
How to Use What You Know 

This paper surveys the state of the art in the development 
of problem solving mechanisms for PLANNER-like formalisms. 
A major design goal for such formalisms is that "for any given 
piece of knowledge there arc natural placet in the formatitm to 
procedurally embed the knowledge MO that it will He u$ed when it is 
appropriate and not used when it it inappropriate.'' A l t h o u g h th is 

goal is still very far from being achieved, considerable progress is 
being made. This paper contains no major conceptual 
innovations although it does describe and give the rationale for 
many of the design decisions that have been made In 
P L A S M A [for P L A N N E R - l i k e System Modeled on 
Actors) which is currently being implemented at M I T . as part of 
a Programming Apprentice project and for other applications. 
The paper tries to delineate major unsolved problems and make 
suggestions for how some of them may be attacked. Arguments 
are presented against the competing predicate logic paradigm for 
the implementation of knowledge-based systems. 

Relationship to QA-4 and POPLER 

Roth POPLER {for POP-2 PLANNER) (Davies 1972] and 
QA-4 (Rulifson et a! 1972) are basically cleaner versions of 
P L A N N E R 71 POPLER made important contributions in 
studying how to translate English quantifiers into a procedural 
fo rm and in pointing out the ambiguity of the goal statement of 
P L A N N E R . A statement of the form (goat (on A B)) in 
P L A N N E R 69 could be satisfied either by demonstrating that A 
already is on B or by changing the world so that A is on B QA-4 
drnves f rom scries of question answering programs done at SRI 
in the late 1960s and early I970Y The QA-2 and QA-3 [Green 
and Raphael 19713 systems were both resolution-based uniform 
proof procedure theorem provers. QA-4 abandoned the 
resolution based theorem prover problem solving paradigm and 
adopted the procedural embedding of knowledge approach of 
P L A N N E R The most original contribution of QA-4 was 
Rulifson's development of a context mechanism. 

QA-4 and POPLER also made some important 
improvements of the syntax of PLANNER-iike languages. 
P L A S M A has continued in this tradition of making 
improvements to make PLANNER-like formalisms more readable 
by making them more "English-like". However, ft is important 
not to be misled into reading more into the symbols in the code 
than is really there. In every case the the semantics of the 
English symbols must be implemented elsewhere in other modules 
to realize the desired behavior. For example we shall glibly make 
assertions in the data base such as (A is-on B). However, at some 
place [either explicitly or implicitly) code must be provided which 
specifies how actors created by the template (... is-on ...) behave in 
matching and how they index themselves in the data base. There 
is the potentiality for doing the indexing cleverly taking 
advantage of the fact that is-on is a transitive asymmetric 

relation. But in order to do so the specialized code must be made 
known to the (... it-on ...) template. 

Programming Methodology 

Actors make a contribution to the "declarative-procedure" 
controversy in that they subsume both the behavior of pure 
procedures (functions) and pure declaratives [data structures] as 
special cases. Discussions of the controversy that do not explicitly 
recognize the ability of actors to serve both functions may be 
doomed to sterility. 

Actor semantics promotes a programming methodology 
which consists of the following activities: 

Deciding on the natural kinds or objects to have in the 
domain. 

Deciding for each kind of object what kind of messages 
it should receive. 

Deciding for each kind or object what it should do when 
it receives each kind of message. 

T h e above is a generalization of the programming methodology 
pioneered by S IMULA in which we have unified classes, 
procedures, and coroutines Once the above decisions have been 
made, it should be possible to directly implement the design 
directly without circumlocutions. 

Unification of Pattern-Directed Invocation 

We do not want to have to explicitly store every piece of 
knowledge which we have but would like to be able to derive 
conclusions f rom what is already known using procedures. The 
syntactic form {when ... try ...) as in {when trigger try body) or 
completely cquivalently the syntactic form {to... try...) as in 
(to trigger try body ) creates a p l a n [high level goal-oriented 
procedure) that can be invoked by pattern directed invocation by 
a trigger which matches trigger There is a great deal of 
confusion in the literature about "demons". The phrase 
"completely cquivalently" above is meant to emphasize that there 
really is just one pattern directed invocation primitive. 
Implementing "antecedent" [working forward) plans entails facing 
the same issues as implementing "consequent" [working backward) 
plans. These problems involve doing retrieval, data base updates, 
and dealing with multiply applicable plans. 

The following are kinds of plans which could be defined in 
terms of the above general pattern directed Invocation machinery. 
Addit ional kinds of plans can be defined as they are needed with 
the user defining their semantics by writing procedures for the 
triggers and bodies. 

Carl Hewitt 
M.I.T. Artif icial Intelligence Laboratory 

The major advance accomplished in PLASMA has been to 
explicitly base the semantics of a PLANNER-like formalism on 
actors. The actor semantics have resulted in a number of 
improvements in PLASMA over QA-4 POPLER, and 
C O N N I V E R 
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The process of invoking plans in worlds is controlled by 
recommendations made at the site where a request Is made of the 
world to achieve a particular goal. We envisage that problem 
solving would begin in a world with an initial class of plans, [n 
many cases most of the plans that are used in the ultimate 
solution of the problem need to be constructed by other plans 
dur ing the problem solving process. 

W o r l d D i rec ted Invocation 

World directed invocation [Hewitt et al. 1973, Stansfteld 
1975, Freuder 1975) is invocation of procedures on the basis of a 
fragment of a micro-world instead of a single assertion or goal as 
in previous PLANNER-like fo'malisms. It is a generalization of 
pattern directed invocation [Hewitt 1969] such that more than one 
assertion is taken into account in directing the invocation. We 
foresee that the further development of world directed invocation 
and plans wil l play an important role in future development of 
PLANNER- l ike languages Within (he actor model of 
computation, the only way a piece of knowledge can be used is for 
actors, which have the knowledge, to be sent messages which 
cause them to act on it. We foresee that programming 
distr ibution networks in worlds to handle world-directed 
invocation wil l be important for effective modular distribution of 
knowledge. World directed invocation is still In a relatively 
undeveloped state by comparison with pattern directed Invocation 
which has been implemented in many PLANNER-like languages. 

An important issue is how to maintain control over the 
invocation process. Two general mechanisms for this control are 
recommendations [Hawitl IJCAI-69, IJCAI-71) and clustering 
[Coldstein 1973, Stansfietd 1975, Marcus 1975] Clustering is the 
technique of gathering together plans that have overlapping 
domains of applicability. Suppose we have two plans plan1 and 
plan2: 

The use of nested "then:" and "else:" continuations as in the 
above example together with compla int-departments seems to 
solve the scoping control problem which had been plaguing 
PLANNER- l i ke languages for some time. Sandewall [1973] and a 
revised version of QA-4 independently developed nested 
continuation control structure for PLANNER-like languages. 
C O N N I V E R attempted to solve the scoping control problem by 
introducing possibility lists and Landin-style non-hierarchical 
gotos. However possibility lists proved to have several 
deficiencies They introduced side-effects into the basic 
communication mechanism between methods in CONNIVER 
which made it dif f icult for users to debug their programs since 
doing a try-noxt operation to print the next possibility 
destructively interferes with the operation of the programs being 
debugged. 

"Their [Sussman and McDermott] solution, to give the user accets 
to the implementation primitives of PLANNRR. i$ hotnever, 
something of a retrograde mep (what are CONNIVER*s semantic*?), 
although pragmatically useful and important in the shert term. A 
better solutian is to give the user access to a meaningful tes of 
primitive control abilities in on explicit rcpretentotional $ehem* 
concerned uith deductive control.'' 
Hayes: "Soma Problemt and Non-ProWamt in Ropratantation Thoory" 

Nested continuation control structure gives us the ability to 
influence or control any decision to the extent we desire while still 
retaining the high level goal oriented nature of PLANNER. 
P L A S M A is able to accomplish this by basing its semantics on 
actor message passing and slightly changing the syntax of 
PLANNER-71 The change in syntax provides us with natural 
places to incorporate the control Information and enables us to 
avoid the gratuitous side effects in PLANNER-71. 

In terms of the actor model of computation, control 
structure is simply a pattern of passing messages CONNIVER 
represented a substantial advance over PLANNER-69 
[implemented as MICRO-PLANNER by Sussman. Winograd, 
and Charniak] in increasing the generality of goal-oriented 
computations that can be performed. However this increase in 
generality comes at the price of lowering the level of the language 
of problem solving. It forces users to think In low level 
implementation terms such as "possibility lists" and "a-links". 
We propose a shift in the paradigm of problem solving to be one 
of a society of Individuals communicating by passing 
messages. Wi th in this semantic paradigm PLASMA acts as a 
f lexible transparent medium for expressing desired behaviors 
without forcing the user to always think in low level 
implementation terms. It raises the level of problem solving while 
retaining the flexibility to control any decision by the modular 
addit ion of more knowledge 
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One of the earlier and better examples of clustering is found In 
Coldstein's design of geometry experts [each for a particular goal 
l ike congruence] which are responsible for choosing the best or at 
least the order of applying the plans for that goal. 



Compla in t Departments 

The "generate and test" method of Newell and Simon It a 
fundamental procedural schemata An Intuitively appealing 
extension to the generate and test method Is to allow the consumer 
to talk. back, to the generator with complaints, advice, and 
encouragement. PLANNER-69 had a mechanism for attempting 
to do this [called "failure messages"] that was so clumsy as to be 
essentially unuseable. In a very nice piece of work, Scott Fahlman 
improved on this mechanism to construct an extremely 
sophisticated blocks world construction program. His Idea was to 
construct "gripe handlers" which communicate by making use of 
assignments to the local variables of gripe handlers and 
Landin-style non-hierarchical gotos to transfer control. However, 
the gripe mechanism Is still awkward because of the necessity of 
side-effecting the handler which introduces the possibility of 
gripes accidentally clobbering each other or gripers accidentally 
clobbering the variables of other procedures. The message 
passing semantics of actor control structure seems to provide a 
fa i r ly elegant simple mechanism for customers to talk back to 
generators. [The idea is an adaptation of the stream concept of 
Landin. ] The customer receives a complaint department along 
wi th each new candidate produced by the generator. At a later 
point the customer can send a message to the complaint 
department that contains the complaint or advice plus any other 
actors that might be of use. These complaint departments are 
used in conjunction with the nested continuation control structure 
described above to help maintain the desired degree of control 
over the high level goal-oriented plans of PLASMA. 

Of course the above f u u y classification does not Include many 
important aspects of frames. However, as a matter of research 
strategy, we would like to investigate how the above three 
f raming mechanisms an co-exist in a single problem solving 
system. To this end we are implementing a mechanism which we 
call a stereotype to enable us to use these three framing 
mechanisms simultaneously. The stereotype mechanism attempts 
to deal with only a smalt number of the Issues that have been 
raised by frames [1975 T I N L A P pre-prints) as a "fremewerk /or 
reprinting knowledge" [Minsk y 1974). By Implementing 
prototype systems using the stereotype mechanism, we hope to 
gradually discover how to bring the above frame mechanisms 
into active cooperation. We define a s t e r e o t y p e to consist of 

acuuection o f c h a r a c t e r i s t i c o b j e c t s 

It seems that many of the behaviors attributed to frames by 
Minsky can be realized by stereotypes The characteristic objects 
of a stereotype correspond closely to the slots of a Minsky frame 
and the characteristic relations of a stereotype correspond to the 
constraints of a Minsky frame. Minsky calls simple unary 
characteristic relations markers Stereotypes communicate by 
making assertions in the data base and by world directed 
invocation. 

We instantiate stereotypes somewhat differently from the 
way in which Minsky instantiates frames Our approach Is to 
plug in definite candidates for all the characteristic objects of a 
stereotype that we can and use anonymous objects [Herbrand, 
Skolcmj for the rest. Defaults are done as assertions tagged to 
indicate that they are defaulted so that they can be easily 
displaced if an anomaly develops Defaults as tags on assertions 
have an important advantage over the default values for the slots 
of a Minsky frame in that often a default relationship is known 
between two objects of a stereotype even though no default value 
is appropriate for either object. For example, there is a default 
relationship between the month of the date of the birthday party 
and the month of the birthday of the guest of honor. However, 
there is no particular month which is a very good default value 
for either. The use of anonymous objects in PLASMA enables us 
to reason explicitly about various possibilites using assertions and 
goals in the data base without complicating its identifier binding 
mechanism. Previous PLANNER-iike formalisms have placed 
the burden of doing the communication on the binding 
mechanism. This process of instantiation Is closely related to the 
process of f i irther specification emphasized by Newell and Moore 
in Mer l in. 

Although we shall use tags on assertions and goals to 
relativize them to particular situations, hypotheses, and contexts, 
we do not want to make any of the global assumptions of 
McCarthy and Hayes All of our situations will be local. For 
example, whenever one situation precedes another, we shall allow 
for the possibility that there is a third distinct si'uation which Is 
neither before the former nor after the latter. For a discussion of 
the issues involved in this decision for the actor model of 
computation see Creif and Hewitt [1975} 

The following fuzzy categories are examples of 
circumstantial situations: physical states, mental slates, logical 
hypotheticals, hypotheses, view points, goal situations, 
predictions, and defaults. The following are some simple 
examples of assertions that use such situational tags: 



P L A S M A does not use the QA-4 context mechanism 
(Rultfson et al. 1972): instead it uses explicit tags in assertions to 
keep track of the state of affairs in various situations. One 
problem with the usual use of the QA-4 context mechanism is 
that the problem solver is forced to attempt to propagate all 
changes in the situation immediately on a frame shift since 
otherwise inconsistent information will be inherited from the 
previous situation. Another problem with the QA-4 context 
mechanism is that it is sometimes difficult to reason explicitly 
about various situations using it because situations (frames) are 
not explicitly part of the assertions and goals. 

For example consider two contexts such that in the first 
Nel l is standing cm the earth and in the second he is standing on 
the moon. This can be accomplished using contexts by generating 
two new contexts [call them context4 and conloxtg] and then 
asserting (Noil is-standing-on oarth) with-respect-to con1oxt4 and 
asserting (Noil is-standing-on moon) with-respect-to contoxt5. 
However, consider the assertion that the weight of Neil in the 
f i rst context is greater than his weight in the second This is not 
an assertion that can be made with respect to either context atone. 
Instead it seems that it is necessary to incorporate tags for both 
contexts into the assertion. 

( (w igh t Neil in context4) > {weight Nail in context5)) 

Events that are viewed from several different viewpoints 
can be d i f f icu l t to handle. For example, consider the problem 
faced by Miss Marple in solving a murder mystery which 
happened at a party attended by several guests. Each guest has a 
fa i r ly coherent story to tell but [at least] one of them is lying. 
Gerry and Mari lyn are two guests [considered by Miss Marple to 
be generally reliable] who witnessed the shooting. Gerry's 
description is contained in contexl; whereas Marilyn's description 
is in contoxtg. We would like to construct a new context which 
inherits Information f rom both these descriptions. However, in 
the QA-4 context mechanism a sub-context inherits assertions only 
f r om the one stngle context of which it Is an extension created by 
the puth-eontoxt primitive Of course, there will be some slight 
discrepancies between Gerry's description and Marilyn's 
description even though both are "thoroughly reliable upstanding 
citizens" Methods for dealing with this problem are not well 
understood and wil l be discussed further later in the paper. 

However, without the example of the QA-4 contexts to 
guide us, we could never have realized how to deal with these 
problems using situational tags. [The context mechanism In 
C O N N I V E R was modeled on the one in QA-4.] 

It is easy to see how the abilities of QA-4 contexts can be 
implemented using situational tags As a first approximation In 
which erasing in contexts is not implemented, the following 
procedure wil l work. 

The blocks world has proved to be one of the most f ru i t fu l 
micro-worlds for research in artificial intelligence. It motivated 

the introduction of a large number of the important features of 
PLANNER-69 [MICRO-PLANNER) which was used to good 
advantage by Terry Winograd as an convenient high level goal 
oriented procedural formalism in which to translate natural 
language The following are simple properties of the blocks 
world expressed in the quantificational calculus. In order to be 
ef fect ive ly and eff ic ient ly used for many purposes this 
knowledge needs to be procedurally embedded in various plans. 
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Of ten in frame transitions, it is necessary to be able to 
make deductions in both directions across the transition. For 
example suppose that we are told the following Information: 

Henry inherited one hundred thousond dotlon from hi$ 
parents Jill and Jack who died suddenly Ienring no mill. The laws 
require that the ettate in such cases he divided evenly emong the 
children. 

We can derive the following information for the Initial 
situations 



One of the major aims of the Programming Apprentice Project Is 
to scrutinize the relationships and dependencies engendered by 
these embedding! 

We have found it useful To incorporate two types of worlds 
called Utopia [desired situation] and reality [achieved situation) in 
every problem solving situation. Our desire is to incorporate 
P L A N N I N G into problem solving using "islands" [Mtnsky 
1963) as stepping stones. The Utopia of one problem solving 
situation is taken as the reality of another. Sometimes working 
forward from what is known toward the goal is a good strategy. 
Sometimes working backward from the goal is a good strategy. 
Usually a combination of both is best. 

The plan demonstrate-is-above attempts to find an Island s with a 
block y such that it is known that x is above y and it can be 
demonstrated y is above z We will explain more sophisticated 
forms of island construction in examples given later in the paper. 

The following are examples of convenient plans for use In 
our blocks world that procedurally embed some of the above 
knowledge: 
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An island is a problem solving situation for which it is not 
known whether it is achievable from reality or whether Utopia 
can be achieved from it; but there is reason to hope that both are 
in fact possible, it might be imagined that such islands are 
extremely difficult to find. But as Cerry Sussman has pointed 
out; such islands are proposed all (he time in PLANNER-like 
formalisms. In order to demonstrate that a block x is above 
another block z, it is sufficient to demonstrate that there is a 
block y such that x is above y and y is above z 



order wh i ch they are presented. If this runs Into a protection 
v i o l a t i on , an attempt is made [on the basis of the k ind of 
v io la t i on ] to reorder the conjuncts and continue as before. T h e 
p r o b l e m g iven below was invented by Allen Brown as an example 
of a s imple blocks wor ld problem that cannot be solved using the 
" l i near " strategy without backtracking trying first one conjunct 
f i r s t then the other. We present this as a very simple il lustration 
of how p lann ing using "islands** can help keep the problem 
s o l v i n g constrained and avo id search. None of this Is meant as a 
c r i t i c i sm of Sussman who designed and partly Implemented a 
real ly interest ing problem solving system. His work inspired us to 
f u r t h e r develop the constraint analysis approach which Is a 
v a r i a n t of the "means-ends" analysis used by Newell and Simon. 
T h e i n i t i a l s i tuat ion [real i ty] r is 

Constraint analysis can be used to straightforwardly solve 
the Brown blocks world problem as follows. Clearly, the Initial 
state is not a solution to the problem, tie. u Is not r) because 
((C is-above A) in r) is incompatible with ((A is-above C) in u) The 
easiest way to solve the problem is by working backwards from 
Utopia u doing constraint analysis. Constraint Analysis is a 
planning technique in which abstract reasoning is used to derive 
the necessary structure of the possible solutions to a problem. In 
working backwards from a situation, attempt to eliminate the 
constraints that don't hold in reality. If Utopia u is to be achieved 
from a previous state u1, it must be that the following holds 
about u1 

T h e p rob lem is sti l l not solved fo r the same reason. [Note that u2 

must have been obtained f r o m some previous situation u3 by 
m o v i n g C since this is the only way to eliminate the constraint 
tha t It is not the case that C Is above A] 

where now-support- tor-C is some position. Notice how limited and 
abstract the knowledge of Utopia u3 has become in the course of 
abstract ly p lann ing backwards. Now it seems possible that w3 

m i g h t be r. So create a new hypothesis h. 

The above solution can be varlabalized using procedural 
abstraction [I lewitt 1971; Sussman 1973] into a procedure as follows 
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Comparing the new utopia with the original reality s, it is not 
obvious how to further constrain the structure of the solution. 
However, notice that u2 is compatible with t except that B must 
have a clear top in u2 whereas A is on B in s Thus there is a 

potentiality that u2 can be reached from s by clearing the top of 
B in s to produce a new situation s1. In working forwards from a 
situation, attempt to satisfy the constraints that hold in Utopia. In 
order to do this A must be put some place which we shall denote 
by new- tuppor l - fo r -A 
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"Predicate Logic as Programming languagal The deficiencies of 
the predicate calculus as a programming language are traced 
back to the tmtli-t l ieoretic [Tarski 1930] semantics of logic. The 
nub of (he diff iculty seems (o be the way In which meaning is 
def ined, in that axioms may convey truth but not pragmatic 
informat ion We explain how the behavioral semantics alleviate 
some of the difficulties with truth-theoretic semantics. This work 
is presented using R o t o r s , a semantic concept in which no 
active process is ever allowed to treat anything as an object; 
instead a polite request must be extended to accomplish what Is 
desired. 

Necess i ty of a. Un i f i ed Formal ism 

For some years now we have been working to achieve the 
goal of a unified formalism and semantics for knowledge based 
systems. The record of our progress is published in the 
Proceedings of the International Joint Conferences on Artificial 
Intelligence beginning with the first conference in 1969. In the 
course of this research we have developed the Thesis of 
Procedural Embedding of Knowledge The useful knowledge off 
a domain is intr insically bound up with the specialized 
procedures for its use. An important corollary is that the 
fundamental technique for the representation of knowledge is 
Procedural Knowledge Base Construction 

"More specifically: I uill argue that computation is best 
regarded as a proem* of controlled deduction. It will he further 
argued that the two otpeett specifying the control mechaninm) of 
programming are heat tcftftraird expliciritly, as the kindt of 
language involved have quite dittinct $emanticM." 

Pal Hayes: "Computation and Deduction" 

A satisfactory theory for the representation of knowledge 
should have one unified totally integrated formalism and 
semantics. For example we should not have one formalism and 
semantics for expressing declaratives and a separate [as proposed 
by Hayes] formalism and semantics for expressing procedures. 
Hav ing two formalisms [with different semantics] erects an 
arbitrary pernicious barrier between two ends of a useful 
continuum. One technique which shows great promise toward 
automating the development of procedural knowledge base 
acquisition is that of Progressive Refinement of Plans [Dljkstra, 
W i r t h 1971; Cheatham and Wegbreit 1973; Hewitt 1971, 1975} This 
technique involves the transition from very high-level 
goal-oriented procedures to more particular efficient 
implementations for special circumstances. As such it spans the 
spectrum from relatively domain-independent goal-oriented 
(declarative?) modes of computation to particular efficient 
[procedural ] modes The facility with which Progressive 
Refinement of Plans can be automated depends on having one 
formalism and semantics to span the above spectrum 

The definition of T R U T H as formalized by Tarskl for 
the quantificational calculus is one of the crowning achievements 
of mathematical logic It has clarified the semantics of ordinary 
mathematical theorems and led to the development of 
truth-theoretic model theory which is a flourishing mathematical 
f ield in its own right We contend that it Is less satisfactory as a 

semantic base for a theory of action and change Tarskian 
semantics characterizes predicate logic in the following sense: 
Goclel proved that for the first order quantificational calculus 
that the class of sentences deducible by the classical laws of logic 
is exactly the same as the ones which are true by Tarskl's 
def in i t ion The notion of truth formalized by Tarski is very 
smooth but we contend that it glosses over semantic distinctions 
that are crucial to the development of knowledge-based systems 

The deductions of plans in a PLANNER-like formalism 
have the potential to carry more conviction [in the sense of 
Richard Weyhrauch and other logicians] than proofs in the 
classical predicate logic [For example a proof of a formula of 
the form ( imptice ψ) carries conviction if it demonstrates a 
"causal" connection from  to ψ.) This is because our minds are 
better at grasping constructive relationships between plans than 
global relationships established by asserting that a class of axioms 
is true or consistent Two plans can affect each other only if 
there is a behavioral causal connection of "wheels and. cogs". We 
seem to be able to design, control and debug plans better than 
axioms 

In the rcal world no formal principle is universally literally 
true Any rule can be stretched beyond its range of applicability 
to produce contradictions Except in mathematics all useful 
principles are hemmed in with Qualifications, hedges, and 
caveats Knowledge is better expressed procedurally in the form 
of tough minded skeptical plans that actively attempt to guard 
against their misuse The business of actively searching out 
hidden anomalous situations is as important as the business of 
making deductions that carry conviction Indeed, much of the 
conviction carried by a set of plans is dependent on their ability 
to withstand repeated, meticulous, rigorous attempts at refutation 
f r om as many directions of attack as can be conceived No 
principles [including the classical laws of logic) are sacred against 
criticism when anomalies are detected. 

No satisfactory method for testing the consistency of 
non-tr iv ial sets of axioms in the quantificational calculus has 
been developed For example inconsistent formulations of the 
"B l ind Hand Problem" [a particular toy robot problem] have been 
produced in the quantificational calculus Their inconsistency has 
been discoveted almost by accident as proofs by contradiction get 
shorter and shorter until the negation of the desired consequence 
is found to be superfluous to the proof! People are quite tolerant 
of minor inconsistencies The inability of the quantificational 
calculus to tolerate any inconsistency at all in formulating 
problems is a sign of excessive semantic rigidity An example of 
the kind of problem engendered by this rigidity when dealing 
wi th common sense knowledge is given below. In general we feel 
that a contradiction is evidence for a bug in one's plans or world 
model and that to satisfactorily resolve the bug, It may be 
necessary to examine al[ the assumptions being made instead of 
oniy tne most recent one. Currently mere are no guuu ways to 
debug classes of axioms, whereas there is a well established and 
rapidly developing technology for debugging procedures [Miniky 
and Papert 1972, Sussman 1974; Goldstein 1974; Hewitt and Smith 
1975]. 
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We agree with the above comment of Hayes (except that we 
have a different notion of semantics for the language of the 
predicate calculus) The way in which the rulrs of natural 
deduction follow from the procedural mechanisms of PLASMA, 
demonstrates how deduction can usefully be considered to be a 
special case of computation. Furthermore, by implementing the 
useful part of the behavior of the quantificational calculus in 
P L A S M A , we will obtain a behavioral semantics of the 
quantif icational calculus from the underlying actor semantics of 
P L A S M A Consider a formula of the form which means 
that for every x we have that the case The procedural 
meaning of the formula consists of plans for how it can be used. 
T h e plans we are attempting to develop for V and the other 
logical operators are reminiscent of natural deduction except that 
we have four introduction and elimination rules [demorwtrate, 
refute, assort, and deny) to give us more flexibility in dealing with 
negation. example is the following plan: 

Ou r intent in attempting to formulate plans like the above Is to 
try to characterize the useful behavior of 
We do not intend for them to be used as the code to define a 
general uni form proof procedure. Instead they are intended to be 
used as template schemata in progressive refinement to construct 
more specialized domain dependent plans. The classical rules of 
logic are intended to generate all the true sentences from a given 
class of true sentences. Our behavioral definitions are intended 
to define the justifiable behavior of the logical operators that 
carries conviction. 

The gigo plan graphically illustrates a fundamental problem 
wi th the truth-theoretic semantics for the predicate calculus The 
presence of the gigo rule in the quantificational calculus casts a 
shadow of doubt on the reliability of all of the computations of 
the system. For example the following set of assertions 
[McDermott 1973] is not consistent However. a problem solving 
system should not be able to conclude that 1+1 ■ 3 from the 
inconsistencyl 

However, it is easy to generate gigo using classical-negation and 
indirect proof. We are working to develop a more limited form 
of indirect proof in which the contradiction mutt depend in an 
essential way on the hypothesis being refuted. The behavioral 
semantics of depending-on needs to be carefully worked out to 
produce a deduction system that more nearly captures the 
logicians' notion of conviction as discussed above. Again a Key 
technique for attacking the problem is to explicitly record for 
every assertion the rules and hypotheses used in its derivations 

Fur the r Work 

The PLASMA system described in this paper is currently 
being implemented at the M I T Artificial Intelligence Laboratory. 
The best version which currently runs was coded in LISP by 
Howie Shrobe A better humanly engineered version has been 
designed and coded by Carl Hewitt in PLASMA with the 
extensive aid of Marilyn McLennan. The new implementation 
has been translated into LISP by the members of a seminar this 
spring with the following participants: Russ Atkinson, Mike 
Frei l ing, Kenneth Kahn, Marilyn McLennan, Keith Nishihara, 
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A more reasonable conclusion is that Fred might be an 
ostrich or a penguin. We feel that this problem of inconsistency 
is ripe for further research along the lines of McDermou [19731 
Sussman [1974], Goldstein [19743, Kuipers [1974] Rubin [19751 
Smith and Hewitt [19751 Erman and Lesser [19751 and McLennan 
[1975]. 



Howie Shrobe, Kathy Van Sant, and Aki Yonezawa The 
translation was made possible by LISP macros written by Russ 
Atkinson which makes the LISP code of the implementation 
closely resemble the PLASMA which it Implements A rough 
dra f t of a primer by Brian Smith and Carl Hewitt for the new 
Implementation exists 

Next fa l l the implementation will be used as a basis on 
winch to bui ld the higher level problem solving mechanisms 
described in this paper in order to implement some 
knowledge-based problem solving systems One project is the 
implementation of a Programming Apprentice The emphasis 
thus far in the project has been the elucidation and formalization 
of the semantic principles involved Procedures for analysis have 
been chosen for their ability to illustrate particularly difficult 
semantic problems. Examples that have been analyzed are pure 
queues [Hewitt and Smith], hash tables [Rich and Shrobe] 
impure queues (Yonezawal and various versions of the 
readers-writers problem [Greif] Each of these- examples is about 
one page of code in a high level language. But it takes an 
average programmer a half hour or so to really understand each 
one if it is being encountered for the first time We would like to 
continue this approach by analyzing even more difficult examples 
such as the disk directory system of a timesharing system and the 
Steele-Dijkstra parallel garbage collection algorithm. However, in 
addit ion we plan to take a larger system consisting of about ten or 
f i f teen pages of code in order to test our techniques on whole 
systems. In this regard, following a suggestion of Michael 
Dertouzos. we plan to try the programming apprentice on a 
budgetary assistant program that aids in the construction and 
balancing of budgets. 

A c k n o w l e d g e m e n t s 

This paper is a greatly elaborated written version of a talk 
delivered at the "Special Session on Formalisms for Artificial 
Intelligence" at IJCAI-73 at Stanford in August 1973 The 
research reported in this paper was sponsored by the M I T 
Ar t i f ic ia l Intelligence and Laboratory and Project MAC under 
the sponsorship of the Office of Naval Research 

Wr i t ing this paper would not have been possible without 
extensive conversations with Richard Weyhrauch. Candy 
Rullwinkle, Kenneth Kahn, Marilyn McLennan, Keith Nishihara. 
and Guy Steele made helpful comments and criticisms which 
considerably improved the intelligibility of this paper. Mitch 
Marcus suggested an improved title for the paptr and also made 
very helpfu l suggestions. Conversations with Allen Brown, 
Mar t in van Emden, Pat Hayes, Bob Kowalski, Marvin Mtnsky, 
Allen Newell. Earl Sacerdoti, Gerry Sussman, and Richard 
Waldinger have proved to be of great value in writing this 
paper. Although this paper has emphasized the deficiencies of 
truth-theoretic semantics for knowledge-based programming, we 
have learned a great deal from studying systems for attempting to 
use predicate logic as a problem solving formalism and 
interacting with the implcmentors of such systems Ira Goldstein, 
Howie Shrobe, and Gerry Sussman contributed valuable 
suggestions and criticisms on how to clarify the goals of this 
paper. 
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