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Abstract

This paper examines the possibilities of
applying Al-Methodology developed for na-
tural language question-answering systems
to computer-aided instructional systems.
Particularly, it focusses on how semantic
nets can be extended to handle procedural
knowledge, and how an instructional model
can be expressed in terms of goal-directed
processes separated from subject-matter
knowledge.

Introduction

Functionally, question-answering systems
and computer-aided instructional systems
(CAl-systems) are similar, and it seems

appropriate to transfer Al-techniques de-
veloped for Q/A-systems (11,13) to CAI-
systems. But so far, research on Q/A-
systems has not given much thought to the
questions a user could or should be asked,
or how the system's reply should be ex-
pressed as to be easily understandable by
the user. These features are not only re-
quired in tutoral dialogue, but should
also be present in any interactive system,
where at least two partners jointly

strive to achieve a goal, and each may
request use of the capabilities of the
other. Clearly, a teacher needs some know-
ledge of his student's knowledge and goals
aside from knowledge about subject matter.
That knowledge is referred to as a user-
model. Other interactive applications
like operating systems, debuggers for pro-
gramming languages, or information-retrie-
val systems would also benefit from expli-
citly considering a model of the user in
preparing their messages.

We will outline (1) how subject-matter
knowledge may be represented in semantic

nets, and then (2) how planning of in-
struction is directed by an instructional
model.

Building semantic nets in a subject area

SCHOLAR by Carbonell (3) and SOPHIE by
Brown (2) are examples of the use of a
semantic net for representing subject-
matter knowledge and using it in gener-
ating problems, or answering queries.
Simmons has hypothesized that semantic
nets may serve as the central cognitive
structure (11). We will show how a seman-
tic net of a subject-matter area can be
built (using the notation of (8)), and
how the notion of a semantic net may be
expanded in order to achieve qreater flex-
ibility in using it.
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Basic objects and relations

First, certain concepts are decided to be
pre-requisite and known to any student.
Some objects and relations are also used
as primitives in the problem-solving com-
ponent of the system. The relation "north-
of" may either be assumed basic or ex-
plained to the student in terms of lati-
tude, as well as computed in terms of lat
itude. In choosing basic relations and
objects, it has to be considered that nat-
ural language sentences may be conve-
niently generated.

Concept nodes

Secondly, the concepts to be taught are
defined in terms of relation-object tup-
les (like a LISP property list). E.g. if
we teach, say "Chinese Cookery", some bas
ic objects may be: rice, soy-sauce, pan
etc., and some basic relations are: in-
gredient-of, made-by, shape etc.. An ob-
ject like a "wok" is not basic because
the student might need to know that it
is like an iron pan, having a bowl-like
shape with two handles, and is used main-

ly in a cooking method called "stir-fry-
ing":
wok Used-for ——— gtir-frying

Similar Shape\HaSpart I/sa Made-by
pan < » cooking-method

Similar < > - .

/
L Nul}ber Isa
bowl 2 handle

Several questions about a "wok" may be
asked by the student, and it is possible
to retrieve respective answers. General-
ly, it is a problem to decide, how many
nodes deep we shall go into the net when
retrieving the subnet used for the answer.
Carbonell (3) used irrelevancy tags as
weights to determine the subnet included
in the answer. We feel that this is a
weak point in SCHOLAR, and that the rele-
vancy should rather be determined on the
basis of an instrutional model.



Situation nodes or frames

Finally, concept no serve as building
blocks for larger structures capable of
expressing situations, events and compo-
sitions of events. A situation can be
thought of approximately as the descrip-
tion of part of the (hypothetical) world
at an instance. Again, teaching "Chinese
Cookery", we may describe the initial sit-
uation before preparing a course by lis-
ting each ingredient, respective amount,
state of preparation, tools, relative po-
sition etc.. Anything altering a given
situation is called an event. The descrip-
tion of an event should express the
changes it will make, if applied to the
network structure representing that sit-
uation. As a consequence it is natural to
allow compositions of events (nested, se-
quential or parallel concatenations). In
order to include such knowledge, semantic
nets require procedures within them.

We follow Minsky's notion of a frame "as
a data structure for representing a ster-
eotyped situation"(10), and interpret it
for representing subject-matter in an in-
structional system: "A frame is a collec-
tion of questions to be asked about a
hypothetical situation; it specifies is-
sues raised and methods to be used in
dealing with them." (Minsky (10)). Organi-
zing a curriculum for a CAl-course should
then start by identifying such situations,
applicable questions, and the ways they
are connected, rather than building a
"hierarchy of principles" (Gagne (4)).
Some of the questions associated with a
situation might be, what concepts are pre-
requisite, how a similar situation would
look, which solutions are possible, or
methods could be tried, etc.. We shall not
dig further here now, but look for a way
to extend the computational aspect of a
semantic net in order to give it some of
the capabilities of a frame-system. A
frame differs from a conventional node in
a semantic net in the sense that:

(a) Before any node being pointed to
(terminal) is accessed from a frame
head, an applicability test is made.
If it fails, a list of alternative
frames is made available. If it suc-
ceeds, it may determine which arcs
to access and in what order.

(b) If a frame is accessed, it may take
over control and not return to the
calling frame.

(c) The terminals may specify conditions
that have to be satisfied. These con-
ditions are functions that may have
as arguments values of other termi-
nals of this frame, or a frame
through which the current frame has
been previously activated. |If the
condition fails, a default value is
given.

Schematically, we visualize a node in the
net now as:

<contrel function body:>

Control
. L
<node-~head> Ri $ <node ...>»
>
Fy

vy
<function body>...

The Ri are relations in the usual sense,
while“the F, are atoms with a function
property. Iﬁ case a terminal is accessed
through his arc, the function body is eval'
ed. An F, may test conditions, and speci-
fy defauit values. The Control arc is op-
tional, tests applicability of its frame,
and determines access of terminals and
return of control.

We give some examples of extended nets
where the subject-matter taught is "Pro-
gramming in LISP":

cond-statement \syntax

Example Isa <a description of
cond-syntax>

control-gtructure

<function generating

a cond-statement taking
cond's arguments from
user's history»>

If an example for a cond-statement is
required by the student, the arc labelled
"example" is accessed. Since it has a
function property, the body is eval’ed
making it possible to generate an example
applicable in the current programming
problem. The advantage is, that examples
for cond-statemcnts can be adapted to the
student's current qoal.

The frame itself may take over control,
and evaluates itself. Whatever is sup-

posed to be done with control is speci-
fied in its body.

Take the previous example:



Syntax ——m» ...
IS& '—_——-_’ ..
cond-statement Example —e . ..

Semantics

<description of what cond

Control does to its arquments with
annotations>
<if wuser wants to know what it means

in gqeneral:
extract annotation of semantics

else find currently focussed cond-
statement
{in case of failure make example)
ginolestep semantics.

return to

When control is

caller.>

The basic operations of creating, storing,
retrieving, and removing concept nodes are
handled by standard LISP-functions. For
frames such functions must be redefined.
Also, nodes should be retrievable by pat-
tern-directed invocation (5). The develop-
ment of such tools promises to be valuable
for implementing a teaching system more
versatile than SCHOLAR. Nevertheless it
was SCHOLAR which motivated these reflec-
tions.

regained,

Planning instruction

Assume, a semantic net representing know-
ledge in a subject-area has been built
along these lines. How could an algorithm
to teach it be designed? One approach is
to wait for a user query, understand it,
invoke the frame(s) relevant to it, and
call a procedure which generates a natural
language reply. A different way is to let
the system decide what the current goal of
instruction should be, and proceed as be-
fore. Since the initiative of the dialogue
is either on the system's or on the user's
side, Carbonell used the term mixed-ini-
tiative dialogue to express that SCHOLAR
enabled both modes (3). But it is impor-
tant to notice, that both modes need a
specification of the dialoaue's goal. The
user's query must be understood as a fur-
ther specification of the (possibly vague-
ly expressed or implied) instructional
goal. Its meaning depends upon the context
of previous dialogue, assumptions about
the user's knowledge, and the purpose of
instruction.

A human instructor (hopefully) knows what
he wants to instruct, and also takes note
of what he believes his student has al-

ready understood. Sometimes, before star-
ting to teach a new concept, he makes sure
that the student has grasped alle pre-req-
uisite concepts by asking questions. The

student's answer is then used for updating

his notes. This illustrates some of a hu-
man teacher's intelligence. How can it be
made artificial?

Let us define an instructional model as a
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representation of (1) goals of instruction,
(2) methods to achieve their, and (3) a
user model. The goals may be formulated in
terms of a set of concepts the student can
apply to a set of situations. These goals
may be modified by particular user pre-
ferences. The methods include general,
hence transferable knowledge a teacher has.
The user model contains the history of un-
derstood concepts and solved problems, a
description of situation features the user
is likely to be motivated by, and possibly
some characteristics of his ability (like
reading speed, preferences for inductive
or deductive reasoning, forgetting factor
etc.). The function of an instructional
model within a CAl-system would be to
search the semantic net, retrieve the
frames to be taught, match their pre-req-
uisites with the prior knowledge of the
student and interpret user queries and
answers as updates of the instructional
model.

A CAl-system should explicitly incorporate
such model, but presently only few at-
tempts have been made to do so (6). The
traditional approaches to this problem
using decision theory and stochastic
learning models (1,7,12) have reached a
dead end due to their oversimplified re-
presentation of learning. The reason for
stochastic learning models failing as
models for instruction is their lack of
representing the content to be taught. The
teacher's decision can in general only be
made, if he knows what is understood, but
not the probability that a specific re-
sponse will be given to a specific stim-
ulus.

A new approach would be to express the in-
structional model as a structure of goal-
directed processes (in a language such as
OCONNMER (9) or HANNER (5)). We can
sketch the idea for a (overly simplistic)
first approximation to such algorithm:

Let the goal of instruction be that the
student can solve problems generatable
from a list of situation nodes of the net-
work. This list could be a tree implying a
default ordering of concepts (e.g. in
terms of the pre-requisite relation).
planning his next move, the instructor
takes a node from this list, and tries to
find out whether it is answerable by the
user model.

In

A problem generated from a situation node
is answerable if its listed pre-requisites
are marked as known or if a problem-sol-
ving procedure containing only steps pre-
viously demonstrated in other situations
can be successfully applied. The function
that evaluates whether a problem is an-
swerable may in case of failure return a
list of unknown pre-requisites, and also
recommend other frames to be examined
first.

To find whether a pre-requisite is met, or
a substep in a solution sequence is avail-
able to the user, the model may yield in-



sufficient information such that a teat be-
comes necessary. A special logic for re-
trieving tests can ' constructed: For ex-
ample, knowing that a given relation holds
for the superset node of a concept implies
that it is known for any node that is con-
nected via the "lsa"-relation. Similar
theorems hold for other relations like

part-of or temporal ordering. They should
also be used when analyzing answers to
problems not given for test purpose in or-
der to mark the probable knowledge-state
of concepts.

If it turns out
cept is necessary,
designed to examplify it. The net is
to facilitate such search by having "Ex-
ample"-arcs from concepts to frames. Also,
special procedures for generating examples
may be constructed: Find a previous situ-
ation where the solution would have been
simplified through the use of that concept,
or a situation which in case a terminal is
bound differently requires that concept in
order to be answerable.

that a pre-requisite con-
we search for a node
built

Rather than looking for problems with an-
swerable pre-requisites, a different plan
would present a situation node first in
"general terms" by binding some terminals
to simple cases, and proceed interaction
with the wuser, specifying terminals in the
direction indicated by the student's know-
ledge and interest. In SCHOLAR it is a
problem, how deep one should follow arcs
to retrieve relevant information at a
given instant. |If the instructor marks the
arcs already retrieved, he can avoid being
repetitious. Furthermore, it seems good
pedagogic practice to connect new concepts
with ones already known. This leads to
finding connections from the presented
node to already marked ones, retrieving
only differences or similarities (to en-
hance discrimination or generalization).
All this may not yet involve any restric-
tions by user goals. But his history may
indicate that he is more interested in say
political facts about South-America than
its main rivers. The dialogue should be
used to extract special procedures that
evaluate the student's motivation when re-
trieving a node and filling its terminals.

The system has to have the problem-solving
ability it tries to teach (at least within
the topic of discourse). A student query
concerning a concept, may force the in-

structor to explain the concept in the
context of the current problem. Or, if the
student has correctly solved a problem and

some of the used con-
guessed) since
instructor
then be mar-

indicated his steps,
cepts may be inferred (or
each step is solvable by the
too. These used concepts can
ked as "known"(or "probably known"). What
does the instructor do about a bug in a
user answer? He can try to produce the
same bug by using heuristics about pre-
ferred errors detected in users (like
leaving out a ")" or a terminating con-
dition for recursion in LISP). Another

hypothesis to test is, whether the user's
answer was a correct reply to a similar
problem, indicating that the situation was
not correctly understood. Finally, if the
instructor is not intelligent enough to
understand why the proposed solution s
wrong, he can tell the user facts contra-
dictory to his solution or ask for inter-

mediate results.

reach of Al-methodology
that act more like
step in this de-

It appears within
to develop CAl-systems
human teachers. A crucial
velopment is the separation of subject-
area knowledge from instructional planning
knowledge. What has been said is provi-

sional, and may serve as a guideline that
will need to be further extended and spe-
cified.
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