A REPRESENTATION FOR ROBOT PLANS

Philip

J.

Hayes

Institute for the Study of Semantics and Cognition

6976 Castagnola,

Abstract
A representation for robot plans is proposed. The
representation of a given plan reflects the struc-
ture of the process which produced the plan. This

information is useful in both the original con-
struction of the plan and its subsequent modifi-

cation if unforeseen events cause execution fai-
lures. A programmed system that constructs and
executes (in simulation) plans for journeys using

a large system of public transport is described to
illustrate the advantages of the representation.
It is also shown how the representation could be
used for more typical robot-planning worlds.

1. Introduction

Since most robots must function in a world
whose behaviour they cannot hope to predict exact-
ly/ they must be prepared for plans they make to
fail during execution. (As usual, a plan is a
linear sequence of actions or operations intended
to transform some initial state of the robot's
world into some goal state.) Such failures may
occur because some action in the plan fails to
have its expected effect or because of some unpre-
dictable event outside the control of the robot.
In any case, after such a failure the robot must
be able to modify its plan to cope with the un-
expected turn of events.

Rather than throw away the original plan and
start again from scratch, it is clearly desirable
that as much as possible of the work that went into
constructing the old plan should be reused in pro-
ducing a modified version. One previous system,
STRIPS"?, that dealt with replanning after exe-
cution failures, tried to save work by making
arbitrary subsequences of operations from the
original plan available to the replanning process
as primitive operations. No attention, however,
was paid to the way in which such subsequences
were originally intended to contribute to the ful-
fillment of the goal of the plan, thus, at times,
leading to rather arbitrary uses of them. Such a
scheme does not try and use any of the problem
analysis that went into constructing the original
plan but only its results.

More hierarchically structured systems have
proposed that plans should be sketched out at some
level of detail abstracted from that of the robot's
primitive actions, and each step fully detailed
only as it is executed. Such an approach, while
giving an inbuilt flexibility with regard to
details, runs the risk of disaster if some of the
unelaborated steps turn out to be impossible be-
cause of some complication at the more detailed
levels.

The scheme of plan
this paper is primarily designed to facilitate

representation presented in
the

181

Switzerland

reconstruction of detailed plans after failure in
execution. It does this by explicitly recording
in the representation of a particular plan the
structure of the process which produced that plan.
The information thus recorded includes the choices
made during the construction of a plan, how they
advanced the construction of the plan in terms of
sub-goaling and refinement of details, and how
they are logically related to each other. After
failure this information enables that part of the
development of a plan due to decisions invalidated
by the circumstances of failure to be precisely
identified and discarded. The resulting data
structure represents that part of the original
problem analysis which is still applicable after
the failure®. Use of this structure by the re-
planning mechanism will avoid the corresponding
part of the original planning effort being dupli-
cated during replanning.

While the representation makes as few assump-
tions as possible about planning processes, it is
basically oriented to processes based on hierar-
chical levels of detail®>*'®. By making infor-
mation about all steps of a plan constantly avail-
able, the representation facilitates plan making
for worlds in which the effects of operators tend
to interfere with each other to a significant ex-
tent. It also permits different parts of the
execution sequence to be developed in an order and
to relative levels of depth, dependent only on the
constraints of the problem domain. Such an abi-
lity is useful when there are different certain-
ties as to whether the different steps of an unde-
tailed skeleton plan can be successfully developed
to a detailed level.

Use of the representation forms the basis of
a working robot planning and (simulated) execution
system described in section 3. Some aspects of
the system implemented are atypical of robot plan-
ning domains in general, and so a discussion of
how the representation would be used with a more

usual robot world follows in section 4.
2. The Representation
A plan in the proposed representation con-
sists of two interlinked data structures: a tree
which represents the subgoal structure of the plan
and a graph which represents the logical relation-

ships of the decisions taken in constructing the
plan. This representation and its uses are des-
cribed below in general terms; for detailed
examples see section 3.

*In fact it does not always
since there can be decisions that are still approp-
riate after failure, but are discarded because
they were originally based on one of the decisions
invalidated by the failure.

represent all of it,

Each node of the subgoal tree of a plan (sub-
sequently jnode) corresponds to a goal and the
action necessary to achieve it. (These two con-
cepts are sufficiently close that it is often use-
ful to blur any distinction between them.) Sub-
goaling is represented by the branching of the tree
(with a left to right time ordering). Thus

X N .
YAZ would indicate that goal X has been split

into subgoal Y and subgoal Z (or equivalently that
the action required to achieve X can be split into
an action that will achieve Y followed by an action
that will achieve Z). The root of the tree cor-
responds to the top-level goal of the plan, while
in a complete plan the tips of the tree correspond
to primitive actions. For a system using a hier-
archy of levels of detail, progress along a branch
from root to tip would thus be naturally accompa-
nied by an increasing amount of detail.

Besides just representing a goal or action,
each jnode can contain any other information about
that goal or action that is helpful to the plan
construction process. In particular, information
about the expected state of the world before or
after the action could be thus represented. Com-
munication and co-operation between processes con-
structing different steps in the same plan can be
greatly facilitated by having such information for
every step in the plan constantly available.

The nodes of the decision graph of a plan
(subsequently dnodes) are in one-one correspondence
with the decisions made during the construction of
that plan. The parent-child relation of the graph
indicates logical dependence of the child on the
parent. Logical dependence of one decision on
another here means that the process which made the
second decision was influenced by some direct con-
sequence of the first. A graph structure is
necessary to represent such logical dependencies,
because the effects of two quite independent
decisions can influence the making of a third.

Each dnode has two-way pointers from it to
those jnodes created as a direct consequence of its
decision. These pointers can be used in conjunc-
tion with a graph structure to preciselyidentify
all the effects both direct and indirect of a
decision on the development of a plan. The pro-
cess of removing the effects (thus identified) of
a decision from a plan is known as UNDOING the
decision and consists of:

a) removing the decision from the graph and all
the jnodes pointed to by the decision from
the tree;

b) UNDOING the children of the decision in the
graph.

This UNDO mechanism forms the basis of the
method for reconstructing plans after failure in
execution. The basic idea is to identify the
most logically senior decisions inappropriate to the
unexpected situation, UNDO them, and then use what
is left of the original plan representation as a
basis for plan reconstruction. To this end, each
decision must have a resumption point of the plan

182

construction process associated with it. Use of
this resumption point should result in the plan
construction process being reentered to remake the
decision in the light of all currently available
information.

In more detail the replanning mechanism works
as follows. When an execution failure occurs,
the execution monitoring system is assumed to de-
signate a set of jnodes as unexecutable, these
jnodes being the most senior that could be so de-
signated. Then:

1. all portions of the subgoal tree successfully
executed are discarded, together with any
dnodes directly responsible only for discarded
jnodes,

2. all information in the tree, made inaccurate

as a result of the circumstances of failure,
is updated,

3. for each jnode, A, of the unexecutable set

a) if A has already been removed from the
tree nothing more is done, otherwise

b) the dnode,
is UNDONE,

D, directly responsible for A

c) the plan construction process is reentered
through the resumption point of D,

d) if the reentered plan construction process
terminates successfully nothing more is
done, otherwise

e) if A is not the root of the tree, it is
replaced by its parent and step b) is
looped to, otherwise

f) replanning is assumed to be impossible.

If this mechanism is always to produce a com-
plete plan, the resumption point associated with a
decision must not only remake its own decision,
but also any other dependent decisions needed to
produce a complete plan. Such an arrangement may
not always be feasible. In such cases those
jnodes on the frontier of the subgoal tree that
were not primitive at the end of the above process
would have to be found and developed until they
were. This problem does not, however, arise with
the system to be described in the next section.

3. A Working System
Based on Use of the Representation

The representation described above forms the
basis of a working system for the construction and
(simulated) execution of plans. The plans con-
cern the journeys of a (robot) traveller through
a network of rail, sea and air public transport
services. The system contains a considerable
amount of knowledge in procedural form about how
to make plans in such a domain. It is not, how-
ever, tied to a particular network, but accepts
the definition of such a network in tabular form
as initial data. This definition comprises lists
of connections, timetables for those connections
and some geographical data (concerning the posi-
tions of towns and the relative positions of
countries and seas).

The network used for example purposes is ex-
tensive. It connects 84 European centres using
43 rail services, 7 sea services and 55 air ser-
vices giving in excess of 500 town to town con-
nections and more than 2000 primitive journeys
(journeys between two centres using one service at
a particular time). The services used are all
taken from real world timetables- The geographi-
cal area covered by the network is shown in figure
1. For the sake of readability, only a small sub-
is shown, but this subset
routes used in the examples.

set of the network
the

includes all

FIGURE 1

— . - - I BEIVICED

i
—— B0 8 BOFViCEN Some of the Routes n the

vearneesaTHIl BEIVICES

P

Exampile Tranapori Network

The system can construct plans subject to cer-
tain constraints of time and cost. These con-
straints can be both global (e.g. on the overall
cost of a journey) and local (e.g. on the time of
arrival at a particular place). The system can
also cope with the occurrence of "unexpected"
events during the simulated execution of a journey.
It checks their relevance to the journey and if
necessary modifies the plan using the replanning
mechanism described in the previous section.

The system uses its domain dependent knowledge
to good effect and a planning time of around 20
seconds is typical for a journey involving six pri-
mitive journeys. The plan produced is
though not necessarily optimal. The system was
coded in POP-2 on an ICL 4130 computer.

Figure 2 shows the subgoal tree and decision
graph of a plan produced by the system for going
from Manchester to Nice by train and boat. (This

plan is, in fact, optimal with respect to both time
and cost for a journey in the example network from
Manchester to Nice using surface transport.)

"reasonable’

183

Because of the nature of the domain, all jnodes
correspond to journeys of varying degrees of spe-

cification. The correspondence between increase
in detail and increase in depth of the tree will
be clear. Times are represented by a 24-hour

clock time plus a day, thus 17:30 2 means 5:30 p.m.
on day 2 of the journey. The list of numbers in
brackets associated with each dnode indicates which
jnodes were created as a direct result of each

dnode.
The function of each decision shown in figure
2 (b) is as follows:
Decision 0 is a dummy decision which is notio-

nally responsible for all
of the world.

the unchangeable features

Decision 1 chooses surface transport as the mode
of travel. Because a sea, the English Channel,
lies between Manchester and Nice, it results in
subgoaling the original goal into three subgoals:
to get to the Channel, to cross it, and to get to

Nice.

Decision 2 chooses the route for the Channel
crossing and thus refines jnodes 7, 3 and 4 into
the more detailed jnodes 6, 5 and 7 respectively.

Decision 3 fixes a time for the sea crossing,
refining jnode 5 still further. Since the sea
crossings are rarer than the rail connections, un-
necessary waiting is minimized if rail times are
fitted to sea times rather than the other way

round. The situation after this decision is an
example of the concurrent use of differing levels
of detail for different steps of the plan.

Decision 4 fixes the route for the train journey
as far as the Channel crossing, but is independent
of decision 3 even though made after it. Decision
7 is similar.

Decision 5 fixes a time for the train journey
immediately before the Channel crossing. It de-

pends on
decision
ation in
decision

a routing decision
(3) which are
either would

5.

(4) and a timing
independent, but an alter-
require the reconsideration of

Decision 8 is similar.

Decisions 6, 9 and 10 are other timing decisions
which depend on a routing decision and its depen-
dent timing decision.

The domain dependent expertise of the planning
system is encoded in a number of special functions
called dfunctions. Each dfunction has its own
special area of knowledge and is associated with
the making of a particular sort of decision. Df un-
ctions are parameterless and are expected to extract
all the knowledge they require from the decision
graph and subgoal tree representing the existing
state of the plan.

There are seven main dfunctions:

TRYSORP which chooses between air and surface
transport,
TRAINS, BOATS, and PLANES which choose routes
rail, sea and air journeys respectively,
TRAINTIME, SEATIME and PLANET1IME which choose
times for journeys by rail, sea and air respec-
tively.

for

MANCHESTER TO NICE

Manchester to
Channel coast

croas Channel

Channel coast
to Nice

by train

Manchester to s
Dover by train

by boat

Dover to Calais

by train

Calais to Nice

by boat by train
o/\ﬂ: Ia 1 14
Manchester London to boat leaving Calais to Paris to Marseilles to
to London Dover by Dover 18:00 1 Paris by Marseilles Nice by train
by train train arriving Calais train by train
19:30 1
12 1 18 17 18
train leaving train leaving train leaving train leaving train leaving
Manchester Lopdon 16:00 1 Calais 08:20 2 Paris 12:15 2 Marsejilles
09:30 1 arri- arriving Dover arriving Paris| | arriving 08:00 3 arri-
ving London 17:30 1} 12:02 2 Marseilles ving Nice
12:14 1 20:23 2 10:27 3
FIGURE 2 (a) Subgoal tree of plan for journey from Manchester to Nice
o Since dfunctions take all their information

surface rather than
air transport is to
be uysed

Channel crossing is
from Dover to Calais

lam)

boat from Dover to
Calais is at 18:00 1

4(9.50)

train route from

Manchester to
Dover 18 via

2_%._6.’)

1(23,4)

7{13,14.15)
train route from

Calajis to Nice is
via Paris and

from the plan representation existing at the time
they are called, they make idealresumption points
for use with the replarming mechanism described in
the previous section. Indeed, this is the reason
they were so designed.

The entire planning system runs under a simple
backtracking regime. The problems with automatic
backtracking are well known®, and this feature of
the system is undesirable. However, since emphasis
is placed on trying to make good decisions at the
first attempt, the bad points of backtracking do
not have as much impact as they might. See refe-
rence 8 for a discussion of how the representation
can be used to ameliorate backtracking for those
plan construction processes using it. The unim-
plemented scheme proposed there is based on the

London Margeilles
JMIIJ ad
train from train from
London to Calais to
Dover is at Paris is at
16:00 1 08:20 2
207
sha train from Paris

fact that the

representation enables a decision

be remade without remaking chronologically subse-

quent but

Use of the
plan construction process
constraints of time and cost that can be

logically

independent decisions.

representation can also help the
in handling the global

imposed

train from Manchester
to London is at 09:30 1

to Marselillas is
at 12:15 2

FIGURE 2 (b)

train from Marseilles
to Nice is at (08:00 3

Decision Graph of plan for
journey from Manchester to Nice

on a journey. The system deals with these cons-
traints by associating with each jnode an estimate
of the time and cost of the journey it represents.
The more specified the journey, naturally the more
accurate the estimate. At any time the most up-
to-date estimate for the whole journey can be ob-
tained by summing the individual estimates of the
jnodes on the current frontier of the tree, making
allowance for waiting times and overnight stops.

If this estimate is much outside the prescribed
limit, then the development of the plan along the
current lines can be discontinued immediately, thus
wasting as little effort as possible. Such an ap-
proach leads to little time being spent on journeys
for which the allowance is grossly inadequate, but
more on journeys for which the allowance falls just
short.

184

The computer output produced by a simulated
execution of the example plan described above is:

AT MANCHESTER WAITING FOR A TRAIN TO

LONDON
09:30 1 LEAVING MANCHESTER ON WAY TO LONDON BY
TRAIN
12:14 1 ARRIVING IN LONDON WAITING FOR A TRAIN
TO DOVER
14:00 1 TRAIN FROM MARSEILLES TO NICE AT 08:00
CANCELLED
**REPLANNING* ¥
AT LONDON WAITING FOR A TRAIN TC DOVER
16:00 1 LEAVING LONDON ON WAY TO DOVER BY TRAIN
16:30 1 BOAT ACROSS THE CHANNEL FROM DOVER TC
CALAIS AT 18:00 CANCELLED
17:30 1 ARRIVING IN DOVER
REPLANNING
AT DOVER WAITING FOR A BOAT TO CALAIS
22:00 1 LEAVING DOVER ON WAY TO CALAIS BY BOAT
23:30 1 ARRIVING IN CALAIS STAYING IN CALAIS
FOR THE NIGHT
23:45 1 STORMS IN THE CHANNEL
08:20 2 LEAVING CALAIS ON WAY TO PARLS BY TRAIN
10:00 2 ALL TRAINS BETWEEN PARIS AND MARSEILLES
CANCELLED
12:02 2 ARRIVING IN PARIS
REPLANNING
AT PARIS WAITING FOR A TRAIN TO NIMES
09:03 3 LEAVING PARIS ON WAY TC NIMES BY TRAIN
20:25 3 ARRIVING IN NIMES WAITING FOR A TRAIN
TO MARSEJLLES
21:53 3 LEAVING NIMES ON WAY TO MARSEILLES BY
TRAIN
23:15%5 3 ARRIVING IN MARSEILLES STAYING IN MAR-
SEILLES FOR THE NIGHT
13:00 4 LEAVING MARSEILLES ON WAY TO NICE BY TRAIN
15:20 4 ARRIVING IN NICE JOURNEY FINISHED

During this execution, four unexpected events
occur and replanning is necessary for three of
them. Following the execution in detail will
clear the workings of the replanning mechanism
(step numbers refer to the description

make

Execution proceeds normally until 14:00 1 when
the train from Marseilles to Nice at 08:00 is with-
drawn. This means that the final step in the plan,
jnode 18, is unexecutable and so replanning com-
mences. The successfully executed part of the plan
i.e. the journey from Manchester to London (jnodes
9, 12 and dnode 6) is discarded (step 1). The
starting points of jnodes 1, 2, 6 are changed to
London and the time and cost limits for the journey
decremented by the amount already used (step 2)

The decision, dnode 10, responsible for the unexe-
cutable step in the plan is UNDONE resulting in the
removal of jnode 18 and dnode 10 (step 3b). The
plan construction process is then reentered through
the dfunction, TRAINTIME, associated with dnode 10
(step 3c). TRAINTIME chooses another time for the
Marseilles-Nice journey and a complete revised plan
results. This new plan uses all the original plan
(minus the Manchester-London journey) except that
jnode 18 is replaced by jnode 19, a journey from
Marseilles to Nice at 13:00 3, and decision 10 is

185

plan shown

event,

left
TRAINS,
which finally

in section 2).

replaced by decision 11,

Execution of the

the choice of that service.

revised plan is then resumed,

but has not continued for long when the boat ser-

vice that was to be used
responsible for
After removing the successfully com-

sion

decision 3.
pleted part of the plan,
in getting as far as Dover,

jnodes (8, 16,
routing decision,
after decision 3 is

therefore unaffected.
reentered through
3, the dfunction SEATIME,
in figure 3.

rail

Execution of this newly
tinues with the
even though
across the Channel
execution of the plan since,
the Channel has been successfully crossed.

The final
to the direct
is handled similarly to the first two.

Lyons)

time very little of the original
routing decision for France,
invalid,
is the trip through France.

the dfunction of dnode 7,

because the

is rendered

is cancelled. The deci-
the choice of that service is

i.e. everything involved
dnode 3 is therefore

UNDONE. Its UNDOING leads also to the UNDOING of
dnodes 8, 9 and 11, i.e. all the remaining timing
decisions (for they were chosen to fit in with it)
and consequently to the removing of all the timed

17, 19). Note that decision 7, the

though made chronologically

logically independent of it and
The planning process is then
resumption point of decision

and produces the retimed

the

revised plan then con-
crossing. The next
it causes all boat services

to be cancelled, does not affect
by the time it occurs,

retimed Channel

event of the journey (which refers
line from Paris to Marseilles via
This
plan can be saved
dnode 7,
of the journey that is
Invocation of
produces the plan
interruption

and all

leads without further

from Paris to Nice.

-

bover to

Nice

3

croes Chan-
nel by boat

Is
Dover to
Calais by
boat

20
boat leav-
ing Dover
22:00 1
arriving
Calaijs-
23:30 1

Figure 3 (a)

14
Channel! coast to

Nice by train

7
Calais to Nice

by train

3 4 15
Calais to Paris to Marseilles
Paris by Marseilles to Nice by
train by train train

21 P 22 23

train train train
leaving leaving leaving
Calais Paris Marseilles
08:20 2 12:15 2 13:00 3
arriving arriving arriving
Paris Marseilles Nice
12:02 2 20:23 2 15:20 3

Subgoal tree of a plan reconstructed
after an execution failure

o

134)
surface rather than
air transport is to
be used

v

5.7

Channel crossing is
from Dover to Calais

12(20)

Boat from Dover to
Calais is at 22:00 1

703, 14,15)
Train route from Calais
to Nice is via Parls
and Marseilles

13{21)

train from Calais to Paris
is at 08:20 2

14(22)
train from Paris to Mar-
geilles is at 12:15 2

l1s(23)
train from Marseilles
to Nice is at 13:00 3

Figure J (b) Decision graph of a plan recon-

structed after an execution failure

4.

Representing Plans for
More Typical Robot Worlds

The system described above
robot planning systems.
concerned with worlds in which e.g. a mobile robot
pushes blocks around through a network of rooms'??,
or a one-handed robot moves blocks about on a table
top The essential difference between these
worlds and the transport world lies in the number
of features of the world that change or can be
changed in a predictable way. For the transport
world such features are few and fixed (only the
robot's position and consequently the amounts of
time and money available to it), while for the
other worlds they are numerous and variable (e.g.
the position of every block).

is atypical of
Most other systems are

The systems mentioned above that deal with
such domains all use some sort of data base to
model the changing features of their worlds.
data base contains a record of all changeable fea-
tures of the world and is typically updated in a
simulation of execution as plan construction pro-

This

ceeds. If the representation is to make explicitly
available at all times information about every step
in a plan, one data base is insufficient for use

with it. There must be several, one for each jnode

in the plan. To provide for each jnode a separate
data base containing mention of all changeable fea-
tures of the world is, however,
ful. It is possible and even advantageous to use
one global data base plus a linked incremental
system of alterations to it.

In this scheme, each jnode has attached to it
an alteration, i.e. a record of the changes expec-
ted to be brought about by the action associated

unnecessarily waste-

186

with it. The presence or absence of any piece of
information in the data base representing the ex-
pected state of the world after the execution of
some jnode can then be found by looking back along
the frontier of the tree, starting with that jnode,

for the first mention of that item in an alteration.
An item can be mentioned as being either present or
absent, but the first mention of it discovered de-
termines its status. If the item is not mentioned
in any of the alterations, its status is the same
as its status in the global data base describing
the initial state of the world. An example will

make this clearer.

Consider the simple world shown in figure 4
with a robot, two boxes, four rooms and four con-
necting doors. Figure 5 shows the tree and graph
of a plan to transform it from the configuration
shown in figure 4 to one in which the two boxes are
next to each other. The primitive actions shown
in the plan are similar to those used by STRIPS'
for a similar world. No assumptions are made, how-
ever, about the type of process which produced the

plan or about the order in which its several steps
were elaborated.
The global data base representing the initial

state of the world might contain the following
items:

(IN ROBOT ROOMI) (IN BOXI ROOM2) (IN BOX2 ROOM3)

(CLOSED DOOR1) (OPEN DOOR2) (OPEN DOOR3)
(OPEN DOOR4)

plus other information describing static features
of the world such as DOOR1 connects ROOM and
ROOM2 or that the two boxes are pushable.

The alterations associated with each jnode
might be as follows:

1. (NEXTO BOX1l BOX2)
2. {(IN ROBOT ROOM2) (NEXTO ROBOT BOX1)
-~ {IN ROBOT §) - (NEXTO ROBOT §)
3. as 2, but without (NEXTO ROBOT BOX1)
4. (NEXTO ROBOT DOORLl) - (NEXTO ROBOT $)
5.8 7. same as 1.
6. - (CLOSED DCOOR1) (OPEN DOOR1}
8. (NEXTO ROBOT BOX1) - (NEXTO ROBOT §$)
9, (IN ROBOT ROOM13) (IN BOX1 ROOM3)
(NEXTO BOX1 BOX2)
- (IN ROBOT $) - (IN BOX1 $) plus A
10. as 9, without (NEXTO BOX1 BOX2)
11, (NEXTO BOX2 DOOR2) plus A
12.& 13. same as 10.
14. {NEXTO BOX1l BOX2) plus A

where A is (NEXTO ROBOT BOX1l) - (NEXTOC ROBOT §)
- (NEXTO BOX1 $) - (NEXTO $ BOXl)
- denotes the absence of that item
$ is a free variable that stands for anything

Thus -(IN ROBOT $) denotes the absence of all
items of that form, i.e. it cancels any specifi-
cation of which room the robot is in. The positive

items of an alteration take precedence over its
negative items when conflicts arise.
In this complete plan, the room the robot is

expected to be in after the execution of jnode 13
is found directly from the alteration of jnode 13,

since it contains (IN ROBOT ROOM3). For jnode 11,
however, it is necessary to follow the frontier
back until jnode 7, to find this information, since
the alterations of neither jnode 11 nor jnode 8
contain an item of the form (IN ROBOT room). Simi-
larly the expected position of BOX2 after the exe-
cution of every jnode will always be found from the
global data base since no mention of it is made in
any alteration either positively or negatively.

ROOML

zfibgoacr

ROOM2

L
DOORI \Qonz

BOX1 BOX2
DOOR3 \\DOORA

ROOM2

FIGURE 4
ROOM4
Initial world in more typical
robot planning domain
1 BOX]1 next to BOX2
2 9
Igo to Boxi| [push BOXl to Box2)
8 L)
GOTO BOX1 PUSHTO
3 0 BOX1, BOx2
go to ROOM2 push BOXx1
to ROOM]
4 5 1 12
GOTO gc through PUSHTO| | push BOX1
DOOR] DODR1 BOX1, through DOCR
. DOOR2
& 7 13,
QOPEN GOTHRU PUSHTHRD BOX1,
DOOR1 DOOR1 DOOR2
FIGURE 5 (a) Subgoal tree of plan for pushing
the two boxes in figure 4 together
0
1 {2,3,8,9,70,14)
push BOX1l rather than BOX2
2a.3) | at112)
go to ROOM2 go to ROOM3
via DOOR via DOOR2
as.7) s{13)
open DOOR1 do not open
DOOR2
FIGURE 5 (b) Decision graph of plan for pushing

the two boxes in figure 4 together

Using such a scheme with predicates which give
essentially the same information at differing
levels of detail can lead to difficulties when
different steps of a plan are at different levels
of detail. Suppose, for example, that jnode 8 was
further developed to specify (AT ROBOT X), X being
the position the robot must be in to push BOX1 in
the proper direction. Then the data bases of all
subsequent jnodes in the execution sequence would
contain this (for them) erroneous information. One
solution is to ensure that whenever a new peice of
information is established, all other information
both at the same and lower levels of detail that
could conflict should be erased. Thus including
(IN ROBOT room) in an alteration would also entail
the inclusion of -(IN ROBOT $), -(NEXTO ROBOT §)
and -(AT ROBOT $) in the same alteration.

An important advantage of the incremental
scheme is related to this problem. Any details
filled in about one step of a plan become immedi-
ately available in the data bases of all subsequent
steps of the plan, providing, of course, no inter-
vening alteration contradicts the detail. Thus the
data base of one jnode can be updated by develop-
ment of a completely different step of the plan.
For example, in the above plan, jnode 14 is already
in existence immediately after decision 1 is made.
(CLOSED DOORT1) is present in its data base, since
the item is present in the original data base and
no intervening alteration existing at that time
mentions it. However, after decision 3 has been
made, jnode 6 is present on the frontier of the
tree and its alteration removes (CLOSED DOORI)
from the data base of jnode 14 and inserts (OPEN
DOORI) in its place.

This data base scheme makes the construction
of the decision graph straightforward. A decision
directly depends exactly on those other decisions
which first established the information influencing
its formation. Thus if information from the al-
teration of a jnode influences a decision, that
decision depends on the decision responsible for
the creation of the eldest ancestor of that jnode
whose alteration contains the same information.

The advantages of having information about the
entire plan constantly available are more apparent
in a world where different steps of the same plan
are more likely to interfere with each other. An
example of such a world is the well known BLOCKS
world of Winograd”. The robot in this world can-
not Iift up a block which has other blocks on top
of it. To manipulate such a block, it must first
clear off its top by putting the supported blocks
somewhere else, usually on the table. Such tac-
tics can lead to problems when one block occupies
the space needed for another. Such problems are
resolved rather inefficiently by backtracking in
Winograd's system. If the above representation
were used, a plan could be developed as far as pos-
sible down each branch of its tree until it was
necessary to choose definite places on the table
in which to put the blocks. A place for each
block could then be chosen using the information in
the tree about all the other objects which had to
be fitted in, thus eliminating the need for trial
and error backtracking search.

187

The method of plan reconstruction after execu-
tion failure, baaed on use of the representation
and described in section 2, works in exactly the
same manner as illustrated in section 3. For
example, suppose in the execution of the present
plan, the robot discovered when it got to DOOR1
that it was not only CLOSED but LOCKED. It would
apply the replanning procedure to jnode 5, as the
most senior unexecutable ancestor of jnode 6, the
unexecutable primitive action of opening DOORT1.
Firstly, jnode 4 would be discarded since it had
already been successfully executed. Then the glo-
bal data base would be updated with the current
position of the robot and the fact that DOOR1 is
LOCKED. Dnode 2, the choice of the robot's route
from ROOH1 to ROOM2, is the decision directly res-
ponsible for jnode 5, so it would be UNDONE,
removing jnodes S, 6 and 7 from the tree and dnodes
2 and 3 from the graph. Since the knowledge that
DOOR1 is locked is available, reentering the plan-
ning process should then result in the route from
ROOM1 to ROOM2 via ROOM4 being chosen. In the new
plan, thus produced, the tree representing the
robot's going from ROOM1 to ROOM2 would grow from
the original jnode 3. All the rest of the plan
about pushing BOX1 through DOOR2 would, of course,
remain intact throughout this process.

5. Conclusion

A representation for robot plans has been pre-
sented which can assist in both the construction
and execution of such plans. Use of the represen-
tation was illustrated by a description of a work-
ing planning and execution system concerned with
the journeyings of a robot traveller in a network
of public transport services. The problem domain
of this system is atypical of robot planning sy-
stems in general, but it was also shown how the
representation could be used for more typical
worlds. The examples of the use of the represen-
tation indicated a number of features of it:

the
the discarding of those
parts of the plan invalidated by the failure and
thus reconstruction of the plan based on the selec-
tive reuse of the analysis made by the original
planning process.

When a failure occurs during execution,
representation enables

The structure of the representation

towards planning systems using hierarchical levels
of detail, and enables details to be filled in in
an order unrelated to execution order. It also

facilitates the use of
of a plan
plan.

information about one part
in constructing other parts of the same

The representation makes these contributions
to plan construction and execution, because, for a
particular plan, it reflects the structure of the
process which produced the plan. The present rep-
resentation is able to reflect the structures of
currently typical planning processes. For more ad-
vanced processes with more structure a represen-
tation capable of reflecting the extra structure
would probably give further benefits similar to the
ones mentioned above.

is oriented

188

Acknowledgements

This paper is based on a University of Edinburgh
Master of Philosophy thesis®. As in that, | would
like to thank my supervisors Harry Barrow and
Donald Michie for their guidance and encouragement.
My financial support at Edinburgh was provided by
the Science Research Council.

References

Fikes, R, E. and Nilsson, N, J. "STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving”, Artificial Intelligence,
vol. 2, 1971, pp. 189-208.

Fikes, R. E., Hart, P. E. and Nilsson, N. J.,
“"Learning and Executing Generalized Robot Plans™
Artificial Intelligence, vol. 3, 1972, pp.
251-288.

Sacerdoti, E., "Planning in a Hierarchy of
Abstraction Spaces”, Proceedings of the Third
International Joint Conference on Artificial
intelligence, Stanford, California, 1273.,
pp- 412-422.

Nilsson, N. J., "A Hierarchical Robot Planning
and Execution System", AIC Technical Note 76,

SRI Project 1187, Stanford Research Institute,
California, 1973,

Siklossy, L. and Dreussi, J. "An efficient
Robot Planner which Generates its own Proce-
dures", Proceedings of the Third International
Joint Conference on Artificial Intelligence,
Stanford, California, 1973, pp. 423-430.

Sussman, G. J. and McDermott, D. V., "Why Con-
niving is Better than Planning", AI Memo 255A,
Massachusetts Institute of Technology, Cambridge,
Maas. 1972.

Winograd, T., "Procedures as a Representation
for Data in a Computer Program for Understan-
ding Natural Language”, Project MAC TR-84, Mas-
sachusetts Institute of Technology, Cambridge,
Mass,, 1971,

Hayes, P. J., "Structuring of Robot Flans by
Successive Refinement and Decision Dependency”,
M. Phil. Thesis, School of Artificial Intelli-
gence, University of Edinburgh, Edinburgh, 1973,

