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Abstract

This paper surveys the state of the art in the development
of problem solving mechanisms for PLANNER-like formalisms.
A major design goal for such formalisms is that "for any given
of the
procedurally embed will He u$ed when it is
Although this

goal is still very far from being achieved, considerable progress is
being made. This paper contains no major conceptual
innovations although it does describe and give the rationale for
many of the design decisions that have been made In
PLASMA [for PLANNER-like System Modeled on
Actors) which is currently being implemented at MIT. as part of
a Programming Apprentice project and for other applications.
The paper tries to delineate major unsolved problems and make
suggestions for how some of them may be attacked. Arguments
are presented against the competing predicate logic paradigm for
the implementation of knowledge-based systems.
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Relationship to QA4 and POPLER

Roth POPLER {for POP-2 PLANNER) (Davies 1972] and
QA-4 (Rulifson et a! 1972) are basically cleaner versions of
PLANNER 71 POPLER made important contributions in
studying how to translate English quantifiers into a procedural
form and in pointing out the ambiguity of the goal statement of
PLANNER. A statement of the form (goat (on A B))in
PLANNER 69 could be satisfied either by demonstrating that A
already is on B or by changing the world so that A ison B QA-4
drnves from scries of question answering programs done at SRI
in the late 1960s and early 1970Y The QA-2 and QA-3 [Green
and Raphael 19713 systems were both resolution-based uniform
proof  procedure theorem provers. QA-4 abandoned the
resolution based theorem prover problem solving paradigm and
adopted the procedural embedding of knowledge approach of
PLANNER The most original contribution of QA-4 was
Rulifson's development of a context mechanism.

QA-4 and POPLER also made some important
improvements of the syntax of PLANNER-iike languages.
PLASMA has continued in this tradition of making

improvements to make PLANNER-like formalisms more readable
by making them more "English-like". However, ft is important
not to be misled into reading more into the symbols in the code
than is really there. In every case the the semantics of the
English symbols must be implemented elsewhere in other modules
to realize the desired behavior. For example we shall glibly make
assertions in the data base such as (A is-on B). However, at some
place [either explicitly or implicitly) code must be provided which
specifies how actors created by the template (.. ison ...) behave in
matching and how they index themselves in the data base. There
is the potentiality for doing the indexing cleverly taking
advantage of the fact that is-on is a transitive asymmetric

relation. But in order to do so the specialized code must be made
known to the (.. it-on ...) template.
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The major advance accomplished in PLASMA has been to
explicitly base the semantics of a PLANNER-like formalism on

actors. The actor semantics have resulted in a number of
improvements in PLASMA over QA-4 POPLER, and
CONNIVER

Programming Methodology

Actors make a contribution to the "declarative-procedure"
controversy in that they subsume both the behavior of pure
procedures (functions) and pure declaratives [data structures] as
special cases. Discussions of the controversy that do not explicitly
recognize the ability of actors to serve both functions may be
doomed to sterility.

Actor semantics promotes a programming methodology
which consists of the following activities:

Deciding on the natural kinds or objects to have in the
domain.

Deciding for each kind of object what kind of messages
it should receive.

Deciding for each kind or object what it should do when
it receives each kind of message.

The above is a generalization of the programming methodology
pioneered by SIMULA in which we have unified classes,
procedures, and coroutines Once the above decisions have been
made, it should be possible to directly implement the design
directly without circumlocutions.

Unification of Pattern-Directed Invocation

We do not want to have to explicitly store every piece of
knowledge which we have but would like to be able to derive
conclusions from what is already known using procedures. The
syntactic form {when ... try ...) as in {when trigger try body) or
completely cquivalently the syntactic form {to... fry...) as in
(to trigger try body ) creates a plan [high level goal-oriented
procedure) that can be invoked by pattern directed invocation by

a trigger which matches trigger There is a great deal of
confusion in the literature about "demons". The phrase

"completely cquivalently" above is meant to emphasize that there
really is just one pattern directed invocation primitive.
Implementing "antecedent" [working forward) plans entails facing
the same issues as implementing "consequent” [working backward)
plans. These problems involve doing retrieval, data base updates,
and dealing with multiply applicable plans.

The following are kinds of plans which could be defined in
terms of the above general pattern directed Invocation machinery.
Additional kinds of plans can be defined as they are needed with
the user defining their semantics by writing procedures for the
triggers and bodies.



(ro {demonntrate hypothesis) try body)

{when (asarrting sistement) try body)

{to {dinachieve condition) try body)

{swhen (denying slatement) try body)

{to (refute hypothesis) iry body)

{10 [Jind descriplion) iry body)

{to (nchirne condilion) try body}

{to (imatantinie slersoiype) try body)

{10 (ronfront a-hypothesis with a-conirediclory-hypothesis) try body)

The process of invoking plans in worlds is controlled by
recommendations made at the site where a request Is made of the
world to achieve a particular goal. We envisage that problem
solving would begin in a world with an initial class of plans, [n
many cases most of the plans that are used in the ultimate
solution of the problem need to be constructed by other plans
during the problem solving process.

World Directed Invocation

World directed invocation [Hewitt et al. 1973, Stansfteld
1975, Freuder 1975) is invocation of procedures on the basis of a
fragment of a micro-world instead of a single assertion or goal as
in previous PLANNER-Ilike fo'malisms. It is a generalization of
pattern directed invocation [Hewitt 1969] such that more than one
assertion is taken into account in directing the invocation. We
foresee that the further development of world directed invocation
and plans will play an important role in future development of
PLANNER-Ilike languages Within (he actor model of
computation, the only way a piece of knowledge can be used is for
actors, which have the knowledge, to be sent messages which
cause them to act on it. We foresee that programming
distribution networks in worlds to handle world-directed
invocation will be important for effective modular distribution of
knowledge. World directed invocation is still In a relatively
undeveloped state by comparison with pattern directed Invocation
which has been implemented in many PLANNER-Ilike languages.

An important issue is how to maintain control over the
invocation process. Two general mechanisms for this control are
recommendations [Hawitl [JCAI-69, IJCAI-71) and clustering
[Coldstein 1973, Stansfietd 1975, Marcus 1979 Clustering is the
technique of gathering together plans that have overlapping
domains of applicability. Suppose we have two plans plan, and
plany:

[pl.nl " ;pleny s dofinad to be the Jollowing
{to Lachicve (=3 in-on vb)) iry
body,))
{plany « iplang is defined to be the following

{ie (achiave (=a {2-on sb)} try

body 1]

Further suppose that if b has a clear top then pleny Is much better
than pleny. We could cluster the two plan: into one a3 follows:

(plang «
{10 (achiene (=2 is-on b)) Iry
{demonstrate (b har-a-cloar-top)
(then:
body3)

{elar:

body, )
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One of the earlier and better examples of clustering is found In
Coldstein's design of geometry experts [each for a particular goal
like congruence] which are responsible for choosing the best or at
least the order of applying the plans for that goal.

An example of the use of a recommendation is the
following:

(nehieve (X is-on Y) {using: (plang else plany))

which attempts to achieve block X on block ¥ by first attempting
10 use pleny but if that doesn’t work then using plang.

Nested Continuation Control Struoture

The use of nested "then:" and "else:" continuations as in the
above example together with complaint-departments seems to
solve the scoping control problem which had been plaguing
PLANNER-like languages for some time. Sandewall [1973] and a
revised version of QA-4 independently developed nested
continuation control structure for PLANNER-like languages.
CONNIVER attempted to solve the scoping control problem by
introducing possibility lists and Landin-style non-hierarchical
gotos. However possibility lists proved to have several
deficiencies They introduced side-effects into the basic
communication mechanism between methods in CONNIVER
which made it difficult for users to debug their programs since
doing a try-noxt operation to print the next possibility
destructively interferes with the operation of the programs being
debugged.

"Their [Sussman and McDermott] solution, to give the user accets
to the implementation primitives of PLANNRR. i$ hotnever,
something of a retrograde mep (what are CONNIVER®s semantic*?),
although pragmatically useful and important in the shert term. A
better solutian is to give the user access to a meaningful tes of
primitive control abilities in on explicit rcpretentotional $ehem*
concerned uith deductive control."”

Hayes: "Soma Problemt and Non-ProWamt in Ropratantation Thoory"

Nested continuation control structure gives us the ability to
influence or control any decision to the extent we desire while still
retaining the high level goal oriented nature of PLANNER.
PLASMA is able to accomplish this by basing its semantics on
actor message passing and slightly changing the syntax of
PLANNER-71 The change in syntax provides us with natural
places to incorporate the control Information and enables us to
avoid the gratuitous side effects in PLANNER-71.

In terms of the actor model of computation, control
structure is simply a pattern of passing messages CONNIVER
represented a  substantial advance over PLANNER-69
[implemented as MICRO-PLANNER by Sussman. Winograd,
and Charniak] in increasing the generality of goal-oriented
computations that can be performed. However this increase in
generality comes at the price of lowering the level of the language
of problem solving. It forces users to think In low level
implementation terms such as "possibility lists" and "a-links".
We propose a shift in the paradigm of problem solving to be one

of a society of Individuals communicating by passing
messages. Within this semantic paradigm PLASMA acts as a

flexible transparent medium for expressing desired behaviors
without forcing the wuser to always think in low level
implementation terms. It raises the level of problem solving while
retaining the flexibility to control any decision by the modular
addition of more knowledge



Complaint Departments

The "generate and test" method of Newell and Simon It a
fundamental procedural schemata  An Intuitively appealing
extension to the generate and test method Is to allow the consumer
to talk. back, to the generator with complaints, advice, and
encouragement. PLANNER-69 had a mechanism for attempting
to do this [called "failure messages"] that was so clumsy as to be
essentially unuseable. In a very nice piece of work, Scott Fahlman
improved on this mechanism to construct an extremely
sophisticated blocks world construction program. His Idea was to
construct "gripe handlers" which communicate by making use of
assignments to the local variables of gripe handlers and
Landin-style non-hierarchical gotos to transfer control. However,
the gripe mechanism Is still awkward because of the necessity of
side-effecting the handler which introduces the possibility of
gripes accidentally clobbering each other or gripers accidentally
clobbering the variables of other procedures. The message
passing semantics of actor control structure seems to provide a
fairly elegant simple mechanism for customers to talk back to
generators. [The idea is an adaptation of the stream concept of
Landin.] The customer receives a complaint department along
with each new candidate produced by the generator. At a later
point the customer can send a message to the complaint
department that contains the complaint or advice plus any other
actors that might be of use. These complaint departments are
used in conjunction with the nested continuation control structure
described above to help maintain the desired degree of control
over the high level goal-oriented plans of PLASMA.

Frames
Three important frame mechanisms are

plang: as in PLANNER-like languages, Newton's square
root algorithm, Charniak’s supermarket plan, Hewitt's birthday
party plan, Schank’s restaurant plan, etc.

ciroumstantial situations: as in a frame of
reference in physics, a McCarthy frame, the assassination of
Kennedy, a motion picture frame, etc.

stereotypioal situations: asin the definition of
the concept of a chair, Minsky's room frame, etc.

Of course the above fuuy classification does not Include many
important aspects of frames. However, as a matter of research
strategy, we would like to investigate how the above three
framing mechanisms an co-exist in a single problem solving
system. To this end we are implementing a mechanism which we
call a stereotype to enable us to use these three framing
mechanisms simultaneously. The stereotype mechanism attempts
to deal with only a smalt number of the lIssues that have been
raised by frames [1975 TINLAP pre-prints) as a "fremewerk /or
reprinting  knowledge" [Minsk 'y 1974). By Implementing
prototype systems using the stereotype mechanism, we hope to
gradually discover how to bring the above frame mechanisms
into active cooperation. We define a stereotype to consist of

acuuection of characteristic objects

charnoterigtic relations for those ob jects

a set of plans invoked by world directed invocation
for trapsforming the relations

It seems that many of the behaviors attributed to frames by
Minsky can be realized by stereotypes The characteristic objects
of a stereotype correspond closely to the slots of a Minsky frame
and the characteristic relations of a stereotype correspond to the
constraints of a Minsky frame. Minsky calls simple unary
characteristic relations markers  Stereotypes communicate by
making assertions in the data base and by world directed
invocation.

We instantiate stereotypes somewhat differently from the
way in which Minsky instantiates frames Our approach Is to
plug in definite candidates for all the characteristic objects of a
stereotype that we can and use anonymous objects [Herbrand,
Skolcmj for the rest. Defaults are done as assertions tagged to
indicate that they are defaulted so that they can be easily
displaced if an anomaly develops Defaults as tags on assertions
have an important advantage over the default values for the slots
of a Minsky frame in that often a default relationship is known
between two objects of a stereotype even though no default value
is appropriate for either object. For example, there is a default
relationship between the month of the date of the birthday party
and the month of the birthday of the guest of honor. However,
there is no particular month which is a very good default value
for either. The use of anonymous objects in PLASMA enables us
to reason explicitly about various possibilites using assertions and
goals in the data base without complicating its identifier binding
mechanism. Previous PLANNER-iike formalisms have placed
the burden of doing the communication on the binding
mechanism. This process of instantiation Is closely related to the
process of fiirther specification emphasized by Newell and Moore
in Merlin.

Situntional Tags Instead of QA-4 Contexts

"/l tiwation ¢ is the compleie state of the universe at an
instant of time.. Sinca the universe is 100 large for complete
deacription, we ahall never completely describe a situation; we shall
only give facts nhout situations. These facta will he wsed 10 doduce
Jurther facts about that situstion, about future situations and ehout
situntions thot persons cen bring nhout from that situaiion.

We shall Jurther assuma that the lawm of motion detarmine
from a situation all fuiure stuations. {This assumption is difficuls
to square with quantum mechenics, and relativiiy 10lla un that any
assignment of simullancity te cvenis in differemt  places s
arbitrary. Howeaver, we are procecding on the basie that modern
physica ia irrelevani to common aenar deciding what 1o do, end in
particular in irralovant to solving the *free will problem'.)"

McCarthy and Hayes 1969

Although we shall use tags on assertions and goals to
relativize them to particular situations, hypotheses, and contexts,
we do not want to make any of the global assumptions of
McCarthy and Hayes All of our situations will be local. For
example, whenever one situation precedes another, we shall allow
for the possibility that there is a third distinct si'uation which Is

neither before the former nor after the latter. For a discussion of
the issues involved in this decision for the actor model of

computation see Creif and Hewitt [1975}

The following fuzzy categories are examples of
circumstantial situations: physical states, mental slates, logical
hypotheticals, hypotheses, view points, goal situations,
predictions, and defaults. The following are some simple
examples of assertions that use such situational tags:



{{A iz-on B) in situation;)
{(A is-lafi-of B) in views)

((John has 810°%) in drasmy) ((Nizon is-innocent) in mind~oi-Pat)
{~lA is-on B) in goaly) ((John is-s1 home) on Jawery=1-1984)

{sWuationy occurred-before Tali~oi-Roms

PLASMA does not use the QA-4 context mechanism
(Rultfson et al. 1972). instead it uses explicit tags in assertions to
keep track of the state of affairs in various situations. One
problem with the usual use of the QA-4 context mechanism is
that the problem solver is forced to attempt to propagate all
changes in the situation immediately on a frame shift since
otherwise inconsistent information will be inherited from the
previous situation. Another problem with the QA-4 context
mechanism is that it is sometimes difficult to reason explicitly
about various situations using it because situations (frames) are
not explicitly part of the assertions and goals.

For example consider two contexts such that in the first
Nell is standing cm the earth and in the second he is standing on
the moon. This can be accomplished using contexts by generating
two new contexts [call them context4 and conloxtg] and then
asserting (Noil is-standing-on oarth) with-respect-to con1oxty and
asserting (Noil is-standing-on moon) with-respect-to contoxts.
However, consider the assertion that the weight of Neil in the
first context is greater than his weight in the second This is not
an assertion that can be made with respect to either context atone.

Instead it seems that it is necessary to incorporate tags for both
contexts into the assertion.

((wight Neil in contexts) > {weight Nail in contexts))

Events that are viewed from several different viewpoints
can be difficult to handle. For example, consider the problem
faced by Miss Marple in solving a murder mystery which
happened at a party attended by several guests. Each guest has a
fairly coherent story to tell but [at least] one of them is lying.
Gerry and Marilyn are two guests [considered by Miss Marple to
be generally reliable] who witnessed the shooting. Gerry's
description is contained in contexl; whereas Marilyn's description
is in contoxtg. We would like to construct a new context which
inherits Information from both these descriptions. However, in
the QA-4 context mechanism a sub-context inherits assertions only
from the one stngle context of which it Is an extension created by
the puth-eontoxt primitive Of course, there will be some slight
discrepancies between Gerry's description and Marilyn's
description even though both are "thoroughly reliable upstanding
citizens" Methods for dealing with this problem are not well
understood and will be discussed further later in the paper.

However, without the example of the QA-4 contexts to
guide us, we could never have realized how to deal with these
problems using situational tags. [The context mechanism
CONNIVER was modeled on the one in QA-4.]

In

It is easy to see how the abilities of QA-4 contexts can be
implemented using situational tags
which erasing in contexts
procedure will work.

As a first approximation In

is not implemented, the following

[demonsirsie-in-conteni ¥
{0 (demonstrate (sststement in scontext)) iry
(find (context inherits-from spnother-context)
(then:
(domensirate (statemenl in anoihar=conlexi))]
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Often in frame transitions, it is necessary to be able to
make deductions in both directions across the transition.
example suppose that we are told the following Information:

For

Henry inherited one hundred thousond  dotlon

parents Jill and Jack who died suddenly lenring no mill.
require
children.

from hi$

The laws
that the ettate in such cases he divided evenly emong the

We can derive the following information for the Initial
situations

({Henry is-alive) in 3)

({{Henry inhoritr $100K) from Jll-snd-Jack) in v)
(~{Jill-and-Jack arc-alive} in 8)

((Jill-and~Jack are-parents-of Heney) in 8}
((Jill-snd=-Jack lafi-na-will) in 8}

Furthermore we nheed to know numercus rules such as the
following:

(when (aaserting {{JN-and=Jack are-parents-of =porson) in s)) wry
(2ssert ({person inherits $100K) from Jil-and=Jack) in s}

(¥ (x> [=p =4 152}
(implies
{a
(lp ir-alive) in 83)
{sy ir-afier s is-aftor (birth p)))
{{p in-alive) in sy

The next day, Henry mei his older brothar Paul [rwohe ia vory
miserly] in Times Squarn,

((Hanry has-brother Paul) in ¢')

{(Pauk 13~alive) in ¢') (s* 1s {1 day) later-than 8}
{Paul {s-frugal) ((age Paul) > (age Howryl)

From the above circumstances we can draw some reasonable
hypothetical conclusions. Certain new information can be derived
about ¢ from s’

(((Paul inherita $100K) from Jill-and~Jack) in 3)
((Pout is-alive} in siUill-and=Jeck aro-parents-of Pavi) in o)

Now. additional information can be derived about s’ from ¢.
({Psul haa $100K) in &'}

Notice how in this example information has migrated back and
forth between s and &' in both directions.

The Bloocks World

The blocks world has proved to be one of the most fruitful

micro-worlds for research in artificial intelligence. It motivated

the introduction of a large number of the important features of
PLANNER-69 [MICRO-PLANNER) which was used to good
advantage by Terry Winograd as an convenient high level goal
oriented procedural formalism in which to translate natural
language The following are simple properties of the blocks
world expressed in the quantificational calculus. In order to be
effectively and efficiently used for many purposes this
knowledge needs to be procedurally embedded in various plans.




One of the major aims of the Programming Apprentice Project Is
to scrutinize the relationships and dependencies engendered by
these embedding!

[definition-0f~has-a-clear-top *
(¥ {e> (s x5
{9t
{{x hnr-a-clear-top) in 8)
:x hns a clear top in situation » if and only if
;either
{x is Ihe-lable) :x s the table or
(=~ ((3 (=> {=y] ({y is-on x) in 8)}) in e)O}N)

1 i2 wot tho casr thai there is some y on x in situation ¢

Jorall x and »

{v

{is-on-implies-is-above ¢
(¥ (o> [=x »y ug]
(implies
((x ix-on y} in s)
{{x iz-ehove y) in &})))}

Jorall v, y, and »

i#f 5 ioon y then
ix in ghove ¥

[transitivity -of~above »
(¥ {(» [=x =y =z =g]
{implies
(A

Jorall x, 5, 5, ond »

i#f

({x iz-ohove y) in &)
(ly is-above 2) in &)
({x is-above 2} in )]

ix iz above y and
2y la abovn x
;ihen x §1 above x

[above-is-not-refiexive s
(V (%> [=x =s]
{{~ {x iz-ahove x)) in s)))}
¥t in not she case thet x ia ahove itself

Jor all x ond »

Planning

We have found it useful To incorporate two types of worlds
called Utopia [desired situation] and reality [achieved situation) in
every problem solving situation. Our desire is to incorporate
PLANNING into problem solving using "islands" [Mtnsky
1963) as stepping stones. The Utopia of one problem solving
situation is taken as the reality of another. Sometimes working
forward from what is known toward the goal is a good strategy.
Sometimes working backward from the goal is a good strategy.
Usually a combination of both is best.

An island is a problem solving situation for which it is not
known whether it is achievable from reality or whether Utopia
can be achieved from it; but there is reason to hope that both are
in fact possible, it might be imagined that such islands are
extremely difficult to find. But as Cerry Sussman has pointed
out; such islands are proposed all (he time in PLANNER-like
formalisms. In order to demonstrate that a block x is above
another block z, it is sufficient to demonstrate that there is a
block y such that x is above y and y is above z
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[demonsirste-ic-asbove s
;define the plan demonsirale~is-sbove an follows
(1o (demonatrate (=x és-above ¢2) in ®u from er)
(demonsirate ({x is-ahove ey) in ex from 1)
{ihen:
(demonstrate {ly in-ahove 2} in u from sH))

The plan demonstrate-is-above attempts to find an Island s with a
block y such that it is known that x is above y and it can be
demonstrated y is above z We will explain more sophisticated
forms of island construction in examples given later in the paper.

The following are examples of convenient plans for use In
our blocks world that procedurally embed some of the above
knowledge:

{echieve-clear-lop u ithe plan achiave-clear-top is defined 10 be:
(ro (achicve: (sx han-a-clear-1ap) in su from er})
ito achieve that & has @ clear top in wtopla u from reality r
iry

(either
{demonsirate ({x is 1the-1able) in v)
:demonstrate that x is the table in u
sor disachicve
sthot there is some hlock y auch thot
iyison x

welthar

(dizsachirne
(3 (v {=y]
{y én-om x} )}

[disachieve-on ke plan disachisve-on is defined to be:
{10 (disachicve (ax Is-on =y} in =u from er) try
;to achieve x ix no) on y in wtopia u from realisy r
(nchicnn ((x har-o-cloar-top) in o' from r)
(then:
{achiave ((x is-on (no1 ¥)) in u from ')N))
iachieve x being on some ohject which is not y

[achieva-on =
{to (achiour (=x is-om ny) in = from st} iry
(achirne
{7
{x han-a-clrar-top)
(y has-a-clear-top)) in sr' from r)
(then:
{put x on y resuliing-in v from r'))))]

[{pur =x on sy resulting-in sv from =r) s
iput x on y resulting in w frem r is defined 10 bo:
{(domonsirate
(A
({x hna-o-cloar-top) in r)
{y has-a-clear-top) in r}))
{then:
{asacrt
{n
(v resulta-from (put x on y in r))
({x ixs-on y) in u)
((x has-a-clear-top) in v}
(~ {{y has-a-cirar-tap) in u))N))

Constraint Analysis

The linear strategy for achieving a con junct
(A conjuncty ... conjuncty)

is to attempt achieve (and protect] each conjunct in turn in the



order which they are presented.
violation,

If this runs Into a protection
attempt is made [on the basis of the kind of
violation] to reorder the conjuncts and continue as before. The
problem given below was invented by Allen Brown as an example
of a simple blocks world problem that cannot be solved using the
"linear" strategy without backtracking trying first one conjunct
first then the other.
of

an

We present this as a very simple illustration
how planning using ‘"islands*™ can help keep the problem
solving constrained and avoid search. None of this Is meant as a
criticism of Sussman who designed and partly Implemented a
really interesting problem solving system. His work inspired us to
further develop the constraint analysis approach which Is a
variant of the "means-ends" analysis used by Newell and Simon.
The initial situation [reality] r is

({C has-a-clrar-top)inr)
{(B har-a-clrar-iop)inr)
((C iz-on A)in r)

{(A ir-on the-table) in r)

{(B is-on the-table) in r)

o Y

C
A

reality r
The desired utopia v is A
(A is-on B) in v) 8
(8 is-on C) in v) cC

utopis v

It _is very desircable for assertions about utopia_ {the goal
situations) as well as reality {the achicved situations] to be
explicitly placed in the data base so as to be readily available
to pians working forwards and backwards. Among other things,
this implements a version of “continuously available output from
processes” which has been advocated by Bobrow and Norman.

Solution Working Backwards from Utopia

Constraint analysis can be used to straightforwardly solve
the Brown blocks world problem as follows. Clearly, the Initial
state is not a solution to the problem, tie. u Is not r) because
((C is-above A) in r) is incompatible with ((A is-above C) in u) The
easiest way to solve the problem is by working backwards from
Utopia u doing constraint analysis. Constraint Analysis is a
planning technique in which abstract reasoning is used to derive
the necessary structure of the possible solutions to a problem. In
working backwards from a situation, attempt to eliminate the
constraints that don't hold in reality. If Utopia u is to be achieved

from a previous state uq, it must be that the following holds
about ujy

(U results-from (pui A on B in uy))
({A has-a-clrar-top) in u)
B is-en C) in vy)

((= (B is-ahorve A)}in "'l,
((~ (C is-ahove A)) in uy)
({(A has-a-clear-tap) én uyld
((B has-a-clear-top) in vy)

A~

A

B
C

Again it is easy to see that the problem is not solved vy is not r)
If vtopia vy is to be achieved from a previous state uy, it must be

that the following holds about uy:
(ug reanlta: from (put B on C in “2”
(=~ (C in-ahnre A in vy}
{(=~ (C is-nhore BY)) in 7Y *%'
((B har-a-clrar-top) in ug)

(C has-n-rirar-top) in vy)

Aiien
C
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The problem is still not solved for the same reason.
must

[Note that u;
have been obtained from some previous situation u; by
moving C since this is the only way to eliminate the constraint
that It is not the case that C Is above A]

(up resulis-from {(put C on new-suppori-tor~C in u3)) A
{{C is-on new-suppor|-tor-C) in uy) C
((C hns-a-clear-top) in u3)

where now-support-tor-C is some position. Notice how limited and
abstract the knowledge of Utopia u; has become in the course of
abstractly planning backwards.
might be r.

Now it seems possible that w;
So create a new hypothesis h.

“03 =r}inh)
{(now-suppori-for=-C # A) in h)
{{new-suppori-tor-C ¢ B) in h)
({new-suppori-for-C # C) in h)
;since you can't put samothing on itself

ssinca ~((C is-abeve A) in uj)
saince ~{(C is-above B) in uy)

Having nothing else to choose for asw-suppori~for=C, choose the
table:

((new-suppori-for-C « the=table) in h)

Now reason forward from r using the plan constructed by
reasoning backwards from v. The first step is to construct &
world vy from r:

{ry results-from (put C on the=isble in r))
({up 2 rydinh)

{(C ix-on tha-table) in ry)
((8 is-on the-table) in vy}

Adar~y

Man

((A ix-on lhe-lable) inry)
((A has-n-clear-tap) in r4)

C

8

((B hnr-a-clear-top) in ry)
((C has-a-clear-top) in ry)

Everything seems to be poing well, 5o awempt the next step in the
tentative plan which involves generating a world ry from ry:

(rp results-from (pui BonCinry)) At

{(ug mra)in b}

(IC is-on lhe-labie) in r3) 5 Ay
({A is-on ihe-1able) in rp) C A ,

{{B iz-on C) in rzl

{rq results-from {put A on B in r3})
{7 73] in h)

(B is-on C)in rg)

((A is-on B) in rq) J L |

We have achieved our goal in ry:
((A (A ir-on B) (B is-on C)) in r3)

The hypothesis h has led to the following plan for solving the

problem:
{place (C on the-fable)

{then:
{place (B on C)
(then:
{place (A on B))))

The above solution can be varlabalized using procedural
abstraction [l lewitt 1971; Sussman 1973] into a procedure as follows



{to-achieve-three~stack, *
{to-achirve
{{A (sx is-on =y) (sy is-on s2))
from {=r containing
{(z has-a-clrar-top)
ly hns-a-elear-top)
(2 in-on x}}

iry
(place {2 on the<isble)
(then:
(place (y on 2)
(then:
(place (x on y))IN)
Notice that in  the above example that the plan

to-achieve-ihree-slacky which we generated does not have as
pre-requisites the following irrelevant incidental features of the
original problem specification: {x ir-on tha-table} and
{y is-on the-table} . The reason is that the above features are
never relied upon in the symbolic evaluation of the plan solution.

Working Backwards then Forwards

We would like 1o consider the problem of realizing the
same utopia v from a different initial situation s described below:

{{D is-an the-lable) in )
{(A iz-on B) in 8)

{(B iz-on the-tablie) in ¢}
{IC ix-on the-table) in &)
{(A har-a-clrar-top) in s)

Maden
A 1 A

B | O c

({C has-a-clear-tap) in )

The analysis proceeds much as before In terms of
generating utopia vy

(v resulia-from (put A on B in uy))
((A hns-a-clear-tnp) in u!'

((B és-on C) in uy)

((=~ (B iz-ahove A)) in vy}

(= (C is-above A)) in uy)

((A has-a-clear-top) in uy)

({B hnas-a-clear-top) in ul)

utopis vy
and then utopia v,.

(uy results-from {put B on C in Ilzl)
{(~ {C is-ahore A)) in vp)

{{~ (C is-abore B)) in up)

((B has-a-clear-top) in up)

({C har-a-clrar-top) in ug}

Alany
5

C

utopis uy

Comparing the new utopia with the original reality s, it is not
obvious how to further constrain the structure of the solution.
However, notice that u, is compatible with t except that B must
have a clear top in u, whereas A is on B in s Thus there is a

potentiality that u, can be reached from s by clearing the top of
B in s to produce a new situation sy. In working forwards from a
situation, attempt to satisfy the constraints that hold in Utopia. In

order to do this A must be put some place which we shall denote
by new-tupporl-for-A
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{sy resulis-from {pus A on new=suppori=tor-A))
((A iz-on new-supporl-for=A} in s{)

((B ix-on the-iable} in 3()
((C is-an the-lsble) in 84}
({A hns-o-clear-tap) in 94)
({B Aas-a-clear-tap) in ;)

Al £
8] [oli<

There are no readily discernible incompatibilites between vy and
s1, S0 create 3 hypothesis k as (ollows:

“02 ~ ll) in h)
We immcediately conclude:

{{C has-a-clear-tap) in 34)

{(now-support-tor-A 4 C) in k)
((new=-support-for-A # A) in k)
{(new~support-for-A ¢ B} in k)

ssince ({C Man-a-cleer-10p) in uy)

Qur hypothesis k gives us a tentative plan to be debugged. We

first generate situation s, from sy. e : 9 !
C

A

{sp resulis-from {put B on C in sy))
‘(Ul n Iz) in k)

D

(83 reaulta-from (put Aon B in lz”
((usg3)inh)

({A is-on B) in 33)

((B is-on C) in s3)

A

ét b

Thus the hypothesis k has led to a plan for solving the problem:

(place (A on (and (not A) (ne1 B) (ne: C)))
{then:
(ydace (B on C)
{then:
{place (A on B))IN)

Agan by procedural abstraction we have:

[fo-achieve-thres~slack, &
(to-ochinve
{(A (=x Es-on ny)} {sy is-on u))
from {=r containing
{(z has-a-clear-iop)
(x has-a-clear-top)
(x is-on Y}
fry
{place (x on (and {not x} (nat y) (not 2)))
(then:
(place (y on 2)
(theon:
(place (x on y)HIM)]

A really interesting area for future research Is how 1o recognize
that both the plans  to-achieve-threu-slack, and
to-achieve-thres-stacky are instances of the more genera! plan
"Huild a stack from the bottom up”. An_important research area
for the future is that of integeating plans using clustering,
variabalization, and other yet to be discovered techniques.

Predicate Logic as Programming Language

In this paper we oppose the thesis that “predicate logir is &
useful and praciical, bigh-level, non-deierministic programming
tangunge with sound shooretical foundations™ [Robert Kowalski In



"Predicate Logic as Programming languagal The deficiencies of
the predicate calculus as a programming language are traced
back to the tmtli-tlieoretic [Tarski 1930] semantics of logic. The
nub of (he difficulty seems (o be the way In which meaning is
defined, in that axioms may convey truth but not pragmatic
information We explain how the behavioral semantics alleviate
some of the difficulties with truth-theoretic semantics. This work
is presented using Rotors, a semantic concept in which no
active process is ever allowed to treat anything as an object;

instead a polite request must be extended to accomplish what Is
desired.

Necessity of a. Unified Formalism

For some years now we have been working to achieve the
goal of a unified formalism and semantics for knowledge based
systems. The record of our progress is published in the
Proceedings of the International Joint Conferences on Artificial
Intelligence beginning with the first conference in 1969. In the
course of this research we have developed the Thesis of
Procedural Embedding of Knowledge The useful knowledge off
a domain is intrinsically bound up with the specialized
procedures for its use. An important corollary is that the
fundamental technique for the representation of knowledge is
Procedural Knowledge Base Construction

"More specifically: uill
regarded as a proem*
argued that the two otpeett specifying
programming are heat ftcftftraird  expliciritly, as the kindt
language involved have quite dittinct $emanticM."

Pal Hayes: "Computation and Deduction"

/ argue that
of controlled deduction.

computation is best

It will he further
the control mechaninm) of
of

A satisfactory theory for the representation of knowledge
should have one unified totally integrated formalism and
semantics. For example we should not have one formalism and
semantics for expressing declaratives and a separate [as proposed
by Hayes] formalism and semantics for expressing procedures.
Having two formalisms [with different semantics] erects an
arbitrary pernicious barrier between two ends of a useful
continuum. One technique which shows great promise toward
automating the development of procedural knowledge base
acquisition is that of Progressive Refinement of Plans [Dljkstra,
Wirth 1971; Cheatham and Wegbreit 1973; Hewitt 1971, 1975} This
technique involves the transition from very high-level
goal-oriented procedures to more particular  efficient
implementations for special circumstances. As such it spans the
spectrum from relatively domain-independent goal-oriented
(declarative?) modes of computation to particular efficient
[procedural] modes The facility with which Progressive
Refinement of Plans can be automated depends on having one
formalism and semantics to span the above spectrum

Problems with Truth-Theoretic Bemantios

“The Tarakian semantic theary of PC [predicate cakulus) and it

relatives are the only precize account we have of how a longuege
can refer 1o evirelinguistic entities”

Psl Hsyes: "Compulslion and Deduclion™

The definition of TR U T H as formalized by Tarskl for
the quantificational calculus is one of the crowning achievements
of mathematical logic It has clarified the semantics of ordinary
mathematical theorems and led to the development of
truth-theoretic model theory which is a flourishing mathematical
field in its own right We contend that it Is less satisfactory as a

196

semantic base for a theory of action and change
semantics characterizes predicate logic in the following sense:
Goclel proved that for the first order quantificational calculus
that the class of sentences deducible by the classical laws of logic
is exactly the same as the ones which are true by Tarskl's
definition The notion of truth formalized by Tarski is very
smooth but we contend that it glosses over semantic distinctions
that are crucial to the development of knowledge-based systems

Tarskian

The deductions of plans in a PLANNER-lIike formalism
have the potential to carry more conviction [in the sense of
Richard Weyhrauch and other logicians] than proofs in the
classical predicate logic [For example a proof of a formula of
the form (UJ imptice ) carries conviction if it demonstrates a
"causal" connection from [ to y.) This is because our minds are
better at grasping constructive relationships between plans than
global relationships established by asserting that a class of axioms
is true or consistent Two plans can affect each other only if
there is a behavioral causal connection of "wheels and. cogs". We

seem to be able to design, control and debug plans better than
axioms

In the rcal world no formal principle is universally literally
true Any rule can be stretched beyond its range of applicability
to produce contradictions Except in mathematics all useful
principles are hemmed in with Qualifications, hedges, and
caveats Knowledge is better expressed procedurally in the form
of tough minded skeptical plans that actively attempt to guard
against their misuse The business of actively searching out
hidden anomalous situations is as important as the business of
making deductions that carry conviction Indeed, much of the
conviction carried by a set of plans is dependent on their ability
to withstand repeated, meticulous, rigorous attempts at refutation
from as many directions of attack as can be conceived No
principles [including the classical laws of logic) are sacred against
criticism when anomalies are detected.

No satisfactory method for
non-trivial sets of axioms in the quantificational calculus has
been developed For example inconsistent formulations of the
"Blind Hand Problem" [a particular toy robot problem] have been
produced in the quantificational calculus Their inconsistency has
been discoveted almost by accident as proofs by contradiction get
shorter and shorter until the negation of the desired consequence
is found to be superfluous to the proof! People are quite tolerant
of minor inconsistencies The inability of the quantificational
calculus to tolerate any inconsistency at all in formulating
problems is a sign of excessive semantic rigidity An example of
the kind of problem engendered by this rigidity when dealing
with common sense knowledge is given below. In general we feel
that a contradiction is evidence for a bug in one's plans or world
model and that to satisfactorily resolve the bug, It may be
necessary to examine al[ the assumptions being made instead of
oniy tne most recent one. Currently mere are no guuu ways to
debug classes of axioms, whereas there is a well established and
rapidly developing technology for debugging procedures [Miniky
and Papert 1972, Sussman 1974; Goldstein 1974; Hewitt and Smith
1975].

testing the consistency of

Bechavioral Bemantics for Logio

“"To defend first-order logic is unfazhionnble: however, | do wam
to empharize that it i the semantics of predicate logic whieh |
teish to preserrve.” ,

Hayes: "Some Problems snd Non-Problems in Representelion Theory”



We agree with the above comment of Hayes (except that we
have a different notion of semantics for the language of the
predicate calculus) The way in which the rulrs of natural
deduction follow from the procedural mechanisms of PLASMA,
demonstrates how deduction can usefully be considered to be a
special case of computation. Furthermore, by implementing the
useful part of the behavior of the quantificational calculus in
PLASMA, we will obtain a behavioral semantics of the
quantificational calculus from the underlying actor semantics of
PLASMA Consider a formula of the form ¥x@[x) which means
that for every x we have that §[x] is the case The procedural
meaning of the formula consists of plans for how it can be used.
The plans we are attempting to develop for V and the other
logical operators are reminiscent of natural deduction except that
we have four introduction and elimination rules [demorwtrate,
refute, assort, and deny) to give us more flexibility in dealing with
negation. An example is the following plan:

{lo-demonsirate~a=¥ t ;the plan lo-demonsirale=-s=~Y ir defined 1o be
{to {domanstrate (¥ «@) in =u from er) try
o demonstrate (¥ ®) in in utopia u from reality r try
(Iet det
{{g « {anonymous-object-in r}]}
;x be an anonymous ohject inr
(demonsirata (P g) in v fram r))]

inttempt 10 demonsivate $ of ginu fromyr

In addition we include the nonlogical operators schieve and
disachieve to give us similar flexibility in dealing with state
changes. The following plan is an example:

[lo~disachiove-a-V =
(to (dizachinve (¥ =@) in eu from sr) try
do tranxfarm reality r an that (¥ $) does nor hold in uiopia
{disachicve (($ {¢ (objecls u))) in u from r))))
inttempt to disachicve & of some object inw from r

Our intent in attempting to formulate plans like the above Is to
try to characterize the useful behavior of ¥, 3, v, A, implies, and -.
We do not intend for them to be used as the code to define a
general uniform proof procedure. Instead they are intended to be
used as template schemata in progressive refinement to construct
more specialized domain dependent plans. The classical rules of
logic are intended to generate all the true sentences from a given
class of true sentences. Qur behavioral definitions are intended
to define the justifiable behavior of the logical operators that
carries conviction.

Garbage in--Garbage out

In the quantificational caiculus from a sentence of the form

iAW {~¥)), cvery statement Is deducible no matier how
nonscnsical' The following plan schemata realizes this behavior

[although in our view this behavior is usually quite harmfull

igigo =
(rto (demonsiraie (=® in »u from r)) ary
(demonstrate

A =W (< =W)} in w from r))])

Inconsistencies in Common Sense Knowledge

"Ml questions concerning logical implication in first order
lngie ean he replaced hy questions concerning vmatisfinbility of
aontences in elavaal form.”

Roberi Kowaitki: "Predicate Logic az Programming Longuage”
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The gigo plan graphically illustrates a fundamental problem
with the truth-theoretic semantics for the predicate calculus The
presence of the gigo rule in the quantificational calculus casts a
shadow of doubt on the reliability of all of the computations of
the system. For example the following set of assertions
[McDermott 1973] is not consistent However. a problem solving
system should not be able to conclude that 1+1 m 3 from the
inconsistencyl

(birds fly)

(robins = birds)
{osiriches € birds)
(Fred livas-in the-200)
(robins fly)

(Fred dorsn"i-fly)
{ostriches don'e-Jly)

{penguins c birds)

(penguins never-are robins}
(penguins dan't-fiy)

(penguins never-are ostrichas)
(the~200 is-loceted-in Sydneay)
{Fred ¢ birds)

A more reasonable conclusion is that Fred might be an
ostrich or a penguin. We feel that this problem of inconsistency
is ripe for further research along the lines of McDermou [19731
Sussman [1974], Goldstein [19743, Kuipers [1974] Rubin [19751
Smith and Hewitt [19751 Erman and Lesser [19751 and McLennan
[1975].

Every dubitable assertion in the data base needs to have
explicitly recorded exactly which rules and assertions were used
in_its derivations. When an anomaly is detected particular
specialized diagnosing routines must be invoked to deal with the
confrontation.

Indirect Proof

Indirect proof is often a very useful technique in problem
solving. The classical natural deduction rule for indirect proof
takes the following form:

[indirect-prooi »
(to (demonsirate ({~ «$) in su from sr)) iry
{let
lir' = (extension=for~-contradiciion 1))}
{ansert (§ inr')
(shen:
{demaonstrate

(in =¥ (~ =) in "'MN]

However, it is easy to generate gigo using classical-negation and
indirect proof. We are working to develop a more limited form
of indirect proof in which the contradiction mutt depend in an
essential way on the hypothesis being refuted. The behavioral
semantics of depending-on needs to be carefully worked out to
produce a deduction system that more nearly captures the
logicians' notion of conviction as discussed above. Again a Key
technique for attacking the problem is to explicitly record for
every assertion the rules and hypotheses used in its derivations

Further Work

The PLASMA system described in this paper is currently
being implemented at the MIT Artificial Intelligence Laboratory.
The best version which currently runs was coded in LISP by
Howie Shrobe A better humanly engineered version has been
designed and coded by Carl Hewitt in PLASMA with the
extensive aid of Marilyn McLennan. The new implementation
has been translated into LISP by the members of a seminar this
spring with the following participants: Russ Atkinson, Mike
Freiling, Kenneth Kahn, Marilyn McLennan, Keith Nishihara,



Howie Shrobe, Kathy Van Sant, and Aki Yonezawa The
translation was made possible by LISP macros written by Russ
Atkinson which makes the LISP code of the implementation
closely resemble the PLASMA which it Implements A rough
draft of a primer by Brian Smith and Carl Hewitt for the new
Implementation exists

Next fall the implementation will be used as a basis on
winch to build the higher level problem solving mechanisms
described in this paper in order to implement some
knowledge-based problem solving systems One project is the
implementation of a Programming Apprentice The emphasis
thus far in the project has been the elucidation and formalization
of the semantic principles involved Procedures for analysis have
been chosen for their ability to illustrate particularly difficult
semantic problems. Examples that have been analyzed are pure
queues [Hewitt and Smith], hash tables [Rich and Shrobe]
impure queues (Yonezawal and various versions of the
readers-writers problem [Greif] Each of these- examples is about
one page of code in a high level language. But it takes an
average programmer a half hour or so to really understand each
one if it is being encountered for the first time We would like to
continue this approach by analyzing even more difficult examples
such as the disk directory system of a timesharing system and the
Steele-Dijkstra parallel garbage collection algorithm. However, in
addition we plan to take a larger system consisting of about ten or
fifteen pages of code in order to test our techniques on whole
systems. In this regard, following a suggestion of Michael
Dertouzos. we plan to try the programming apprentice on a
budgetary assistant program that aids in the construction and
balancing of budgets.
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