THE NONLINEAR NATURE OF PLANS

Earl D. Sacerdoti
Artificial Intelligence Center
Stanford Research Institute
Menlo Park, California U.S.A.
ABSTRACT
We usually think of plans as linear sequences There is only one action that can be applied
of actions. This is because plans are usually ex- to the blocks. PUTON (X,Y) will put Block X on Y.
ecuted one step at a time. But plans themselves PUTON (X,Y) is not applicable unless X has a clear
are not constrained by Ilimitations of linearity. top, and unless Y is the table or it has a clear
This paper describes a new information structure, top. The problem is to develop a sequence of ac-
called the procedural net, that represents a plan tions that will achieve the goal state.
as a partial ordering of actions with respect to
time. By avoiding premature commitments to a par- This example is presented by Sussman (1) as
ticular order for achieving subgoals, a problem- an "anomalous situation" for which his HACKER
solving system using this representation can deal program could not produce an optimal solution.
easily and directly with problems that are other- Other planning programs using means-ends analysis,
wise very difficult to solve. for example STRIPS (2) and ABSTRIPS (3), also pro-
duce non-optimal solutions. Optimal solutions to
I INTRODUCTION the problem are produced by programs of Tate (A)

When we think of plans
conceive of plans for

think of

In our everyday
a computer to carry out,
them as linear sequences of
The sequence may include conditional
loops, but the basic idea is still
one step after another.

lives,
or
we usually
actions.

tests or to do

Although
tially linear,
as a partial
to time.

the execution of a plan is essen-
a plan itself may be thought of
ordering of actions with respect

certain classes
representation of plans as non-

This paper will for
the
sequences of actions enables a problem sol-
ving system to deal easily and directly with prob-

that are otherwise very difficult

show how,
of problems,
linear

lems to solve.

I AN EXAMPLE

the use of a nonlinear
let us develop an elementary
in a simple environment that consists of

To motivate
representation,
example

three blocks and a table. In the initial state,
Block C is on Block A, and Block B is by itself.
The goal is to achieve a new configuration of
blocks, as shown in Figure 1. It is expressed
as a conjunction: Block A is on Block B, and
Block B is on Block C.
A
C B
| [5] :
L | 1.
Intbial State Goal State
FIGURE ' EXAMPLE PROBLEM

206

and Warren
Section

be discussed

(5),
VI

whose approaches will
in below.

Let
ends analysis would do under
plans must be linear
turn each of
state.
After

us see what a planning system using means-
the assumption that
try to achieve
the conjuncts describing the goal
Suppose it tried to put A on B first.
clearing A by doing PUTON (C,TABLE), the
first subgoal can be achieved by doing PUTON
(A,B). But now, in order to put B on C, B will
have to be re-cleared, thus undoing the subgoal

it achieved first.

It will in

On the other hand,
B on C first.
initial

the system might decide to
This can be done
But now when the system
finds it is even

the

put in
the
to put A on

goal than

immediately
state. tries
B, it

it was

further from its

in initial state.

So the planner is in trouble.
form a more sophisticated analysis
goals the proper order.

It must per-
to put the sub-
in
But the problem

is easy to solve if plans are

represented as partial orderings. A planner can
begin with an oversimplified plan that considers
the subgoals of putting A on B and putting B on C
as parallel, When it
a simple analysis
interactions between them.

independent operations. looks

at the subplans in more detail,

will determine the

Potential conflicts can be resolved by im-

posing linear constraints on some of the de-
tailed actions.

In subsequent sections we will show how a

planner that is freed from the assumption of lin-
earity is able to solve problems of this type di-
rectly, constructively, and without backtracking.

[l NOAH

NOAH (Nets of Action Hierarchies) is a problem
solving and execution monitoring system that uses
a nonlinear representation of plans. The system
is being used for SRIl'a computer based consultant
project (6), and has many aspects that are not di-
rectly relevant to the point of this paper. We
will present a simplified explanation of the pro-
cedural net (NOAH's representation for actions and
plans) of SOUP (the language for giving the system
task-specific knowledge) and of the planning al-
gorithm. A complete discussion of the system will
appear elsewhere (7).

NOAH is implemented in QLISP (8), and runs as
compiled code on a PDP-10 computer under the TENEX
time-sharing system.

A. The Procedural Net

The system's plans are built up in a data
structure called the procedural net, which has
characteristics of both procedural and declar-
ative representations.

Basically, the procedural net is a network, of
nodes, each of which contains procedural Infor-
mation, declarative Information, and pointers to
other nodes. Each node represents a particular
action at some level of detail. The nodes are
linked to form hierarchical descriptions of oper-
ations, and to form plans of action.

Nodes at each level of the hierarchy are
linked in a partially ordered time sequence by
predecessor and successor links. Each such se-
quence represents a plan at a particular level of
detail.

The nodes discussed in this paper are of four
types: GOAL nodes represent a goal to be achieved;
PHANTOM nodes represent goals that should already
be true at the time they are encountered; SPLIT
nodes have a single predecessor and multiple
successors, and represent a forking of the par-
tial ordering; JOIN nodes have multiple predeces-
sors and a single successor, and represent a rew-
joining of subplans within the partial ordering.

Each node points to a body of code. The
action that the node represents can be simulated

by evaluating the body. The evaluation will cause
new nodes, representing more detailed actions, to
be added to the net. It will also update a

hypothesized world model to reflect the effects
of the more detailed actions.

Associated with each node is an add list and
a delete list. These lists are computed when the
node is created. They contain symbolic expres-
sions representing the changes to the world model
caused by the action that the node represents.

rd N

Predecetsor(s) { b i} Successoris)

Node types are designated as follows.

(Descripllon of "'C"UQ S J

PHANTOM SPLIT JOW
GRAPHIC REPRESENTATION OF A NODE

Description of action

GOAL
FIGURE 2

Figure 2 shows the graphic notation used in
this paper to display a ndde of a procedural net.

As an example, let us examine a procedural
net representing a hierarchy of plans to paint a
celling and paint a stepladder. The plan can be
represented, in an abstract way, as a single node
as shown in Figure 3a. In more detail, the
plan Is a conjunction, and might be represented
as in Figure 3b. The more detailed subplans to
achieve these two goals might be "Get paint, get

ladder, then apply paint to celling," and "Get
paint, then apply paint to ladder," as depicted
in Figure 3c. The plan depicted in Figure 3d
will be explained below.
LEVEL 1 Paint the ceding and pant the ladder
{a)
/ Paint the cnhngJ\
LEVEL 2 s i J
Paint the ladder V
{v}
LEVEL 3

{Belore Ctingism)

- Get pilril—ﬂ Get ladduHApp!v p#nt 10 cething
5 (. .

s W — e

Apply pant 1o ladder

lel

Get paint H Get lagder Apply pmint 10 ceiling —:

Gel parri J Apply paint to ladder
——

Get pany

LEVEL 3
{After Criticasm
by Aesolve Contlicis)

{d)

FIGURE 3 PROCEDUAAL NEY FOR PAINTING

The pictorial representation used here
suppresses much of the information associated
with each node. The add and delete lists, for
instance, are not indicated in the diagrams.

They are not hard to infer, however. For example,
"Get ladder" will cause "Has ladder" to be added
to the world model, and "Apply paint to ceiling"
might delete "Has paint."

Precondition-subgoal relationships are in-
ferred by the system from pointers that indicate
which nodes represent expansions in greater de-
tail of other nodes. These pointers are also
omitted in the pictorial representation. The
system assumes that every action but the last in
such an expansion is a precondition for the last
action.

B. Task-specific Knowledge The planning algorithm of the NOAH system is
simple. It expands the most detailed plan in a
Knowledge about the task domain is given to procedural net by expanding each node of the plan.
the system in procedural form, written in the The nodes are expanded in the order of their po-
SOUP - (Semantics of User's Problem) language. sition in the time sequence. The expansion of

SOUP is an extension of QLISP (8) that is _ _
interpreted in an unusual fashion, as described each node produces child nodes. Each child node
In the next section. contains a more detailed model of the action it
represents. The detailed models are queried dur-
ing the creation of subsequent nodes in the time
sequence. (Note that they are not queried during
the expansion of parallel nodes in parallel bran-
ches of the plan.) Thus by creating subplans for

each node in the plan, a new, more detailed plan

As an example, let us examine the SOUP code
for blocks problems such as that presented in
Section 11 above. The complete semantics of the
actions of this domain are expressed by two func-
tions, which are shown in Figure 4. The code for
the function CLEAR says, "If the variable X is

o) will be created.
TABLE, then it is already "clear." Otherwise,
see if some block Y is on X. If so, clear Y and The individual subplan for each node will be
then remove Y by putting it somewhere else." correct, but there is as yet no guarantee that the
new plan, taken as a whole, will be correct.

The code for the function PUTON says, "To There may be interactions between the new, de-
put X on Y, first clear X and Y. Then place X on tailed steps that render the overall plan invalid.
Y (and thus Y is no longer clear)." For example, the individual expansions involved

in generating the plan in Figure 3c from that in
Figure 3b are correct, yet the overall plan is
Figure 4 invalid, since it allows for painting the ladder
before painting the ceiling.
SOUP Code for the Blocks Problems

Before the new detailed plan is presumed to

{CLEAR ,
(QLAMBDA (CLEARTOP ~X) work, the planning system must take an overall
(OR (EQ $X (QUOTE TABLE)) look at it to ensure that the local expansions
(QPROG (-Y) make global sense together. This global exami-
(ATTEMPT (P1S (ON ~Y $X)) nation is provided by a set of critics. The
THEN (PGOAL (Clear $Y) critics serve a purpose somewhat similar to that
(CLEARTOP $Y) of the critics of Sussman's HACKER (1), except
?EEEL:R)) that for NOAH they are constructive critics, de-
(PDENY (ON $Y $X)) signed to add constraints to as yet unconstrained
(PGOAL (Put $Y on top of ~7) plans, whereas for HACKER they were destructive
(ON $Y ~Z) critics whose purpose was to reject incorrect
APPLY NILY) assumptions reflected in the plans.
{RETURN)))}) . .
The algorithm for the planning process, then.
{ PUTOR is as follows:
(QLAMBDA (ON ~X V) (1) Simulate the moat detailed plan in the
(PAND (PGOAL {(Clear 3X) procedural net. This will have the
(CLEARTOP $X) effect of producing a new, more detailed
APPLY olan.
(PGOAL Egi‘i:l:);‘f) (2) Criticize the new plan, performing any
(CLEARTOP $Y) necessary reordering or elimination
APPLY of redundant operations.
(CLEAR))) (3) Go to Step 1.
{PGOAL (Put $X on top of $Y)
(ON $X $Y) Clearly, this algorithm is an oversimpli-
APPLY NIL} fication, but for the purposes of this paper we
(PDENY (CLEARTOP $Y)))) may imagine that the planning process continues
until no new details are uncovered. (In fact,

for the complete problem solving and execution
monitoring system, a local decision must be made

C. The Planning Algorithm)
at every node about whether it should be expanded.)

Initially, NOAH is given a goal to achieve.

NOAH first builds a procedural net that consists IV CRITICS

of a single goal node to achieve tha given goal.

This node has a list of all relevant SOUP func- The critics described here are general-
tions as its body, and represents the plan to purpose critics, appropriate to any problem
achieve the goal at a very high level of abstrac- solving task. In addition to these, other task-
tion. This one-step plan may then be expanded. specific critics may be specified for any par-

ticular domain.

208

The "Resolve Conflicts" Critic

The Resolve Conflicts critic examines those
portions of a plan that represent conjuncts to
be achieved in parallel. In particular, it looks
at the add and delete lists of each node in each
conjunctive subplan. If an action in one con-
junct deletes an expression that is a precondi-
tion for a subgoal in another conjunct, then a
conflict has occurred. The subgoal is endangered
because, during execution, its precondition might
be negated by the action in the parallel branch

of the plan. (An implicit assumption being made
here is that all of a subgoal's preconditions
must remain true until the subgoal is executed.)

The conflict may be resolved by requiring the
endangered subgoal to be achieved before the
action that would delete the precondition.

the painting plan depicted in
"Apply paint to

For example,
Figure 3c contains a conflict.
ladder" will effectively delete "Has ladder,"
which i]s on the add list of "Get ladder." In
such a situation, a conflict would occur, since

"Has ladder" is a precondition of "Apply paint to
celling." The conflict is denoted in the pictor-
ial representation by a plus sign (+) over the pro-

over the step that
The conflict can be resolved by re-
the endangered subgoal ("Apply paint
be done before the violating step

to ladder").

condition and a minus sign
violated It.
quiring that
to celling")
("Apply paint

(-)

in this manner,
in Figure 3d.

If the conflict were resolved
the resulting plan would appear as

A similar conflict occurs if an action in
one conjunct deletes an expression that Is a
precondition for a following subgoal. In this
case, the precondition must be re-achieved after

the deleting action.

Conflicts of this type are very easy to
spot. The critic simply builds a table of mul-
tiple effects. This table contains an entry for
each expression that was asserted or denied by
more than one node in the current plan. A con-
flict is recognized when an expression that is
asserted at some node is denied at a node that
not the asserting node's subgoal.

is

Note that a precondition may legally be
denied by its own subgoal. For example, to put
Block A on Block B, B must have a clear top.

This precondition will be denied by the action of
putting A on B.

B. The "Use Existing Objects" Critic
In addition to specifying the right actions
in the right order, a complete plan must specify

the objects that the actions are to manipulate.
For NOAH, this specification is accomplished by
binding the unbound variables (those prefixed by
a left arrow) In the PGOAL statements of the
SOUP code.

209

During the course of planning, NOAH will
avoid binding a variable to a specific object
unless a clear best choice for the binding is
available. When no specific object is clearly
best, the planner will generate a formal object
to bind to the variable. The formal object Is
essentially a place holder for an entity that
as yet unspecified. The formal objects de-
scribed here are similar in spirit to those used
by Sussraan in his HACKER program (1), and to the
uninstantiated parameters In relevant operators
as used by ABSTRIPS (3).

is

The strategy of allowing actions with un-

bound arguments to be inserted into a plan has
several advantages. First, It enables the sys-
tem to avoid making arbitrary, and therefore

possibly wrong, choices on the basis of in-
sufficient information. Furthermore, it allows
the system to deal with world models that are
only partially specified by producing plans that
are only partially specified.

after a plan has been completed at
it may be clear that a
formal object can be replaced by some object
that was mentioned elsewhere In the plan. The
Use Existing Objects critic will replace formal
objects by real ones whenever possible. This
may involve merging nodes from different por-
tions of the plan, resulting in reordering or
partial linearization.

However,
some level of detail,

For example, a more detailed expansion of
the painting plan might specify putting the ladder
at Place®®’ to paint it, and at Under-Ceiling
for painting the ceiling. The Use Existing Ob-
jects critic would optimize the plan by replacing
PlaceOOIl with Under-Ceiling.
C. The
Preconditions"

"Eliminate Redundant
Critic

During the simulation phase of the planning
process, every precondition that is encountered
is explicitly stored in the procedural net. This
is so that the critics will be able to analyze the
complete precondition-subgoal structure of each
new subplan. But after the other critics have
done their work, and the plan has been altered
reflect the interactions of all the steps, the
altered plan may well specify redundant precon-
ditions.

to

For Instance, in our painting example,
"Get paint" appears twice in the plan. This
critic recognizes the redundancy by examining the
same table of multiple effects that was used by
Resolve Conflicts. The extra preconditions are
eliminated to conserve storage and avoid redun-
dant planning at more detailed levels for
achieving them.

V THE EXAMPLE, AGAIN

We are now ready to see how NOAH solves the
problem posed In Section Il. The Initial state
is expressed to the system as a set of QLISP
assertions:

(ON C A)
(CLEARTOP B)
(CLEARTOP C)

NOAH is Invoked with the goal: (AND (ON A B)
(ON B «).

The system builds an initial procedural net
that consists of a single GOAL node. The node is
to achieve the given goal; its body is a list of
the task-specific SOUP functions, in this case
CLEAR and PUTON. It then applies the planning
algorithm to this one-step plan, which is de-
pleted in Figure 5a.

The conjunction is split up, so that each of
its conjuncts Is achieved independently. PUTON
is the relevant function for achieving both con-
Juncts, but the system does not immediately in-
voke PUTON. Rather, the system builds a new GOAL
node In the procedural net to represent each in-
vocation. The nodes are to achieve (ON A B) or
(ON B C), and have PUTON as their body. The
original plan has now been completely simulated
to a greater level of detail, and so the critics
are applied. At this level, they find no problems
with the plan that was generated. The new plan is
shown in Figure 5b.

The new plan Is now expanded. When the GOAL
nodes for achieving (ON A B) and (ON B C) are
simulated, PUTON Is applied to each goal expres-
sion. PUTON causes the generation of a new level
of GOAL nodes. When the entire plan has been
simulated, the resulting new plan appears as In
Figure 5c. The nodes of the plan are numbered to
aid in explaining the actions of the critics.

The critics are now applied to the new plan.
Resolve Conflicts generates a table of all the
expressions that were asserted or denied more
than once during the simulation. The table is
shown in Figure 6a. This table is then reduced
by eliminating from consideration those precon-
ditions that are denied by their own subgoals.
For example, (CLEARTOP C) is a precondition for
the subgoal (ON BC), so It is not a conflict
that achieving (ON B C) at Node 6 makes (CLEARTOP
C) false. Now, any expression for which there
Is only a single remaining effect is removed
from the table. The resulting table, shown in
Figure 6b, displays all the conflicts created by
the assumption of nonllnearlty.

Resolve Conflicts now reorders the plan by
placing the endangered subgoal (Node 6, achieving
(ON B C)) before the violating step (Node 3, a-

210

LEVEL 1 _
Achieve [ANDION A QJION B CH
s
LEVEL 2
Achieve {ON A BIN
5 J
~ Achweve (ON B c;/
b}
LEVEL 1] 1
(Before Criticism) f Clear AN 3

\/.

6
J —-IPuI g8 on C

{c)

:J_H'Pul A on B|

Clear C

LEVEL 3
{AfIer Concsm
by RAesolve Conthcrs)

Claar A

Ciear B

S
LEVEL 3
{Afier 8l Trinicism) ——_—j
/~—J Clear AI
5

\ . Ciea: B
T
Cheat C
. .
Clcar C)-—‘ Put C enQOBIECT Ik
J F1fuw B oon C‘f

tH

LEVEL 4
(Belory Cniticism)

J Pur A on B

LEVEL 4
{After Crincism
by RAesolve Conflicis)

B

—)

Pur B8 un

Pul A ﬂ

Clear C

LEVEL 4
{Atier all Crivsm

! Chear C Pul C onOBJECT Y _
5 T J/]- Put B on Ch4Put A on B

i S

it
FIGURE 5§ PROCEDURAL NET FDR EXAMPLE PROBLEM

Figure 6

TABLE OF MULTIPLE EFFECTS FOR
EXAMPLE PROBLEMS
(Node numbers refer to Figure 5c¢.)

6a - Origina) Table

CLEARTOP B: Asserted - Node 2 ("Clear B'")
Denied - Node 3 ('Put A on B')
Asserted - Node 4 (''Clear B')
CLEARTOP C: Asserted - Node 5 (''Clear C')
Denied - Node 6 ("Put B on C'")
8b - Refined Table
CLEARTOP B: Denied - Node 3 ("Put A on B'")
Asserted - Node 4 (''Clear B'")
chieving (ON A B)). The transformed plan is shown
in Figure 5d.

objects were generated at
Use Existing Objects does
Eliminate Re-
and the re-

Since no formal
this level of detail,
not transform the plan further.
dundant Preconditions is now applied,
sulting plan is shown in Figure 5e. Note that the
major restriction in the solution to the problem,
that B must be placed on C before A is placed on
B, has been incorporated into the plan. This has
been accomplished directly, constructively, and
without backtracking.

The critics having been applied, the system

simulates the new plan. This results in the
generation of a new, yet more detailed plan, shown
in Figure 5f. The critics are then applied. An

that described above enables
that (CLEARTOP C)

analysis similar to
Resolve Conflicts to discover
might be violated when achieving (ON B C). Thus,
the plan is rearranged, as shown in Figure 5g, so
that (ON C Objectl), the endangered subgoal, is
achieved before (ON B C),

Use Existing Objects again finds no formal
objects that can he unified with existing ones.
After Eliminate Redundant Preconditions cleans
up the plan, it appears as in Figure 5h. The
final plan is: Put C on Object 1; Put B on C; Put
A on B. Essentially, the plan is now completely
linearized. The planning system has chosen the
correct ordering for the subgoals, without back-
tracking or wasted computation. By avoiding a
premature commitment to a linear plan, the sys-
tem never had to undo a random choice made on the

basis of insufficient information.
VI OTHER EXAMPLES
In this section a number of other
blocks world examples will be presented. The
problems and their solutions will be displayed
graphically, and only points of special interest
will be discussed in the text.

A. Four Blocks
A
B
C D C
A] D
trtial Stae Gml State
ON C A) {ANDION A B)
{ON D B} [(ON B C)
(CLEARTOP C) {ON]
{CLEARTOP D) co
LEVEL 1 Achitve [ANDION A BIHON 8 CIHHON C DJ
The conjunctive goal is split into parallel
/ Achieve [ON A B}i
LEVEL 2 S 1 Achieve {ON aﬂ—« 4
Actuove (ON T DT/
LEVEYL 3
(Betore Criticism) Clear A N -
5 J Put A on B
Clear B

goals

Resolve Conflicts notices two cases of a
precondition (+) negated by a parallel operation

(-).

LEVEL 3
{After Criticism

Ciear A }

by Resolve ConMicis) S A J FPut A on B i
y Clear 8
A
Clear B A it
S s 4 4Pyt B on C
Clear L
-H'
Clesr C
S y) Putl Con D

] Clear D |

211

Eliminate Redundant Preconditions cleans up B. Creative Destruction

the plan.

This problem can only be solved by undoing a
LEVEL 3 subgoal that is already achiaved.
[Aee an Critcismy

Put & on B
T A
A B
A C [
tmtipl State Gosl State
ION A B IANDION A BI
ICLEARTOP A) {ON B CD

{CLEARTDP ()

LEVEL &
{Beslore Crircm}

+ rromask 1w B M ——
Clear C}"Putc on DBJECT \

44 5 Hput a oﬂw LEVEL 1 Achieve [ANDION A B)ION B C)
c

/ twer DHPul O on OBJECT2 ol

.. __./ J ’-[Putaonc
(e)

-

J Put Con D

A Achews 108 & .an)\1

Achieve (ON B) /

LEVEL 2 S

LEVEL 4

(After Cntcam The firat conjunct is a PHANTOM goal, since
oy Resove Condlicty)

it is already true in the initial world model.
Cwer C HPut € on OBIECT!
' Put A on B LEVEL 3 +
Clesr D HPut D on OBJECTZ / {Belore Crrucesmi Achweve (ON A B
- - J]—ﬂ'ut 8 on C -
. e - - ' J
JH:N ConD
b b Put 8 on C /

Use Existing Objects notices that the plan
can be gimplified by unifying the formal object,
Objectl, with Block D. The nodes that refer to
putting C on D and on Object) are merged.

Resolve Conflicts notices that one node (-)
deletes a precondition for a subsequent subgoal.
The precondition in this case is (ON A B), and
the subgoal 18 the initial conjunctive goal. The
LEVEL 4 systew therefore alters the PHANTOM goal (+) to

{After Coticsm become a genuine goal, to be achieved in time for
Ly Use Exating Objects) the subsequent subgoal.

) Put A on B
.(Cmr ;)—-Ful D on DBJECTZ) LEVEL 3 !

S o 1Atter Crincism) Actueve (ON A B)
R Y
i
Clesr C -t ~= . Put B on C
Put C on D Clear B _ J
Clear D - Pui B on € /
:
LEVEL 4
(Al g1
Criliecnm)

LEVEL 4

.. e iBetore Criticism)
Cler D HPut D on DBJECT2| . -
D ’,_u N TH e o a o o aord] —_Aciem & e

E

S - J |-‘!;ul A on B
- o Clear 8 / L - _
& = 3
/(E'H!i_t} Put A on OBJECT . B U
The final plan ias: Put D on Object2, Put 5 J J—}—E,; 8 on C
Con D, Put B on C, Put A on B, Clear C

212

Resolve Conflicts notices that (CLEARTOP B)

is asserted by one node (+) and deleted by another

{-). 1t therefore reorders the plan.
FEVEL 4

[ATT Crilwisn

by Hesolwe Condinis)

Clear A

fre s o]

J Put B on C

/

Eliminate Redundant Preconditions cleans up
the plan.

LEVEL 4
[Atier Criticism)

Clear 9—{%1 A on DBILCT
- o e N— e e
/ JHPulBonC Pur A un B

The final plan is:
BonC, Put A on B.

Put A on Objectl, Put

VIl DISCUSSION

We have seen how a variety of problems which
can be represented as conjunctive goals have sim-
ple, straightforward solutions in NOAH. There
are a number of other problem solving systems

that use alternative approaches to solve similar
problems. Among these are Sussman's use of de-
bugging (1,9), Tate's search in a space of "tick
lists" (4), and the approach of passing actions

backward over a partial
Manna and Waldinger (10)

plan, which Is used by
and Warren (5).

The approach presented in this paper is in
many ways antithetical to that of Sussman's

HACKER. HACKER attacks conjunctive goals by
making a "linear" assumption. That is, con-
junctive goals are assumed to be independent and
additive, and so to achieve the overall goal each
conjunct may be achieved in sequence. The system
is explicitly aware of this assumption. If the

developing plan fails, it can be debugged by com-
paring the problem that occurred with the known
types of problems generated by the assumption of
linearity. As bugs are encountered and solved, a
collection of critics is developed, each of which
notices that a certain type of bug has occurred in
a plan.

213

lot of wasted work. While the
eventually produce a correct
plan, it does so in many cases by iterating
through a cycle of building a wrong plan, then
applying all known critics to suggest revisions of
the plan, then building a new (still potentially
wrong) plan.

HACKER does a
problem solver will

NOAH makes no rash assumptions, but preserves

all the freedom of ordering that is implicit in
the statement of a conjunctive goal. It assumes
the conjuncts are independent, but the nonlinear

it from worrying about ad-
its critics constructively,
By

representation frees
ditivity. It applies
to linearize the plan only when necessary.

the nature of the con-
juncts' interactions, NOAH is sure to place actions
in the correct order, and thus needs never undo
the effects of a false assumption.

waiting until it knows

Tate's INTERPLAN performs a search for a
correct linear ordering by using both debugging
and backtracking. INTERPLAN does this not by
creating alternative sequences of actions, but
rather by examining a tabular representation of
the interactions between conjunctive goals. Tate
demonstrated that a planner can perform reasoning
about plans by dealing with Information that is
much simpler than the plan itself. This concept
has been used extensively by the critics in NOAH,
which do much of their analysis on the tables of
multiple effects rather than on the plans them-
selves.

Manna and Waldinger and Warren build linear
plane in non-sequential order. They require that
the partial plan at every stage be a linear one.
However, they allow additions to the plan by in-
sertion of new actions into the body of the plan,
rather than restricting new actions to appear at
the end. This approach has the advantage of being
constructive. In the sense that when the planner
adds each step to the plan, It takes into account
all the interactions between conjuncts that it
knows about. But by forcing the plan to be linear
at all intermediate stages, these planners must
do unnecessary search with backtracking, or so-
phisticated plan optimization to find the correct
order in which to attack the conjuncts.

VIl FURTHER WORK

This paper deals with a deceptively simple

idea: a plan may have the structure of a partial
ordering. The planning system described here is
primitive and incomplete, and a more complete
one will be required to fully explore the impli-
cations of this representation of plans. The

system does not now deal
goals (for example, to paint
paint and either a ladder or a

with disjunctive sub-
the ceiling, get
table).

The current system also fails to deal with
what might be termed "non-linearlzable interac-
tions" These are interactions between subgoals
where no simple ordering of the actions that
achieve each subgoal independently will achieve
the overall goal. An example of this arises
in the problem of exchanging the contents of two
registers.

The most serious deficiency in the current
system is its lack of awareness about the auxil-
iary computations specified In the procedural
semantics (the SOUP code) of a task domain. The
procedural net representation lets the system be
aware of the goals and subgoals that the planner
has decided to tackle, but it does not preserve
any information about the computation that re-
sulted in those decisions. In some cases, a re-
ordering of subgoals might alter the state in
which one of these computations would be carried
out. Then the computation might produce different
results.

Space does not permit adequate discussion of
these issues here. The Interested reader will
find it elsewhere (7). It is worth noting, how-
ever, that the system as It now stands has been
used successfully for SRI's Computer Based
Consultant, where it creates for the casual
observer a surprising sense of richness. This
suggests not that NOAH is very sophisticated,
but that the mechanisms of intelligence may not
be as complex as we think.

ACKNOWLEDGMENTS

The ldeas presented in this paper have been
stimulated and sharpened by discussions with
Richard Waldinger, Richard Fikes, Nils Nilsson,
and Austin Tate. The research reported in this
paper was sponsored by the Advanced Research
Projects Agency of the Department of Defense
under Contract DAHCO04-72-C-008 with the U.S.
Army Research Office.

REFERENCES

1. Sussman, G. J., "A Computational Model of
Skill Acquisition," Tech, Note Al TR-297,
Artificial Intelligence Laboratory, MIT,
Cambridge, Ma., August 1973

2. Fikes, R. E., and Nilsson, N. J., "STRIPS:
A New Approach to the Application of Theorem
Proving to Problem Solving," Artificial In-
telligence, Vol. 2, pp. 189-208, 1971

3. Sacerdoti, E. D., "Planning in a Hierarchy of
Abstraction Spaces," Artificial Intelligence,
Vol. 5, No. 2, pp. 115-135, 1974

10.

Tate, A., "INTERPLAN: A Plan Generation
System which can deal with Interactions be-
tween Goals," Memorandum MIP-R-109, Machine
Intelligence Research Unit, University of
Edinburgh, December 1974

Warren, D.H.D., "WARPLAN: A System for
Generating Plans," Memo No. 76, Department
of Computational Logic, University of Edin-
burgh, June 1974

Hart, P. E., "Progress on a Computer-Based
Consultant," Tech. Note 99, Artificial In-
telligence Center, SRI, Menlo Park, CA.,
January 1975

Sacerdoti, E. D., "A Structure for Plans and
Behavior," forthcoming Ph.D. thesis, Stanford
University

Reboh, R., and Sacerdoti, E. D., "A Pre-
liminary QLISP Manual," Tech. Note 81, Ar-
tificial Intelligence Center, SRI, Menlo
Park, Ca., August 1973

Sussman, G. J., "The Virtuous Nature of
Bugs," Proc. AISB Summer Conference, July
1974

Manna, Z. and Waldinger, R., "Knowledge and

Reasoning In Program Synthesis," Tech. Note
98, Artificial Intelligence Center, SRI,
Menlo Park, Ca., November 1974

