DEDUCTIVE RETRIEVAL MECHANISMS FOR STATE DESCRIPTION MODELS

Richard

Stanford Research

Menlo Park,

Abstract

This
for

paper facili-
modeling

describing

presents some programming
the semantics of a task domain
the situations that
task is being carried out.
the
transformed

ties
and
that domain as a
such description models a
and any given state can be
into a new state by

in
Each
task envi-

for occur

"state" of
ronment,
the occurrence of an event that
Such modeling systems are
vital particularly that
do question answering and those that do automatic
generation and execution monitoring of plans. The
modeling mechanisms described are basically exten-
sions and modifications typically
found in Al programming languages such as PLANNER,
CONN1VER, and QA4. In particular, we discuss our
use of a 3 valued logic, generator to de-
duce answers to model the saving and main-
taining of derived for
modeling the occurrence
of

alters the environment.

in many Al systems, those

of facilities

functions
queries,
facilities

results, and new

stntc changes produced by

events.

Introduction

This paper describes some modeling facilities
have been developed as part of a large Com-

system (CBC) being designed
the SRI Artificial Intelligence
intended the

to a human apprentice doing

that
puter
and implemented at
Center. The CBC is
an expert consultant

based Consultant

to serve role of

maintenance and repair operations on electromechan-
ical devices. The air compressor shown in Figure 1
is an example of such a device that has been used

during
overview of

the ear ly stages of
the project

the project,
given elsewhere

A complete

is in this

volume in Reference 1.

The models that we are concerned about in this
could be descriptions of any environment of
specific Each such

is said the envi-

paper
interest
description
ronment,
state by
environment.
the
tools,
primarily maintenance and
formed by

at instances in time.

to model a "state" of
into a new

the

transformed

that

these models describe
including
and

and a state can be
the occurrence of an event alters
the CBC,

the workstation

For
state of the device,
the events are

operations

test equipment, etc.,

repair per-
the apprentice.
for

Programming facilities

scription models and

querying state de-
updating
the occurrence of an event
particularly
those that
execution monitoring of plans.
ple, to simulate potential

them to reflect
in many Al

that do question an-

for
are vital
systems, those
swering and do automatic generation and

Planners, for exam-

use these models

E.

California

9

Flkes
Institute
94025

operator (event) their

consequences.

sequences and investigate

One of the goals for the CBC project is to
have the system synthesize plans for transforming
a device from any arbitrary state of assembly or
disassembly into any other such state. This
planning capability is required for component re-
mo va 1 or replacement operations and, in general,
whenever a collection of assembly and disassembly
operations are needed to help accomplish a task.
We will refer to this planning domain for examples
throughout this paper.

The modeling mechanisms to be described here
are basically extensions and modifications of fa-
cilities typically found in recent planning pro-
grams implemented in languages such as CONNIVEH

(Ref. 2), PLANNER (Ref. 3), and QA4 (Ref. 4). The
need for such additional knowledge representation
mechanisms is evident as Al projects continue to

move in the direction of considering more complex
task domains. The presentations here are meant to
add an increment to our ability to design and
build such large systems.
Expressions and States

Our modeling system is implemented as an ex-
tension of the QLISP programming language (Ref. 5).
[Note: QLISP is a direct descendant of the QA4
language and was designed to maintain QA4 language

features while eliminating the inefficiencies in-
troduced by the QA4 interpreter. It is a set of
functions loadable into the INTERL1SP (Ref. 6)
system, and QLISP "statements" are basically calls
on these LISP functions. Hence, the user can
freely intermix QLISP and LISP code. The control
features that were lost by eliminating the QA4 in-
terpreter are currently being restored by making
use of new control facilities provided by the 1N-
TERLISP system (Ref. 7). [Each state description
model can be thought of as a set of QLISP expres-
sions, with each expression having a truth value
associated with it. An expression typically is a
statement of a relationship among entities in the
task domain such as objects, concepts, or other
relationships. For example, the expression (CON-
NECTED PUMP PLATFORM) is a statement that the pump
is connected to the platform, and the expression
(FASTENER (CONNECTION PUMP PLATFORM) BOLT:1) is a
statement that BOLTrl is a fastener of the pump-
platform connection.

Although each QLISP expression has a L1SP-
style property list associated with it, we use

for truth
Therefore,

lists in our
values and bookkeeping information.
instead of putting GREEN as the value of
erty COLOR on the property list of PUMP, we would
create (COLOR PUMP GREEN) and put

TRUE as the value of the property TRUTHVALUE on

its property This creates homog-
enous models and allows a pattern matching program
to associatively

model.

these property models only

the prop-
the expression

list. convention

retrieve any relationship in a

The QLISP context mechanism allows the system
to build and manipulate a collection of state de-
scriptions without to create and maintain
A

node denotes a state.

having

a complete copy of each state. "context tree"

is maintained in which each

To represent the new state that is produced by
the occurrence of an event in some state Si, the
system creates a new node in the context tree as
a direct descendent of the Si node. All informa-
tion in state Si that is not explicitly changed in
the new state is assumed to also hold in the new
state. That is, each state inherits model infor-
mation from the state that is its parent in the
context tree.
Querying State Description Models

Truth Values

A state description model is a source of in-
formation ahout a particular situation, and its
primary use is as a data base for answering que-
ries about the situation. Our modeling system in-

teracts with its users (both people and programs)

as if QLISP expressions with truth values attached
were the only representations being used, even
though the option exists for storing information
in other forms. Hence, all queries from outside

the
some given state.

the modeling system concern truth value of ex-

pressions in

When answering a query about a particular ex-

pression in some given state, the system searches
for a truth value. The search begins with the ex-
pression's property list for the given state. |
the property TRUTHVALUE has no value on that prop-
erty list, the property list for the given state's
parent (in the context tree) is checked. The
search continues in this manner until a value is
found or until all the states in the context are
considered. If no value is found, the search re-
turns UNKNOWN as its result.

Since any expression can be stored as the
value of property TRUTHVALUE, this retrieval mech-
anism allows use of an N-valucd logic. For exam-
ple, one could have "fuzzy" truth values repre-
sented as integers from -100 to +100. For our
models, we currently are using a 3-valued logic
that a llows the system to distinguish expressions
that are "known true," "known false," or "have un-
known truth value" in any given state. This is

the simplist logic thai meets a modeling systems

100

need since state description models arc inher-
cntly incomplete, and it is important for the sys-
tem to be aware of what it doesn't know as we1 1 as
what it does know.

Generators Instead of Backtracking

QLISP provides facilities for

retrieving expressions

associatively
the data base that
where a pattern is de-
that may contain unbound
The QLISP statements for querying the
base use facility and
found
to find a sin-
To cause the pat-
its search and obtain
the user's program must
the query statement the
"failing").

from
match any given pattern,
fined to be an expression
variables.
data this pattern matching
are similar to the query statements in
PLANNER and QAA.
gle instance of a given pattern.

tern matcher

They are designed

to continue

another such instance, re-

via
by

turn to

language's
backtracking mechanism (i.e.,
Using backtracking in
through a class of expressions
given pattern
the sequential
the

particular,

this way
that
limitations

to sequence
match a
that it
expression

all

has severe in

ties production of each

to control structure of the user's program.
it that the
the user's program be executed
sion (namely,
the query statement).
trackable effects of

done"

In requires same portion

of for each expres-
the statements

Also,
that
failure,

for

immediately following
since all the back-

portion are being
it
each expression
Such a backtracking mechanism

"un-
the
generated.

after each makes cumbersome

saving of results
to a
de-

the

is best suited
the user
only passes

also passes addi-

situation where
that
but
the user's program.

"generate-and-test"
sires a single expression not
query statement's tests,

tional tests included in

the CONN1VER solution
in our system by pro-
that are generators of expres-
the data base. For example, is a
generator version the QLISP IS statement called
GEN:IS that finds instances of a given pattern
having truth value TRUE Each
time a generator is
called, it
venient for

We have adopted
limitations
functions

to
these modeling
viding
sions from there

of

in a given state.
function such as GEN:IS
produces as many expressions as
it.
"possibilities

is con-
on a

that indi-
restarted when more

These expressions are put
list" along with a
cates how the generator

lltagll
can be

expressions are requested, and this possibilities
list is returned by the generator as its value.

If the function TRY:NEXT is called with a
possibilities list as an argument, it will remove
the first expression from the list and return it
as a value. If the possibilities list contains no

expressions,
by using
Since each call

then TRY:NEXT attempts
the tag to restart the generator.
to TRY:NEXT can be made
the wuser's

to produce new
ones
from any-
this
the production of a

where in program,

separate

generators of

form successfully

data element from the processing that is done

on each element.

next

Consider, for example, a set of queries con-

cerning which components are connected
They can be initialized as

to the pump

in state Si. follows:

(SETQ PL (GEN:IS (CONNECTED PUMP -C) Si))

needed,
true

Then whenever one of these components is
evaluation of (TRY:.NF.XT PL) will return a
stance of the pattern (CONNECTED PUMP-C)
the value of the QLISP variable C to be

component.

in-
and will
set the
"found"
We have implemented programming facilities to
support the writing atu! use of generator functions
using 1NTKRL1SP FUNARC's. A FUNARC is a data ob-
ject that represents a copy of a
function and a private data environment for that
copy. This FUNAKG imp]Jomentation a1 lows the defi-

nition of a generator include a set of

conceptuatly

function to

variables (i.e., a data environment) whose values
will be saved and restored each time the generator
is restarted. These "own variables" allow the
generator fundion to save pointers indieating
where it is in its search for generatable iterns.
The FUNARG js added to the possibilities list as
the "tag" that TRY:NEXT uses to restart the gen-
erator. Included in the implementation are

CONNIVER-style functions such as NOTE, AU-REVOTR,
ADIEU, and TRY:NEXT, which make the definition and
use of generators convenient and practical.

FUNARG's do not
(process) facility because
saved between

provide a complete co-routine
the control environment
therefore each

the beginning

calls, and re-

control

is not

returns to
function. Our
indicated

predicate

start
the
however, has
FIRST:CALL?
inside a generator

necessarily
experience with generators,
that making available a

function that
to distinguish

of

can be called
from initial
the

en-

removes essentially all of
hindrance caused by not having a saved control
vironment . Hence, this implementation of genera-
is simple and effective and can be made

LISP systems.

calls from restarts

tors

available in most

The Query Functions

We can now describe our model querying mech-
anism. Query functions are available called
DEDUCE:ONE, DEDUCE:EACH, DEDUCE:ALL, REFUTE:ONE,

REFUTE:EACH, and REFUTE:ALL. Each of these func-

tions takes a pattern and a state as arguments.
The DEDUCE functions find instances of the pattern
that are true in the given state, and the REFUTE
functions find instances of the pattern that are
false in the given state. The :ONE functions

find only a single instance and are not restart-
able; the :EACH functions are generators and re-
turn possibilities lists; and the :ALL functions
return a list of all the findable instances.

10)

Known truth values are usually not all explic-
itly stored in a model. Instead, the user typi-
cally provides derivation functions that compute

These functions may em-
strategies or

them when they are needed.
body formal theorem proving
be statements of implicationa1
the semantics of the task domain. They serve
extend each model in the sense that,
calling program's point of view, the derived
stances of a pattern are indistinguishable front
found the model.

simply
rules derived from
to
from the

in-
in-
stances actually in
PLANNER
the

the

Our query functions are similar to a
or QA4 GOAL statement that they
pattern matcher to find suitable instances of
pattern the data base and then,
stances are needed, they call user supplied
attempt derivations the desired
These functions are assumed to be

that instances of

in first use

in if more in-

func-
tions to of in-
stances.
the

generators produce derived

pattern.

the CBC
true instances of pat-
'X -Y) by using
instances of the pattern
since components that
to be POSITIONED. Also, a
finds and generates false in-
the form (POSITIONED -X -Y)
find true the
since components are
POSITIONED.

For example, a deduction function in
finds and generates
terns of the form (POSITIONED
DEDUCE:EACH to find
(ATTACHED $X $Y),
ATTACHED are assumed

function

system

true
are

refutation
stances of patterns
by using DEDUCE:EACH to
pattern (REMOVED $X $Y),
REMOVED are assumed to be not

of
instances of
that

Such derivation functions are the user's pri-

mary means of expressing the semantic links among
the relations occurring in the state description
models. Also, they can provide an interface to in-
formation that is stored in representations other
than QLISP expressions. That is, it may be much
more convenient and efficient to store some infor-
mation in arrays, trees, or on disk files; deduce
and refute actions serve as the access functions

to these alternate data bases.

Storage and Retrieval.of Action Functions

of each nonatomic expres-
the model is assumed to be the name of a
(or a QLISP variable that is to be bound
relation). Therefore, the DEDUCE and REFUTE
relation names as an index to de-
functions should be

The element

in

first
sion
relation
to a
functions can use
termine which derivation
Accordingly, we associate with each
lists of derivation functions that can de-
that begin with the
list contains the "deduce actions"
three forms of DEDUCE and the other
used by the

called. rela-

tion two
instances of patterns re-

One

rive
lation.
used by the
contains the "refute actions"
forms of REFUTE.

three

This simple indexing technique is used as an

to "pattern directed
(which

invocation" of

in QLISP).

alternative

the actions is available

Pattern directed invocation, where a pattern is as-

sociated with each action function and a pattern

matcher determines which actions are applicable
whenever a query is made, is a useful technique in
many situations, but its power and importance
should be looked at realistically. In this situa-

tion the indexing scheme seems preferable even
though it has the disadvantages that an action's
local variables do not automatically get bound to

elements of the pattern and additional

if

tests may

be needed in an action to determine it is appli-

cable to the pattern.

the
(1)
by significantly
(2) of deduce and

typically quite short that the
can easily determine an appropriate ordering

of each list and
the
finally,

However, indexing scheme has the following
the use of the actions
reducing

list

advantages: is made

more efficient the need

for pattern matching; each

refute actions s Xo]
user
similarly can determine where on
list a new action should be (3)
found that associating semantic

information directly with each

inserted; and,
we have
relation is a con-
localize the se-
With

functions associated

venient way to conceptualize and

information in
the
relation specify essentially all

that the system knows about

mantic the system. this orga-

nization, set of action
the seman-

that

with a
tic information

relation.

Saving Derived Results

Overview

When a model query causes derivations to be

attempted, we want the results of those deriva-
tions to be stored and retained in succeeding
states as long as they remain valid. In this way
the system achieves the maximum benefit from deri-
vations and minimizes unnecessary rederivations.
It is a simple matter to store a result In the
state where a derivation is done, but more care
must be taken if the result is to be made avail-
able in other states. In this section we will de-
scribe a set of mechanisms designed to provide max-
imum retention of derived information with a mini-

mum of bookkeeping overhead.
A model to

false)

such an

is an attempt find true (or
Each time

DEDUCE and

query
instances of a given pattern.
instance is determined, our
REFUTE query functions save the derived
assigning a truth value to the instance
it as the value of TRUTHVALUE on the expression's
property list) so that the value will
be rederived if it is needed again. For example,
if a deduce action for ASSEMBLED determines that
the pump is assembled by querying about

each of the pump's components,

result by
(i.e., put

not have to

the model

then the expression

(ASSEMBLED PUMP) will be assigned a truth value of
TRUE.

If a query is one of the :ALL forms, or if it
is an :EACH form and the generation continues until

102

all instances of
duced,

variables

derivable the pattern
if the query pattern contains no unbound
(and therefore has only one possible
then the system also the
the pattern have been derived.
the same query repeated,
that functions cannot
instances and

are pro-
or
in-
stance), records fact that
all instances of
Then, if

will know

is the system
find any
ill-fated
if during a

are positioned with

the action
new
attempts at
query all
respect to
the pattern

can therefore prevent
For
the components that
the pump have been

(POSITIONED PUMP

rederivation. example,

instances of
that

found as

-C), then when in-

formation is requested in a later query, derivation
functions such as the one that looks for components
attached to the pump will not be recalled.

These "set completeness indicators" are also
frequently useful to indicate the case where there
are no derivable instances of a pattern. For exam-

ple, if all derivation attempts are unsuccessful at
determining whether the pump is assembled, then the
set of derived instances is empty and marked as com-
plete.

Saving and Maintaining Derived Instances

Our algorithms for maintaining these saved de-

rived results in succeeding states depend on avail-
ability of the "support" for each derivation. The
"support" for a derived instance is defined to be

that
the derivation.

those expressions from the model are used as
axioms
ple,
the

of

in constructing For
if an action function queries
locations of
the objects
the

result.

exam-

the model for

that
loca-

two objects and concludes
the other, then the
form the support

one
is above
tions of two objects set for
the Actually, since any model

turn a derived the support

query may
set the
the support
location expressions.

re-
result, for

result would be the union of

the

"above"

sets for two

The user supplied deduce and refute actions

are responsible for computing and storing support

for each derived instance that they find. In al-
most all cases this is an easy task. For example,
if an action embodies the implication "X implies
Y," then the action can simply fetch the support

for X and attach it to Y. GET:SUPPORT and
PUT:SUPPORT functions are provided for performing

these support set manipulations.

deduce and re-
truth

Functions are also provided for

fute actions to call when they have derived a

value for an instance of the query pattern and have
determined the support for that derivation. These
functions add the expression to the current possi-
bilities list (remember that action functions are
generators), set the truth value (i.e., TRUTHVALUE)
of the instance, put the support set on the in-
stance's property list, and put a pointer to the in-
stance on the property list of each member of the
support set. Use of these functions to "note" de-
rived results implies that derived truth values can
be found by the pattern matcher's search through

the data base at the beginning of a model query,

and each expression that supports a dertvation
will have on its property list a pointer to the ex-
pressions that it supports.

A derived result remains valid in succeeding

We
required mainte-

long as its support remains valid.
the system do the
in new states by
updating functions
facility. When-
truth value has
update,
that it
the new state. The
in

states as
therefore have
nance on derived instances in-
cluding with the standard model
(described below) the

ever an expression with a known

following

the
sup-

its truth value changed during a model

truth value of each of the expressions
to UNKNOWN

these

ports is set in

truth values of "supportees" may not fact
but the derivations
that the truth values known are no longer
valid. Hence, query the new state
to know one of the deleted
new derivation must be attempted.
(ATTACHED PUMP PLATFORM) the support
(POSITIONED PUMP PLATFORM) and a detach pump from
platform action causes a new state to be created,
then the (POSITIONED PUMP PLATFORM)
will be set the pump may still be
but the justification

conclusion about the pump's

have changed in the new state,
made
if a model in
truth values, a

if

needs
For example,

is for

truth value of
to
the platform,

"unknown," in

position on

for the earlier posi-

tion is no longer valid.

thus far is

saving

The mechanism we have described

effective, easy to use, and efficient for
and maintaining derived
that
derived
support

transition

truth values of expres-

instances of a query pattern. Each

is assigned a truth value, the

pointers are established, and when a state

invalidates the derivation the derived
is deleted.

sions are

instance

truth value

Saving and Maintaining Complete Sets

the
to patterns

the maintenance of
that are attached
instances have been found.
poses

Consider now "complete-
indicators
when all derivable
Specifying the support
some subtle problems, because the completeness de-
pends the validity of the derived

stances any other

ness"

for such indicators

not only on in-
but
are derivable.
that
state

also on whether instances
This
if any change should occur

that could possibly allow some action
to derive a new instance, the complete-
should be removed from the pattern
For the deter-

are positioned

latter consideration implies

in a succeeding
func-
tion then
ness indicator
example, during
that
the pump, some deduce action may
for components that to
Therefore, any succeeding state pro-
that attaches a component to
the the complete-
the derived positionings.
still

the completeness of

the new state”
the components

in
mination of all
with respect
have looked

to
are attached
the pump.
duced by an action
removal of

the pump will cause

ness indicator from
the

is

be valid in

the set

Each derived instance will

new state; only in

doubt.

103

this problem of the valid-
ity of completeness by keeping a record
queries made during a derivation.
produce different re-
(i.e., set of de-
the action functions that
derivation may behave differ-

We have approached
indicators
of all the model
If any of

sults

these queries will
in a new state a different

rived instances), then

made the original
the new state and

set

in in particular may de-
Therefore,
indicators we record
a call on one of the

the other model

ently

rive a different of instances. to
the completeness
during a model query (i.e.,
DEDUCE or REFUTE functions)

queries that

maintain

all
occur.

to find
tern PO during which are executed queries Q1,
Q2, ..., Qn to find instances of patterns P1,
., Pn. The system records for each query Ql
whether is a deduction or a refutation and the
associated with it. If all derivable
then PO is given a com-
of derived
the queries Ql, ...,
and a

Consider a query instances of a pat-

P2,

it
Pi
instances of PO are found,
indicator, the set
its property list,
"state transition
is put on

P1, ...,

pattern
pleteness instances
is put
Qn are put on
pointer to pattern PO

of each of the patterns

on
test lists,"
the property

Pn.

list

an expression with a known truth
truth value changed during a
transition, to determine if
the pattern of any query on the appro-
list. If a match oc-

Whenever

value is having its
is made

state test

it
priate state

a
matches

transition test

curs, the completeness indicators of the patterns
pointed to by the matching pattern are removed
since this state transition may affect the com-

pleteness of those derivations. This entire mech-

anism is built into the DEDUCE, REFUTE, and model
updating functions, so that the user who writes ac-
tion functions need not be aware of it.

In Summary

querying mechanisms
truth
they are not

To summarize, model
provide the automatic derivation of
values
plicitly stored
all
ries will
and
Also, an
is that each derived
its derivations computed and stored with it
support because it
cates precisely which in the state
subgoal, or

our
for
instances when ex-
for
so that
the derivation

saved

for pattern

in the model, the saving of

such derived results similar later

reinitiate

que-
functions,
results.

not
the maintenance of such
side effect

instance has

for

important of these mechanisms
for
Such

indi-

the support

information has many uses
statements
a particular precondition, ac-

(Ref. 8).

model
tion depends on

State Transitions

Updating Functions

that
informa-
that

The models of state changing operators a

system works with must contain sufficient

tion about the effects of each operator so

they can be simulated and a description produced

of the expected resulting state. As in most
planning systems, we are assuming that the appli-
cation of an operator in some state SO is modeled

that
S1

by producing a new state S1 is conceptually

an updated copy of SO (i.e., is a direct descen-

dent of SO in the QLISP context tree). The ef-
fects of the operator arc indicated by asserting,
denying, and deleting expressions in the new state
S1.
In our modeling system we provide the fol-
lowing set of model updating statements:
(S1IM:ASSERT <expression <state>),
(S1TM:DENY <-expression <state>), and
(SIM: DELETE <-patterns <state).
SIM:ASSERT (SIM:DENY) changes the truth value of
the given expression to TRUE (FALSE) in the given
state. SIM:DELETE changes the truth value of all

expressions that match to
UNKNOWN the given state.
call a sot of user supplied
PLANNER antecedent theorems)

additional in

the given pattern
These statements also
(like

in
functions
that typically make
the new model that
denial,
functions play an

changes are di-
the assertion,
These user supplied
simplifying operator
in one place
denials,

no matter what

rect results of or deletion
being done.
important
that
side effects of particular
that

them.

role in models in

they allow the user to express

assertions, or

deletions always occur opera-
these side effects do

that

tor does In this way,

not have to be repeated in each operator

causes them +to occur.

case of the DEDUCE and REFUTE func-
we have elected

the
for

As in
(and
to store

tions similar reasons),
supplied updating
Hence, a relation
DENY:ACTIONS,

indicate how a

the user functions on

each relation's property list.
can have a list of ASSERT:ACTIONS,
and DELETE:ACTIONS.

model

These lists

updating operation should proceed for an ex-

pression having the given relation as its first

element.

The standard model updating functions (as
in QA4, PLANNER, QLISP, CONNIVER, etc.) ap-
ply user supplied functions only after the expres-
truth value has been changed. Often it
supplied func-
truth value

found

sion's
would be convenient to have user
tions applied before
is changed as well as after. For
like LOCATION has certain uniqueness prop-
then any assertion of an expression con-
that (such as (LOCATION BOLT:1
can automatically be preceeded by a denial
(SIM:DENY (LOCATION BOLT:1 <-LOC))). By

the programmer to specify such an auto-

the expression's
example, if a re-
lation
erties,
taining
4 5))
(such as

allowing

relation 3

in an assert
specifying
is done.

matic denial "pre-action,"

the denial

we remove

the necessity for each time

such an assertion

104

both
updating by giving
the option of specifying when the
the expression be changed.
including an asterisk (*)

We provide for and

during model

"pre-actions” "post-
the pro-
truth
This
the action

actions"
grammer
value of will is
done by
list.

of applying
truth value

preceeding

in

indicates when in the course
the actions that
to be changed.

the asterisk are

The asterisk
the expression's
Hence,
"pre-actions”

is all actions

and all

actions following the asterisk are "post-actions."
When the updating functions encounter the as-
terisk in the action list, they also perform the
maintenance operations on derived results. This
means that if the expression had a known truth
value and that value is being changed, then all
the expression's supportees must be deleted. Also,
the state transition test lists are checked to de-
termine if any set completeness indicators should
be removed.
Model Updating Using. Deduce and Refute Actions

The
tions can also be used

information in many deduce and refute ac-

to determine the secondary

effects of assertions and denials. We would like
for the system to make use of this information
during model updating so that the user does not
have to duplicate it in updating functions. For
example, if the wuser has written a deduce action
that embodies the rule "X implies Y," then we do
not want him to also have to write a deny action
for Y that removes from the model any truth values
that could be used to derive X. The information
necessary to do these changes at the appropriate
time is included in the original deduce action.
Consider a consistency checking procedure

that would make use of deduce and refute actions
that
model updating.

indicating how

and could be applied as a standard part of
this procedure by
it would work The

the expression being denied would
to UNKNOWN and an attempt would be made
the expression. If this attempt produces a

successful then the new state

We can describe
for denials.
truth value of
be set to
deduce

derivation, contains

support for the truth of the expression even

though it is being denied. The inconsistency can
be eliminated by removing the support for the deri-
vation. If the support set has exactly one expres-
sion in it, then that expression can have its

truth value reversed. (This is the "X implies Y"
case where denying Y is implying that X should

also be denied.) The reversed truth value would
be stored as a derived result with the original
expression that is being denied (Y) as its support.

When the support set contains more than one expres-
sion, we know that at least one of the expressions
must have its truth value reversed, but we do not

know which onc(s). Therefore, the best we can do

is set to UNKNOWN the truth values of all the sup-
port expressions.

If the system knows which relations are
changeable by events and winch ones are true
states, then it can decrease unnecessary deletions
by removing the unehangcable expressions from the
support set truth

in all

before considering deletions or a

value reversal- After the support for the deriva-
tion has been removed, a new derivation is at-
tempted and the process is repeated until no new
derivation can be tound.

This updating procedure does not guarantee
consistency in the new stalc nor does it prevent
later chanpes to the state from introducing new in-
consistend os. However, it does automatically take
care of many model updating details and it removes
all existing inconsistoneios in the state that arc

the system's deductive machinery.
derive the
then the

ignored.

discoverablc by

If the system cannot facts from which an

inconsistency follows, inconsistency is ir-

relevant and can safely be
this
deri -

Obviously, there are situations in wbich
procedure initiates
and causes many unnecessary deletions.

be selectivcly applied. We have put
the entire process under control
specification of which deduce and
truth value dele-
reversals during model updating. This is
done by providing a function UPDATE:W1TH that

refute action and an expression as ar-

computationally expensive
vat ions
Hence, it must
user by allowing
individual refute
actions are employed to determine
tions and
takes

a deduce or

guments, and is used to specify an assert or deny
action.

Note that using an "X implies Y" deduce ac-
tion as a deny action for Y is not the same as

writing a deny action for Y that simply denies X.
The difference is that in the latter case X would

be denied each time Y is denied, and the deny ac-

tions associated with X would then trigger off
other assertions, denials, and deletions. Such a
process could clutter up the model with many irrel-

evant implicat ions of the denial of Y. However, in
the deduce action
the deny action for Y, no changes are made in the
if X cannot be derived; and if X can be de-
only the supporters of the derivation are
changed. This means that only those truth values
that inconsistent with the denial of Y

are changed; no implications are stored.

the former case where is used as
model

rived,

are actually
irrelevant

The Relations AND, OK. and NOT

and NOT arc "built
system in that deduce,

and delete actions have been written for each
Whenever possible,

AND, OK,
the sense

into" our modeling
refute, assert,
deny,
conjunctions,

of them. disjunc-

negations are decomposed into more primi-
tive forms by the action functions. For example,
action for AND also asserts each of the
conjuncts, and the deduce action for NOT strips off
the NOT from the query pattern and attempts to re-

fute the

tions, and

the assert

remaining pattern.

The refute actions for AND and OR translate

the query into a call on DEDUC£EACH by using the
rules:
((NOT XI) AND ... AND (NOT Xn)) implies
(NOT (X1 OR OR Xn), and
((NOT XI1) OR ... OR (NOT Xn)) implies
(NOT (X1 AND AND Xn)

The deduce actions for AND and OR have an impor-

tant role to play in that they are the overlords
of the derivations of each conjunct or disjunct.
They could each be expanded into full problem

that would make use of co-
to explore alternative deriva-
and semantic information to de-

conjuncts or disjuncts

solving executives

routine facilities

tions in parallel

termine the order in which

are considered. We have experimented with only un-

sophisticated versions of these actions, but the

important point to note is that the query mecha-
nism gives those actions control over the deriva-
tion so that the option is there to expand them

when needed.

Summary

We have described a set of programming fact1 -
and querying

facilities are

ities for building, maintaining,
state description models.
in systems such as planners,

They allow the storage

These
useful question an-
swerers, and simulators.

of statements with true, false, and
and provide a programming en-
allows derivation embodying

to be easily added

and retrieval
truth values,
that
the semantics of a
the system.

unknown
vironment rules
task domain
These

as functions to rules can also

be used to assist in modeling the effects of an
operator that creates a new state. Facilities arc
provided to save the results of these derivation

to delete the results in new states

the derivations are no

functions, and
longer valid. Finally,

disjunctions, and

whore
the semantics of conjunctions,

negations are provided as a part of the system.

Acknowledgments

Many people at the SRI Al Center have contrib-
uted to the development of this system. 1 wish to
especially thank Marty Rattner, Earl Sacerdoti, and
Georgia Sutherland for their important help. The
work reported herein was sponsored by the Advanced
Research Projects Agency of the Department of De-
fense under Contract DAHCO04-72-C-008 with the U.S.

Army Research Office.

References

1. Peter E. Hart, "Progress on a Computer Based
Consultant," submitted to IJCAI IV.
2. Drew V. McDermott and Gerald Jay Sussman, The

Conniver Reference Manual, Al Memo No. 259,

MIT Project MAC, May 1972.

105

3. C. Hewitt, "Procedural Embedding of Knowledge
in Planner," Proceedings of IJCAI, London
(September 1971).

4, John F. Rulifson, Jan A. Derksen, and Richard
J. Waldinger, "QA4: A Procedural Calculus
for Intuitive Reasoning," Technical Note 73,
SRI Project 8721 (November 1972).

5. Rene Reboh and Earl Sacerdoti, "A Preliminary
QLISP Manual," Technical Note 81, SRI Project
8721 (August 1973).

6. Warren Teitelman, INTERLISP (Bolt Beranek
Newman, October 1974).

7. Daniel G. Bobrow and Ben Wegbreit, "A Model
for Control Structures for Artificial Intelli-
gence Programming Languages," Proceedings of
IJCAI, Stanford, California (August 1973).

8. Richard E. Fikes, Peter E. Hart and Nils J.
Nilsson, Learning and Executing Generalized

Robot Plans", Artificial Intelligence, Vol,
3, pp 251-288, (1972)

FIGURE 1 AN AIR COMPRESSOR SYSTEM HAVING
ELECTRICAL, MECHANICAL
AND PNEUMATIC COMPONENTS

