
How to Use What You Know

This paper surveys the state of the art in the development
of problem solving mechanisms for PLANNER-like formalisms.
A major design goal for such formalisms is that "for any given
piece of knowledge there arc natural placet in the formatitm to
procedurally embed the knowledge MO that it will He u$ed when it is
appropriate and not used when it it inappropriate.'' A l t h o u g h th is

goal is still very far from being achieved, considerable progress is
being made. This paper contains no major conceptual
innovations although it does describe and give the rationale for
many of the design decisions that have been made In
P L A S M A [for P L A N N E R - l i k e System Modeled on
Actors) which is currently being implemented at M I T . as part of
a Programming Apprentice project and for other applications.
The paper tries to delineate major unsolved problems and make
suggestions for how some of them may be attacked. Arguments
are presented against the competing predicate logic paradigm for
the implementation of knowledge-based systems.

Relationship to QA-4 and POPLER

Roth POPLER {for POP-2 PLANNER) (Davies 1972] and
QA-4 (Rulifson et a! 1972) are basically cleaner versions of
P L A N N E R 71 POPLER made important contributions in
studying how to translate English quantifiers into a procedural
fo rm and in pointing out the ambiguity of the goal statement of
P L A N N E R . A statement of the form (goat (on A B)) in
P L A N N E R 69 could be satisfied either by demonstrating that A
already is on B or by changing the world so that A is on B QA-4
drnves f rom scries of question answering programs done at SRI
in the late 1960s and early I970Y The QA-2 and QA-3 [Green
and Raphael 19713 systems were both resolution-based uniform
proof procedure theorem provers. QA-4 abandoned the
resolution based theorem prover problem solving paradigm and
adopted the procedural embedding of knowledge approach of
P L A N N E R The most original contribution of QA-4 was
Rulifson's development of a context mechanism.

QA-4 and POPLER also made some important
improvements of the syntax of PLANNER-iike languages.
P L A S M A has continued in this tradition of making
improvements to make PLANNER-like formalisms more readable
by making them more "English-like". However, ft is important
not to be misled into reading more into the symbols in the code
than is really there. In every case the the semantics of the
English symbols must be implemented elsewhere in other modules
to realize the desired behavior. For example we shall glibly make
assertions in the data base such as (A is-on B). However, at some
place [either explicitly or implicitly) code must be provided which
specifies how actors created by the template (... is-on ...) behave in
matching and how they index themselves in the data base. There
is the potentiality for doing the indexing cleverly taking
advantage of the fact that is-on is a transitive asymmetric

relation. But in order to do so the specialized code must be made
known to the (... it-on ...) template.

Programming Methodology

Actors make a contribution to the "declarative-procedure"
controversy in that they subsume both the behavior of pure
procedures (functions) and pure declaratives [data structures] as
special cases. Discussions of the controversy that do not explicitly
recognize the ability of actors to serve both functions may be
doomed to sterility.

Actor semantics promotes a programming methodology
which consists of the following activities:

Deciding on the natural kinds or objects to have in the
domain.

Deciding for each kind of object what kind of messages
it should receive.

Deciding for each kind or object what it should do when
it receives each kind of message.

T h e above is a generalization of the programming methodology
pioneered by S IMULA in which we have unified classes,
procedures, and coroutines Once the above decisions have been
made, it should be possible to directly implement the design
directly without circumlocutions.

Unification of Pattern-Directed Invocation

We do not want to have to explicitly store every piece of
knowledge which we have but would like to be able to derive
conclusions f rom what is already known using procedures. The
syntactic form {when ... try ...) as in {when trigger try body) or
completely cquivalently the syntactic form {to... try...) as in
(to trigger try body) creates a p l a n [high level goal-oriented
procedure) that can be invoked by pattern directed invocation by
a trigger which matches trigger There is a great deal of
confusion in the literature about "demons". The phrase
"completely cquivalently" above is meant to emphasize that there
really is just one pattern directed invocation primitive.
Implementing "antecedent" [working forward) plans entails facing
the same issues as implementing "consequent" [working backward)
plans. These problems involve doing retrieval, data base updates,
and dealing with multiply applicable plans.

The following are kinds of plans which could be defined in
terms of the above general pattern directed Invocation machinery.
Addit ional kinds of plans can be defined as they are needed with
the user defining their semantics by writing procedures for the
triggers and bodies.

Carl Hewitt
M.I.T. Artif icial Intelligence Laboratory

The major advance accomplished in PLASMA has been to
explicitly base the semantics of a PLANNER-like formalism on
actors. The actor semantics have resulted in a number of
improvements in PLASMA over QA-4 POPLER, and
C O N N I V E R

189

The process of invoking plans in worlds is controlled by
recommendations made at the site where a request Is made of the
world to achieve a particular goal. We envisage that problem
solving would begin in a world with an initial class of plans, [n
many cases most of the plans that are used in the ultimate
solution of the problem need to be constructed by other plans
dur ing the problem solving process.

W o r l d D i rec ted Invocation

World directed invocation [Hewitt et al. 1973, Stansfteld
1975, Freuder 1975) is invocation of procedures on the basis of a
fragment of a micro-world instead of a single assertion or goal as
in previous PLANNER-like fo'malisms. It is a generalization of
pattern directed invocation [Hewitt 1969] such that more than one
assertion is taken into account in directing the invocation. We
foresee that the further development of world directed invocation
and plans wil l play an important role in future development of
PLANNER- l ike languages Within (he actor model of
computation, the only way a piece of knowledge can be used is for
actors, which have the knowledge, to be sent messages which
cause them to act on it. We foresee that programming
distr ibution networks in worlds to handle world-directed
invocation wil l be important for effective modular distribution of
knowledge. World directed invocation is still In a relatively
undeveloped state by comparison with pattern directed Invocation
which has been implemented in many PLANNER-like languages.

An important issue is how to maintain control over the
invocation process. Two general mechanisms for this control are
recommendations [Hawitl IJCAI-69, IJCAI-71) and clustering
[Coldstein 1973, Stansfietd 1975, Marcus 1975] Clustering is the
technique of gathering together plans that have overlapping
domains of applicability. Suppose we have two plans plan1 and
plan2:

The use of nested "then:" and "else:" continuations as in the
above example together with compla int-departments seems to
solve the scoping control problem which had been plaguing
PLANNER- l i ke languages for some time. Sandewall [1973] and a
revised version of QA-4 independently developed nested
continuation control structure for PLANNER-like languages.
C O N N I V E R attempted to solve the scoping control problem by
introducing possibility lists and Landin-style non-hierarchical
gotos. However possibility lists proved to have several
deficiencies They introduced side-effects into the basic
communication mechanism between methods in CONNIVER
which made it dif f icult for users to debug their programs since
doing a try-noxt operation to print the next possibility
destructively interferes with the operation of the programs being
debugged.

"Their [Sussman and McDermott] solution, to give the user accets
to the implementation primitives of PLANNRR. i$ hotnever,
something of a retrograde mep (what are CONNIVER*s semantic*?),
although pragmatically useful and important in the shert term. A
better solutian is to give the user access to a meaningful tes of
primitive control abilities in on explicit rcpretentotional $ehem*
concerned uith deductive control.''
Hayes: "Soma Problemt and Non-ProWamt in Ropratantation Thoory"

Nested continuation control structure gives us the ability to
influence or control any decision to the extent we desire while still
retaining the high level goal oriented nature of PLANNER.
P L A S M A is able to accomplish this by basing its semantics on
actor message passing and slightly changing the syntax of
PLANNER-71 The change in syntax provides us with natural
places to incorporate the control Information and enables us to
avoid the gratuitous side effects in PLANNER-71.

In terms of the actor model of computation, control
structure is simply a pattern of passing messages CONNIVER
represented a substantial advance over PLANNER-69
[implemented as MICRO-PLANNER by Sussman. Winograd,
and Charniak] in increasing the generality of goal-oriented
computations that can be performed. However this increase in
generality comes at the price of lowering the level of the language
of problem solving. It forces users to think In low level
implementation terms such as "possibility lists" and "a-links".
We propose a shift in the paradigm of problem solving to be one
of a society of Individuals communicating by passing
messages. Wi th in this semantic paradigm PLASMA acts as a
f lexible transparent medium for expressing desired behaviors
without forcing the user to always think in low level
implementation terms. It raises the level of problem solving while
retaining the flexibility to control any decision by the modular
addit ion of more knowledge

190

One of the earlier and better examples of clustering is found In
Coldstein's design of geometry experts [each for a particular goal
l ike congruence] which are responsible for choosing the best or at
least the order of applying the plans for that goal.

Compla in t Departments

The "generate and test" method of Newell and Simon It a
fundamental procedural schemata An Intuitively appealing
extension to the generate and test method Is to allow the consumer
to talk. back, to the generator with complaints, advice, and
encouragement. PLANNER-69 had a mechanism for attempting
to do this [called "failure messages"] that was so clumsy as to be
essentially unuseable. In a very nice piece of work, Scott Fahlman
improved on this mechanism to construct an extremely
sophisticated blocks world construction program. His Idea was to
construct "gripe handlers" which communicate by making use of
assignments to the local variables of gripe handlers and
Landin-style non-hierarchical gotos to transfer control. However,
the gripe mechanism Is still awkward because of the necessity of
side-effecting the handler which introduces the possibility of
gripes accidentally clobbering each other or gripers accidentally
clobbering the variables of other procedures. The message
passing semantics of actor control structure seems to provide a
fa i r ly elegant simple mechanism for customers to talk back to
generators. [The idea is an adaptation of the stream concept of
Landin.] The customer receives a complaint department along
wi th each new candidate produced by the generator. At a later
point the customer can send a message to the complaint
department that contains the complaint or advice plus any other
actors that might be of use. These complaint departments are
used in conjunction with the nested continuation control structure
described above to help maintain the desired degree of control
over the high level goal-oriented plans of PLASMA.

Of course the above f u u y classification does not Include many
important aspects of frames. However, as a matter of research
strategy, we would like to investigate how the above three
f raming mechanisms an co-exist in a single problem solving
system. To this end we are implementing a mechanism which we
call a stereotype to enable us to use these three framing
mechanisms simultaneously. The stereotype mechanism attempts
to deal with only a smalt number of the Issues that have been
raised by frames [1975 T I N L A P pre-prints) as a "fremewerk /or
reprinting knowledge" [Minsk y 1974). By Implementing
prototype systems using the stereotype mechanism, we hope to
gradually discover how to bring the above frame mechanisms
into active cooperation. We define a s t e r e o t y p e to consist of

acuuection o f c h a r a c t e r i s t i c o b j e c t s

It seems that many of the behaviors attributed to frames by
Minsky can be realized by stereotypes The characteristic objects
of a stereotype correspond closely to the slots of a Minsky frame
and the characteristic relations of a stereotype correspond to the
constraints of a Minsky frame. Minsky calls simple unary
characteristic relations markers Stereotypes communicate by
making assertions in the data base and by world directed
invocation.

We instantiate stereotypes somewhat differently from the
way in which Minsky instantiates frames Our approach Is to
plug in definite candidates for all the characteristic objects of a
stereotype that we can and use anonymous objects [Herbrand,
Skolcmj for the rest. Defaults are done as assertions tagged to
indicate that they are defaulted so that they can be easily
displaced if an anomaly develops Defaults as tags on assertions
have an important advantage over the default values for the slots
of a Minsky frame in that often a default relationship is known
between two objects of a stereotype even though no default value
is appropriate for either object. For example, there is a default
relationship between the month of the date of the birthday party
and the month of the birthday of the guest of honor. However,
there is no particular month which is a very good default value
for either. The use of anonymous objects in PLASMA enables us
to reason explicitly about various possibilites using assertions and
goals in the data base without complicating its identifier binding
mechanism. Previous PLANNER-iike formalisms have placed
the burden of doing the communication on the binding
mechanism. This process of instantiation Is closely related to the
process of f i irther specification emphasized by Newell and Moore
in Mer l in.

Although we shall use tags on assertions and goals to
relativize them to particular situations, hypotheses, and contexts,
we do not want to make any of the global assumptions of
McCarthy and Hayes All of our situations will be local. For
example, whenever one situation precedes another, we shall allow
for the possibility that there is a third distinct si'uation which Is
neither before the former nor after the latter. For a discussion of
the issues involved in this decision for the actor model of
computation see Creif and Hewitt [1975}

The following fuzzy categories are examples of
circumstantial situations: physical states, mental slates, logical
hypotheticals, hypotheses, view points, goal situations,
predictions, and defaults. The following are some simple
examples of assertions that use such situational tags:

P L A S M A does not use the QA-4 context mechanism
(Rultfson et al. 1972): instead it uses explicit tags in assertions to
keep track of the state of affairs in various situations. One
problem with the usual use of the QA-4 context mechanism is
that the problem solver is forced to attempt to propagate all
changes in the situation immediately on a frame shift since
otherwise inconsistent information will be inherited from the
previous situation. Another problem with the QA-4 context
mechanism is that it is sometimes difficult to reason explicitly
about various situations using it because situations (frames) are
not explicitly part of the assertions and goals.

For example consider two contexts such that in the first
Nel l is standing cm the earth and in the second he is standing on
the moon. This can be accomplished using contexts by generating
two new contexts [call them context4 and conloxtg] and then
asserting (Noil is-standing-on oarth) with-respect-to con1oxt4 and
asserting (Noil is-standing-on moon) with-respect-to contoxt5.
However, consider the assertion that the weight of Neil in the
f i rst context is greater than his weight in the second This is not
an assertion that can be made with respect to either context atone.
Instead it seems that it is necessary to incorporate tags for both
contexts into the assertion.

((w igh t Neil in context4) > {weight Nail in context5))

Events that are viewed from several different viewpoints
can be d i f f icu l t to handle. For example, consider the problem
faced by Miss Marple in solving a murder mystery which
happened at a party attended by several guests. Each guest has a
fa i r ly coherent story to tell but [at least] one of them is lying.
Gerry and Mari lyn are two guests [considered by Miss Marple to
be generally reliable] who witnessed the shooting. Gerry's
description is contained in contexl; whereas Marilyn's description
is in contoxtg. We would like to construct a new context which
inherits Information f rom both these descriptions. However, in
the QA-4 context mechanism a sub-context inherits assertions only
f r om the one stngle context of which it Is an extension created by
the puth-eontoxt primitive Of course, there will be some slight
discrepancies between Gerry's description and Marilyn's
description even though both are "thoroughly reliable upstanding
citizens" Methods for dealing with this problem are not well
understood and wil l be discussed further later in the paper.

However, without the example of the QA-4 contexts to
guide us, we could never have realized how to deal with these
problems using situational tags. [The context mechanism In
C O N N I V E R was modeled on the one in QA-4.]

It is easy to see how the abilities of QA-4 contexts can be
implemented using situational tags As a first approximation In
which erasing in contexts is not implemented, the following
procedure wil l work.

The blocks world has proved to be one of the most f ru i t fu l
micro-worlds for research in artificial intelligence. It motivated

the introduction of a large number of the important features of
PLANNER-69 [MICRO-PLANNER) which was used to good
advantage by Terry Winograd as an convenient high level goal
oriented procedural formalism in which to translate natural
language The following are simple properties of the blocks
world expressed in the quantificational calculus. In order to be
ef fect ive ly and eff ic ient ly used for many purposes this
knowledge needs to be procedurally embedded in various plans.

192

Of ten in frame transitions, it is necessary to be able to
make deductions in both directions across the transition. For
example suppose that we are told the following Information:

Henry inherited one hundred thousond dotlon from hi$
parents Jill and Jack who died suddenly Ienring no mill. The laws
require that the ettate in such cases he divided evenly emong the
children.

We can derive the following information for the Initial
situations

One of the major aims of the Programming Apprentice Project Is
to scrutinize the relationships and dependencies engendered by
these embedding!

We have found it useful To incorporate two types of worlds
called Utopia [desired situation] and reality [achieved situation) in
every problem solving situation. Our desire is to incorporate
P L A N N I N G into problem solving using "islands" [Mtnsky
1963) as stepping stones. The Utopia of one problem solving
situation is taken as the reality of another. Sometimes working
forward from what is known toward the goal is a good strategy.
Sometimes working backward from the goal is a good strategy.
Usually a combination of both is best.

The plan demonstrate-is-above attempts to find an Island s with a
block y such that it is known that x is above y and it can be
demonstrated y is above z We will explain more sophisticated
forms of island construction in examples given later in the paper.

The following are examples of convenient plans for use In
our blocks world that procedurally embed some of the above
knowledge:

193

An island is a problem solving situation for which it is not
known whether it is achievable from reality or whether Utopia
can be achieved from it; but there is reason to hope that both are
in fact possible, it might be imagined that such islands are
extremely difficult to find. But as Cerry Sussman has pointed
out; such islands are proposed all (he time in PLANNER-like
formalisms. In order to demonstrate that a block x is above
another block z, it is sufficient to demonstrate that there is a
block y such that x is above y and y is above z

order wh i ch they are presented. If this runs Into a protection
v i o l a t i on , an attempt is made [on the basis of the k ind of
v io la t i on] to reorder the conjuncts and continue as before. T h e
p r o b l e m g iven below was invented by Allen Brown as an example
of a s imple blocks wor ld problem that cannot be solved using the
" l i near " strategy without backtracking trying first one conjunct
f i r s t then the other. We present this as a very simple il lustration
of how p lann ing using "islands** can help keep the problem
s o l v i n g constrained and avo id search. None of this Is meant as a
c r i t i c i sm of Sussman who designed and partly Implemented a
real ly interest ing problem solving system. His work inspired us to
f u r t h e r develop the constraint analysis approach which Is a
v a r i a n t of the "means-ends" analysis used by Newell and Simon.
T h e i n i t i a l s i tuat ion [real i ty] r is

Constraint analysis can be used to straightforwardly solve
the Brown blocks world problem as follows. Clearly, the Initial
state is not a solution to the problem, tie. u Is not r) because
((C is-above A) in r) is incompatible with ((A is-above C) in u) The
easiest way to solve the problem is by working backwards from
Utopia u doing constraint analysis. Constraint Analysis is a
planning technique in which abstract reasoning is used to derive
the necessary structure of the possible solutions to a problem. In
working backwards from a situation, attempt to eliminate the
constraints that don't hold in reality. If Utopia u is to be achieved
from a previous state u1, it must be that the following holds
about u1

T h e p rob lem is sti l l not solved fo r the same reason. [Note that u2

must have been obtained f r o m some previous situation u3 by
m o v i n g C since this is the only way to eliminate the constraint
tha t It is not the case that C Is above A]

where now-support- tor-C is some position. Notice how limited and
abstract the knowledge of Utopia u3 has become in the course of
abstract ly p lann ing backwards. Now it seems possible that w3

m i g h t be r. So create a new hypothesis h.

The above solution can be varlabalized using procedural
abstraction [I lewitt 1971; Sussman 1973] into a procedure as follows

194

Comparing the new utopia with the original reality s, it is not
obvious how to further constrain the structure of the solution.
However, notice that u2 is compatible with t except that B must
have a clear top in u2 whereas A is on B in s Thus there is a

potentiality that u2 can be reached from s by clearing the top of
B in s to produce a new situation s1. In working forwards from a
situation, attempt to satisfy the constraints that hold in Utopia. In
order to do this A must be put some place which we shall denote
by new- tuppor l - fo r -A

195

"Predicate Logic as Programming languagal The deficiencies of
the predicate calculus as a programming language are traced
back to the tmtli-t l ieoretic [Tarski 1930] semantics of logic. The
nub of (he diff iculty seems (o be the way In which meaning is
def ined, in that axioms may convey truth but not pragmatic
informat ion We explain how the behavioral semantics alleviate
some of the difficulties with truth-theoretic semantics. This work
is presented using R o t o r s , a semantic concept in which no
active process is ever allowed to treat anything as an object;
instead a polite request must be extended to accomplish what Is
desired.

Necess i ty of a. Un i f i ed Formal ism

For some years now we have been working to achieve the
goal of a unified formalism and semantics for knowledge based
systems. The record of our progress is published in the
Proceedings of the International Joint Conferences on Artificial
Intelligence beginning with the first conference in 1969. In the
course of this research we have developed the Thesis of
Procedural Embedding of Knowledge The useful knowledge off
a domain is intr insically bound up with the specialized
procedures for its use. An important corollary is that the
fundamental technique for the representation of knowledge is
Procedural Knowledge Base Construction

"More specifically: I uill argue that computation is best
regarded as a proem* of controlled deduction. It will he further
argued that the two otpeett specifying the control mechaninm) of
programming are heat tcftftraird expliciritly, as the kindt of
language involved have quite dittinct $emanticM."

Pal Hayes: "Computation and Deduction"

A satisfactory theory for the representation of knowledge
should have one unified totally integrated formalism and
semantics. For example we should not have one formalism and
semantics for expressing declaratives and a separate [as proposed
by Hayes] formalism and semantics for expressing procedures.
Hav ing two formalisms [with different semantics] erects an
arbitrary pernicious barrier between two ends of a useful
continuum. One technique which shows great promise toward
automating the development of procedural knowledge base
acquisition is that of Progressive Refinement of Plans [Dljkstra,
W i r t h 1971; Cheatham and Wegbreit 1973; Hewitt 1971, 1975} This
technique involves the transition from very high-level
goal-oriented procedures to more particular efficient
implementations for special circumstances. As such it spans the
spectrum from relatively domain-independent goal-oriented
(declarative?) modes of computation to particular efficient
[procedural] modes The facility with which Progressive
Refinement of Plans can be automated depends on having one
formalism and semantics to span the above spectrum

The definition of T R U T H as formalized by Tarskl for
the quantificational calculus is one of the crowning achievements
of mathematical logic It has clarified the semantics of ordinary
mathematical theorems and led to the development of
truth-theoretic model theory which is a flourishing mathematical
f ield in its own right We contend that it Is less satisfactory as a

semantic base for a theory of action and change Tarskian
semantics characterizes predicate logic in the following sense:
Goclel proved that for the first order quantificational calculus
that the class of sentences deducible by the classical laws of logic
is exactly the same as the ones which are true by Tarskl's
def in i t ion The notion of truth formalized by Tarski is very
smooth but we contend that it glosses over semantic distinctions
that are crucial to the development of knowledge-based systems

The deductions of plans in a PLANNER-like formalism
have the potential to carry more conviction [in the sense of
Richard Weyhrauch and other logicians] than proofs in the
classical predicate logic [For example a proof of a formula of
the form ( imptice ψ) carries conviction if it demonstrates a
"causal" connection from  to ψ.) This is because our minds are
better at grasping constructive relationships between plans than
global relationships established by asserting that a class of axioms
is true or consistent Two plans can affect each other only if
there is a behavioral causal connection of "wheels and. cogs". We
seem to be able to design, control and debug plans better than
axioms

In the rcal world no formal principle is universally literally
true Any rule can be stretched beyond its range of applicability
to produce contradictions Except in mathematics all useful
principles are hemmed in with Qualifications, hedges, and
caveats Knowledge is better expressed procedurally in the form
of tough minded skeptical plans that actively attempt to guard
against their misuse The business of actively searching out
hidden anomalous situations is as important as the business of
making deductions that carry conviction Indeed, much of the
conviction carried by a set of plans is dependent on their ability
to withstand repeated, meticulous, rigorous attempts at refutation
f r om as many directions of attack as can be conceived No
principles [including the classical laws of logic) are sacred against
criticism when anomalies are detected.

No satisfactory method for testing the consistency of
non-tr iv ial sets of axioms in the quantificational calculus has
been developed For example inconsistent formulations of the
"B l ind Hand Problem" [a particular toy robot problem] have been
produced in the quantificational calculus Their inconsistency has
been discoveted almost by accident as proofs by contradiction get
shorter and shorter until the negation of the desired consequence
is found to be superfluous to the proof! People are quite tolerant
of minor inconsistencies The inability of the quantificational
calculus to tolerate any inconsistency at all in formulating
problems is a sign of excessive semantic rigidity An example of
the kind of problem engendered by this rigidity when dealing
wi th common sense knowledge is given below. In general we feel
that a contradiction is evidence for a bug in one's plans or world
model and that to satisfactorily resolve the bug, It may be
necessary to examine al[the assumptions being made instead of
oniy tne most recent one. Currently mere are no guuu ways to
debug classes of axioms, whereas there is a well established and
rapidly developing technology for debugging procedures [Miniky
and Papert 1972, Sussman 1974; Goldstein 1974; Hewitt and Smith
1975].

196

We agree with the above comment of Hayes (except that we
have a different notion of semantics for the language of the
predicate calculus) The way in which the rulrs of natural
deduction follow from the procedural mechanisms of PLASMA,
demonstrates how deduction can usefully be considered to be a
special case of computation. Furthermore, by implementing the
useful part of the behavior of the quantificational calculus in
P L A S M A , we will obtain a behavioral semantics of the
quantif icational calculus from the underlying actor semantics of
P L A S M A Consider a formula of the form which means
that for every x we have that the case The procedural
meaning of the formula consists of plans for how it can be used.
T h e plans we are attempting to develop for V and the other
logical operators are reminiscent of natural deduction except that
we have four introduction and elimination rules [demorwtrate,
refute, assort, and deny) to give us more flexibility in dealing with
negation. example is the following plan:

Ou r intent in attempting to formulate plans like the above Is to
try to characterize the useful behavior of
We do not intend for them to be used as the code to define a
general uni form proof procedure. Instead they are intended to be
used as template schemata in progressive refinement to construct
more specialized domain dependent plans. The classical rules of
logic are intended to generate all the true sentences from a given
class of true sentences. Our behavioral definitions are intended
to define the justifiable behavior of the logical operators that
carries conviction.

The gigo plan graphically illustrates a fundamental problem
wi th the truth-theoretic semantics for the predicate calculus The
presence of the gigo rule in the quantificational calculus casts a
shadow of doubt on the reliability of all of the computations of
the system. For example the following set of assertions
[McDermott 1973] is not consistent However. a problem solving
system should not be able to conclude that 1+1 ■ 3 from the
inconsistencyl

However, it is easy to generate gigo using classical-negation and
indirect proof. We are working to develop a more limited form
of indirect proof in which the contradiction mutt depend in an
essential way on the hypothesis being refuted. The behavioral
semantics of depending-on needs to be carefully worked out to
produce a deduction system that more nearly captures the
logicians' notion of conviction as discussed above. Again a Key
technique for attacking the problem is to explicitly record for
every assertion the rules and hypotheses used in its derivations

Fur the r Work

The PLASMA system described in this paper is currently
being implemented at the M I T Artificial Intelligence Laboratory.
The best version which currently runs was coded in LISP by
Howie Shrobe A better humanly engineered version has been
designed and coded by Carl Hewitt in PLASMA with the
extensive aid of Marilyn McLennan. The new implementation
has been translated into LISP by the members of a seminar this
spring with the following participants: Russ Atkinson, Mike
Frei l ing, Kenneth Kahn, Marilyn McLennan, Keith Nishihara,

197

A more reasonable conclusion is that Fred might be an
ostrich or a penguin. We feel that this problem of inconsistency
is ripe for further research along the lines of McDermou [19731
Sussman [1974], Goldstein [19743, Kuipers [1974] Rubin [19751
Smith and Hewitt [19751 Erman and Lesser [19751 and McLennan
[1975].

Howie Shrobe, Kathy Van Sant, and Aki Yonezawa The
translation was made possible by LISP macros written by Russ
Atkinson which makes the LISP code of the implementation
closely resemble the PLASMA which it Implements A rough
dra f t of a primer by Brian Smith and Carl Hewitt for the new
Implementation exists

Next fa l l the implementation will be used as a basis on
winch to bui ld the higher level problem solving mechanisms
described in this paper in order to implement some
knowledge-based problem solving systems One project is the
implementation of a Programming Apprentice The emphasis
thus far in the project has been the elucidation and formalization
of the semantic principles involved Procedures for analysis have
been chosen for their ability to illustrate particularly difficult
semantic problems. Examples that have been analyzed are pure
queues [Hewitt and Smith], hash tables [Rich and Shrobe]
impure queues (Yonezawal and various versions of the
readers-writers problem [Greif] Each of these- examples is about
one page of code in a high level language. But it takes an
average programmer a half hour or so to really understand each
one if it is being encountered for the first time We would like to
continue this approach by analyzing even more difficult examples
such as the disk directory system of a timesharing system and the
Steele-Dijkstra parallel garbage collection algorithm. However, in
addit ion we plan to take a larger system consisting of about ten or
f i f teen pages of code in order to test our techniques on whole
systems. In this regard, following a suggestion of Michael
Dertouzos. we plan to try the programming apprentice on a
budgetary assistant program that aids in the construction and
balancing of budgets.

A c k n o w l e d g e m e n t s

This paper is a greatly elaborated written version of a talk
delivered at the "Special Session on Formalisms for Artificial
Intelligence" at IJCAI-73 at Stanford in August 1973 The
research reported in this paper was sponsored by the M I T
Ar t i f ic ia l Intelligence and Laboratory and Project MAC under
the sponsorship of the Office of Naval Research

Wr i t ing this paper would not have been possible without
extensive conversations with Richard Weyhrauch. Candy
Rullwinkle, Kenneth Kahn, Marilyn McLennan, Keith Nishihara.
and Guy Steele made helpful comments and criticisms which
considerably improved the intelligibility of this paper. Mitch
Marcus suggested an improved title for the paptr and also made
very helpfu l suggestions. Conversations with Allen Brown,
Mar t in van Emden, Pat Hayes, Bob Kowalski, Marvin Mtnsky,
Allen Newell. Earl Sacerdoti, Gerry Sussman, and Richard
Waldinger have proved to be of great value in writing this
paper. Although this paper has emphasized the deficiencies of
truth-theoretic semantics for knowledge-based programming, we
have learned a great deal from studying systems for attempting to
use predicate logic as a problem solving formalism and
interacting with the implcmentors of such systems Ira Goldstein,
Howie Shrobe, and Gerry Sussman contributed valuable
suggestions and criticisms on how to clarify the goals of this
paper.

Bib l iography

Davie., D J M. "POPLER: A POP-2 PLANNEIT MIP-89. School of A-l.
University of Edinburgh.

Davie*, D . J . M. "Representing Negation in • PLANNER System"
Proceedings el AISB Cenference July, 1974. Svssex.

198

