630.
meantime, there are several properties we observe from the 1. Newell, A., Barnett, J., Forgie, J., Green, C, Klatt, D,

Speechunderstandingsystems:finalreportofastudy
group. New York: American Elsevier, 1973.

(1) The recognizer is efficient.
(2) It ts extremely easy to modify, since changes are

. 12. Newell, A. Production systems: models of control
restricted to.The template gramma.r.) . . structures. In W.C. Chase (Ed), Visual information
(3) Using an ACORN makes it possible to dispense with a rocessing. New York: Academic Press, 1973.
formal parse. 13. Ruhfson, JF. Derksen, JA., ft Waldmger, RJ. QA4: a

(4) Even when an ACORN cannot fully parse an
utterance, it can still provide a partial parse.

(5) ACORNs are organized so as to factor recognition 141. Woods, W.A. Transition network diagrams for natural
processing into simple, universal, and independent operations language analysis. Communications o[the. ACM, 1970
performed at the nodes. This has made them trivial to 13. 591-606.

implement and, in addition, makes them well-suited to parallel
execution on a multiprocessor.

Finally, we expect ACORNs to have a broad range of
applications, since they seem well-suited to recognizing any
sort of relational pattern which manifests few symmetries.
Both spoken utterances and real-world scenes appear to be in
this class. At this point, we have implemented one ACORN
processor for the syntax and semantics in speech (SASS)

procedural calculus for intuitive reasoning. Menlo Park:
Stanford Research Institute, 1972.

module of Hearsay Il. Another ACORN processor has been
built for recognizing the occurrence of inferred patterns
(abstractions) in pattern learning training data. The

abstractions themselves are produced by a program called
Sprouter which grows a minimal ACORN to recognize all
subtemplates common to two or more relational patterns. [5]
From these experiences, it seems that ACORNs may provide an
effective mechanism for general recognition.

REFERENCES

1. Barrow, H.G., Ambler, A.P., ft Burstall, RM. Some techniques
for recognising structures in pictures. In S. Watanabe
(Ed.), FErontiers of pattern recognition. New York:
Academic Press, 1972.

2 Colby, KM, Faught, B., ft Parkison, RC. Pattern-matching
rules for the recognition of natural language dialogue
expressions. Memo AIM-234. Stanford: Stanford
Artificial Intelligence Laboratory, Stanford University,
1974.

3. Feldman, J.A, ft Rovnar, F. An Algol-based associative
language. Communications of the ACM, 1969, 12, 439-
449,

4. Frost, M. The news service system. Operating Note SAILON
72-2. Stanford: Stanford Artificial Intelligence
Laboratory, Stanford University, 1974

Hayes-Roth, F. An optimal network representation and
other mechanisms for the recognition of structured
events. Proceedings of the Second International Joint
Conference on Pattern Recognition, 1974.

)]

251

(3,4,5)
REJECT
1:6
2:7

(1.6.3.2.6)
TELLAME-UTTERANCE-ABROUT+TOPIC*®
2:5

(3,4,5)
REQUEST
1:6
2.7

f‘r‘=;-‘----—h_-“"-“‘“‘zn-:

(1,4,5)

2:3

ABQUT+TOPLIC*

(1,2,3)

TOPIC¥

(3,4,5) (1,4,5) (1,5, -1)

TQPIC*/6 TOPIC™/4 TOPIC*/5
2:4 2:3 2:4

(2,4,7) (3,4,5)
TELL+M§-%TTRRANCE Aﬁouzggnplc)

ARA) (1,2) (1,2,-1) (1,2,-1) (1.2,-1)
TELL+ME UTTERANCE TOP1C/ 1 TOPIC/2 TOP1C/)
- / e /
(1,2) (L2 J(1.2) (1,2) 2) (1,2} (1.2) (1,2 (1,2}
tell me abou or Ford Rockefeller Rocky Kissinger nothing

Sample Recognition Network (am ACORNY .

i:j below the nodes and the generators

Figure 1.

See text for an explanation of the tests

(i-l L

252

ceay ik) above them,

