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Abstract

The notion of unifiability is extended to substitu
tions. Theorems concerning this notion are derived
together with an algorithm for computing the most
general unifier of a set of substitutions.Especial-
ly fruitfull is the application in the case of the
and-or tree approach to theorem proving where the
subgoals are not independent but contain the same
variables. Here the ultimate solution is shown to be
the most general instance of the solutions to the
individual subproblems. Another application con-
cerns connection graphs where the arcs are substi-
tutlons and new arcs canbe generated fromold arcs.

I. Introduction

In 5] ROBINSON introduced resolution theorem
proving. He defines the notion of unifiability of
expressions as follows! two expressions are called
unifiable if we can find a substitution such that
by applying that substitution tothe expressions the
expressions become cqual.In &2 thedefinitions, the
unification algorithm and the unification theorem
are reviewed. In 43 we extend the notion of anifi-
ability to substitutions. Two substitutions are
called unifiable if we can find a substitution such
that if we can compute the composition of the orig-
inal substitutions with this substitution the re-
sulting substaitotions become equal 1n the set the-
oretical sense. Some theorems connecting unifiabi-
lity of expressions and unifiabilicy of substitu-
tions are prescnted. Furthermore, an algorithm for
computing the unifier of substitutions isdescribed.
Applications of the notion of unifiability of sub-
stitutions to resolution theorem proving problems
such as and-or tree representation, connection
graphs | 3,41 and the structure sharing way of re-
presenting clauses | 1] are dealt with in %4,

2. The Unification of Expressions

Definitions

The following definitions are taken from | 5}:

A ferm ts either avariableora string of sym-
bols consisting of a function symbol of degree n > 0
followed by n terms.

An cxpression is either a term or a string of
symbols consisting of a predicate symbol of degree
n ~ 0 followed by n terms.

A subatitution componeni is any construct of
the form v + t where v is a variable and t is a
term different from v; v is called the variable of
the substitution component v » t and t is called
the term (Hence v » v is not a substitution compo-
nent for any variable v).

A subgtitution is a finite (possibly empty)
set of substitution components with distinct letft-
hand sides. Thereforc in a substitution
{vp Ly, voprtg,.c., vrtt the order of the consti-
tuent components is ilmmaterial. Substitutions are
denoted by lower case greek letters, ¢ 1s used to
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denote the empty substitution.

In the following variables will be denoted by
strings commencing with v,w,x,y,z; constants or
nullary functions by a,b,c,d,e and strings commen-
cing with f,g,h denote n—ary functions with n = I,

Let E be a finite string of symbols and

= {ui+ti}§,l be a substitution. The inastard Lot fom
of E by 0 1is the operation of simultaneously re-
placing each occurrence of v; in E by anoccurrence
of the term t{ for all i, 1 < i k. The resulting
string E6 is called the znstance of E by 0. 1f C is
a set of strings and 6 a substitution then the in-
stance of C by 6 is defined by Cé = {EG|EcC}).

ler 6 = {Vi*ti}E-l and » be substitutions. The com-
position of v and A is the substitution ' o '
where 0' consists of the components v; » t;} such
that tj» # v;, } © i - k and X' consists of the sub
stitution components of } whose left-hand sides are
not left-hand sides of 0.

It is easily verified thact (0 = 0 = 0 for all sub-
stitutions 6. Similarly, compositinn of substitu-
tions 1s associative, i.e. (0X)py = 6(iy) and there—
fore we may omit the parentheses.

(Hint: for any expression E and a composition of
substitutions ¢ = 8x; Eo is the string E6Xx, that is,
the instance of E8 by A}.

We now summarize some properties of the composition
of substitutions which we need in the seaquel.
(£ is an expression and o,u,) are substitutions.)

1. (Eo)x = E(oa) for all strings E and all substi-
tutions o,A.

2. o = A iff Eo = E} for all strings E.

3. (ox)u = o(Au) for all substitutions o,i,u.

4. (AuB)) = A) u Bx for all sets of strings A,B and
all substitutions 4. Note that rthe composition of
substitutions is not commutative ol ¥ Ao.

The Jdisagreemernt set of a non-empry set of expres-
si1ons A consists of the set of well-formed subex-
pressions extracted from the erpressions in A by
deleting the initial parts which are common to all
expressions in A.

UNIFIER. Let A be a set of expressions and U be a
substitution; ® is said to unify A (or to be s unr-
Jier of A) if A#H is a singleton. A set of expres-—
sions which has a unifier is said to be unifiable.

MOST GENERAL UNIFIER. A unifier 0 of a set of ex-
pressions A is called a most general unifier of A
if for all unifiers o of A there exists a substi=-
tution * such that o = 0A, If A has & unifier then
there exists always a most general unifier 8; A0
then is called the most general instance of A. (The
most peneral unifier of A is unique up to iso-
morphisms. )

The Algorithm and the Unification Theorem

The unification algorithm and theorem are quoted
from the ROBINSON [51. The Unification algorithm
computes the most general unifier of A, where A is
a finite non-empty set of expressions:

Step 1 & o5t = ¢ (the empty substitution); k: = 0;



Step 11 If Aok is a singleton stop: ok. is the
most general unifier of A.

Step I1l: Compute the disagreement set of Aoy; or-
der this set such that the variables are in front,
the rest of the ordering being immaterial.

If v and ux are the two earliest elements of the

disagreement set and v¢ is a variable that does not
occur in ux then ok+1 = o0k {vk->uy}; k := k+1; go
to step 2 otherwise stop then A is not unifiable.

UNIFICATION THEOREM, Jlet A be a non-empty finite
eet of expressions. If A is unifiable then there
exists a most general unifier o of A which is com-
puted by the unification algorithm.

During the computation of a deduction in auto-

matic theorem proving a great amount of unification
computations has to be performed. The implementa-
tion of the unification algorithm can be done much
more efficient than a straightaway implemen-
tation; See 16, 2 and 7 J.

3. An Extension of Unification to Substitutions

Definitions
Substitution unifier. Let o = 17:*i-i be a set of
substitutions and o a substitution; o is said to
unify 0 or to be a unifier of o if e-0o ' "Ti+ij° "°F
all I< i < k. A set of substitutions which has a
unifier is said to be unifiable or to be compatible.
(By equality of substitutions is meant the set the-
oretical equality of the ordered pairs).

0, are
called an

substitutions then
instance of O..

and

*S

Instantiation, If Uj
the composition OB,

unifier. A unifier o of a set of sub-
[OAtA.j is called a most general
unifier if for all unifiers i of 0 there exists a
substitution A such that T= nA; the instance fljo
is called the most general instance of 0.

Most general
stitutions 0 =

Normal form, A substitution 6 =< ’\"i_’\ci"ik«l AS ® D
normal form if for all i,j: 1 < i, j * Kk, Vi does
not occur in t;.

Note

1. By definition it holds that all vj's in a sub-

stitution are different.

2. The most general unifier of expressions comput-
ed by the unification algorithm as quoted in 2.2
is in normal form.

3. The most general instance of a set of substitu-
tions *C0-1™»i is sometimes also denoted by

61*62%-+.*0"; is commutative and

associative.

this operation

A substitution component v * t is called circular
if v occurs in t.
A set of substitutions 0 « {0-}**. is called con-

tradictory if there are two substitutions 6], 6
in G such that there is a substitution component
* in 6j and a substitution component

vj  -F tj.
V] tjm in O such that VJ - vj and the terms

and t:

tﬂl Jm are not unifiable.

Algorithms and Theorems

We now give the algorithm to compute the roost

general unifier o of a set of substitutions 10.)" ,.
1 il
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that come from all 8;0y.

Wo assume that in each substitution of a set of
substitutions the substitution-components are or-
dered according to a fixed enumeration of all vari-
ables and there are no circular components.

Subatitution (nification Algorithm.

Step T @ ki= O ag = ¢,
Step 1 : Compute (0,0, ; delete components of

the form v » v from ﬁﬁ%nk}?‘l. 1f there is a circu
lar substitution component in one of the substitu-
tions 60y then there isno unifier and the algorithm
halts. If (0,0 1%, is a singleton then o, is amost
general unifier and the algorithm halts. In all
other cases goto step 3.

Step III: Take the first substitution component from
all 6;0.; if they are all equal then take next ones
otherwise take from this set those substitution
components where the variables are first in the
above mentioned enumeration on the variables, the
resulting set is, say, {v-tj}J.|. We now distin-
guish three cases.

Case I : m= 1. Then: k 1= k+l; nk 1= n&_l.
{v+t][; goto step 2.

Case 1] : The set contains substitution components
that come from some but not all of the sets
{0;015ay. If the set {v+tj}T=) is contradictory,
then stop: not unifiable otherwise let 3 be the
most general unifier of {tj}Twl then k := k+];
o = ok-1- {v+t |} A; goto step 2.
Case III: The set contains substitution components
If the set {ver;}Tay is
contradictory then halt: not unifiable ogherwise
let s be the most general unifier of {t;}%,) then
k = k+l; gy i™ Op-1.A; goto step 2.
Examples
i. 8 = {xt, yral; 89 = {x0f(y), 2f(y)};

63 = {x+z, t+z, s+*b}. Ordering x,y,z,t,s.

k = 0: op = ¢,

k= l: x>¢t, x» f(y), x > z.

compute m.g.u. of {t,f(y),z}: t » f(y), z + £(y)

oy = (t=f(y), z+f(y)}

ijoy = {x+£(y), y»a, z+f(y), t+f(y)}

8701 = {x+£(y), z~£f(y), t+f(y)}

G301 = {x>f(y), z>f(y), t>f{y), s*b}

op = a;.{y»al = {t~f(a), z-f(a), y+al

Gjop = 09072 = {x+f(a), y+a, z+f(a), t~f(a)]

Baop = {x+f(a), y+a, z+f(a), t+f(a), s+b}

03 = oo.{s~b} = {t+f(a), z+f(a}), y*a, s-+b}

o3 is the most general unifier of {8,,67,03)

9y = {x+y, y+*f(a)l}; 65 =i{x>f(a), y*f(a)}
g1 = {y~f(a))} is the most general unifier.

3. 8) = {xry, y+f(a)}; 82 = {x>b, y*f(a)}
ayp = ly*b} is the most general unifier and 0; is
is the most general instance.

4. 6) = {xry}; 69 = {xb, y+f(a)l
oy = {y>bl 8307 = {x*b, y*bli60 =(x+b, y+f(a)}
because {y+*b} and {y+f(a)) are contradictery,
B; and 087 are not unifiable. (since b is not
variable)

Remarks

I. The most general unifier of a set of substitu-
tions as computed by the above algorithm is al-
ways in normal form.

The most general instance of a set of gsubstitu-
tions is not always a unifier of the substitu-
tions: example 3: 85 = {x*b, y+f(a)} is the most

2.



general instance but 6y#y = {x*f(a), y*f(a)} 4 650,.

To compute the most general unifier of expressions
we can also use the algorithm for computing the
m.g.u. of substitutions if we consider the dis-
agreement set to be substitutions and look at the
class of disagreement sets. The class of disagree-
ment sets of a nonempty set of expressions A con-
sists of the class of sets of well-formed subex-
pressions from the expressions in A by deleting the
parts which are common to all expressions in A
(scanning starts from the left).

Example

{R(x,y), R(g(f{x,y)), h(b}), R(a,t)!
the disagreement sets are: {x,g(f(x,y)),al and
{y,h(b),t].

Algorithm 2 to make a set of substitutions out of a
disagreement set of a set ofexpressions if possible.

Step | If the disagreement set does not contain
any variable then halt: there is no unifier.
Step IX: Choose one of the variables from the dis-

agreement set (eq ,... ,en,} say e® and make the fol-
lowing set of (n-1) substitutions

{ei+e‘l . lei+l'!i_l} liei.'ei‘_ll’ ‘e {Ei"f.'.ni- .
If there is any substitution component circular in

this set then halt: there is no unifier.

THEOREM |. Let 0 = {8;}Ys| be a non-empty set of

substitutions. If O is unifiable then there exists
a moet general unifier o of Qand o is determined by
the substitution unification algorithm. The proof
goes similarly to that of the unification theorem.

Examp le

8y = {xrf(y), z+al;0. = {x+f(g(s)), t-b}

v = {y+g(a), z+a, t»b, u+g(a), sra} is a unifier.
00 = i A
o = {y+g(s)}; Ay~ {t-b, zva, u+g(a), s-al

vy = ly»g(s), z+al; 2y = {t+b, u+g(a), s+a}

¢y ® m.g.u. = {y»g(s), z+a, t*b}; rq = {urg(a),s~al

= 1

THECREM 2. Given a unifiable set of substitutions

ABi*2»| °Y*A that «£ is in normal form for all i.

The most_aeneral instance of {Di}?-l is also a uni-
fier —of {e;1%.,.

PROOF. Let the most general unifier of {Gi]ti'_l

be o then 80 = = 0o is the most general in-

stance. Because of the normal form of the substi-

tutions Bi. 6; = 84 holds. Because of the associa-
tivity of the composition of substitutions we have:
Ui(iin "“i(”;“) and .therefore “lﬂln = Uybgyo = Ozﬂlo.
Hence, 8,0 is a unifier. 0

THECREM 3. For a given set of expressions which is
unifiable we can compute the most general unifier
also by applying the substitution unification al-
gorithm on the set of substitutions formed by al-
gorithm 2 from the disagreement sets. Then the
m.g.u. of the expressions is the most general in-
stance of these substitutions.

(Substitutions from the second algorithm are in
normal form since every substitution consists of
but one substitution somponent)

The proof proceeds in two steps: first we prove
that unifiabi1lity occurs in the same cireurnstances;
secondly we can prove that we get the same unifier
up to isomorphisms.

79

Examgls

Are P(y,f{(z),z} and P(x,x,t) unifiable?

Disagreement sets: {y,x}, [£f(z),x} (z,t); corre-

sponding set of subsitutions 6 = {{ysx , x+f(z)},

{z-tl}l.

Ordering of variables: x,y,z,t.

gy = {xr f(2)); o, = {(urf(z),y-f(2)), {x-£(2)1,
lx+f(z).z+t}H.

0y = {x>f(z), y+£(2)}

oy = m.g.u. = {xrf(t), y-f(r), z»L}.un3 ={{xf(t),
yf(t), z»tll,

Some Theorems Relating the Different Unifications

THEOREM 4. Given a set of eapressions {E;}7,, with
a most general unifier ¢ then for a set of n sub-
strtutions [01}?al the jollowing holds. The get of
ingtances {E;6;)%., Ze wunifiable if the set of sub-
gtitutions (8} v 18.)% | 8 wunifiable. The most
general unifiler o o} 181 v {8;19-) 78 also a uni-
fier of (E;0;19.,.
PROOF.If{@}u{Bi}“.I is unifiable then there exists
a substitution o tée most general unifier, such
that Go = 6jo = ... = 8,0 ; 8 is the most general
unifier of tEi}?.l so E6 = = E,0 also E 60 =
= ... = E 60; replacing to by respectively

80, «.. , 80 gives Ey6j0 = ... = E B0 which

means that o is a unifier of the set {E;n;1%.y. O
Remark

The computed unifier is not necessarily the most
general one because variables which occur in Ej can
be deleted by substituion fl.; therefore they do not
occur in the computed unifier. This is one of the
reasons that the converse of the theorem does not
hold in general.

Counterexamples

b. {P(x), P(a)} unifiable 0 = {x+a}. Let 8, = ¢ and
0 = {x+b} then {Eiei}?-l = {P{x), P(a)} unifiasble
but 0, 67 and 0 are not unifiable.

2. (P(x,y), P(y,t)} unifiable 6 = {x+t, y»t}. Let
8; = {yra} and 87 = {y+c) then {E;0,}{.{ = {P(x,2),
P{c,t)}} unifiable but 6, o and 6 arenot unifiable.

However, the converse theorem holds if we restrict
the substitutions 0 to variables that occur in E-
and if the expressions E”» do not have any variables
in common.

THEOREM *). Let {Ei}ni'l be a set of expressions
which have no varxables in common and are unifiable
with a moet general unifier o. Let {Bi)?-! be a set
of substitutions such that a variable occuring in
ON does not occur in 8:, 1 i, 1 < nand 8; hasas
left-hand sides of its components only variables
occuring in E* If the set of expressions {Eiﬂi}'i"_l
is unifiable then the set of substitutions

{o} o {l‘.i}?_l is unifiable.

The proof proceeds by contradiction along the dif-

ferent steps of the substitution unification al-
gorithm.

Example

Given E* * P(y¢f(z),z) and E- - P(x,x,t) then the
most general unifier of E| and E2 is



0 = {x+f(t), y*£(t), z+t}.

1f we now apply the substitution 1 = {x+f(a)} toE
we can ask If P(y,f(z),z) and P(x,x,t). 7 = P(f(a),
f(a),t) are still unifiable. This implies the ques~
tion: are the substitution ¢ and 7 unifiable.

o = m.g.u. (f(r),f(a)) = {t»a)

oy = {t+a, y>f(a))

047 = the most general unifier = {t-a, y»f(a), z-al
and this is also the most general unifier of
P(y,f(z),z) and P(x,x,t).1 = P(f(a), f(a),t).

4., Application of Substitution Unification

to Theorem Proving

Readers unfamiliar with the notions used in
resclution theorem proving can find the necessary
definitions in 5 and 2].

The application of our approach is strongly con-
nected with on the one hand the way the resolution
principle is used and on the other hand with the
representation of clauses in the computer memory.
If the clauses are represented in the usual way as
liste, there is no profit in using the algorithms
stated in 53. The improvement in efficiency comes
in when we represent clauses by two pointers point -
ing to the parent clauses and by a pointer to the
substitution applied in this resolution step | 1].
For this latter representation, using the unifica-
tion algorithm for expressions requires a search
through the tree of pointers to make the actual
clause since we want to know whether the literals
are unifiable with the literals in some other
clause. The advantage of using the substitution
unification algorithm here can be seen right away.

We first compute the so-called classification
matrix for the input-clauses { 4. The literals in
the input clauses are numbered, let us say, from 1
to m and the matrix consists of substitutions. The
(1,k)th entry is O if the_lth literal is not uni-
fiable with the k-th literal; the entry is the most
general unifier of the 1-th and k-th literal other-
wise.

We can state the following
4 and 5 from 3.
step).

corollary of theorem
{(unification for a resolution

If L and K are wuntfiuble literale with m.g.u. o

(L and K do not have uny variables in common) then
L8, and Kby are wnifiable i1 ff 0, 6, and o are uni~
fiable; the most general unifier of (0, 8y, ol 78
also a untfier of Lo and K6y . (In 6y, 65 occur
only variables occuring in L and k respectively and
¥y, 0y do not have variables in common)

Implementing this we have to take care of the
conditions stated in parentheses; we will see how
in an example stated below.

In case of factoring the situation is a bit
different because there the substitutions 0, and 0,
have variables in common therefore we have to treat
factoring separately. The following situation
occurs. Two literals L and K are unifiable with
m.g.u. 0; K and L do not have any variables in coo-
mon because they come from different clauses. Sub-
stitutions 0y and 05 are applied to K and L re-
spectively and then the clauses containing K0 and
LUz are resolved un literals different f{rom Ko and
Loy, involving unifier A, The question to be an-
swered now is: are K4 and L0} still unifiable
given L and K are unifiable with m.g.u. o.
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THEOREM 1. K8 A «rd LOy) are untfiable in the above
case tff 0,6,,6, and A are unifiable. The m.g.u. of
{0,6,.8,,A) 18 a unifier of Ka,x and LOsA.

PROOF. If {0,8,85,2) unifiable then K8 A and Lig4
are unifiable. (follows directly from theorem 4,
3). If {0,64,00,2) are not unifiable then because
6,,09 and ) are unifiable, o is not unifiable with
either 8,0, or A,

Case 1 : x » t) ¢ 0o x > ty € 0) VO, v) with

x ¢ L uK.

If x ¢ L then t| ¢ K, in L8} x is replaced by ¢t

so K and Loos are not unfiable so Koji and L0, not

unifiable.

Case I1: x »y ¢ 0; vy~ f(x) ¢ 0, v Oz Vv xel,

y ¢« K

y > £(x) ¢ iy vip=y+ f(xX) ¢ A; soy in K isre-

placed by f(x) and K} and L not unifiable; if x,

y ¢ L the same follows: y + f(x) ¢ 6, v A etc. []
All together we can see that we are not espe-

cially interested in most general unifiers but we

are interested in what happens to all variables in

the input clauses during the deduction and that 1is

what we have to keep track of. (see example).

Another application strikes the eye when we
look at the theorem proving problem in a problem
solving way: we start with some topclause denoting
the disjunction of its literals, the goal we have
to reach is to resolve away all literals (subgoals)
{and - branches), each of which can be resolved in
different ways (or - branches). What makes things
complicated is that the subgoals are not indepen-
dent [3,4]. Firstly we can assume that all new
variables introduced in different branches are dif-
ferent from each other so that the only link be-
tween subgoals is the variables they have in common
This means that we have only to keep track of sub-
stitution components that effect those variables.

We want to prove that the most general in-
stance of ¢;,...,08, is the ultimate solution to
problem L;...L if 6y,...,8, are solutions to
Li,...,L, Tespectively. The fact that literal L
(subgoal? is solvable with substitution 8 (vari-
ables of left sides of the components all occur in
L) means that there exists a refutatioo of L say
Cop = L, Cy,...,Cp = [} where C; is the resolvent of
C;_y with a clause D;_; (not necessarily a input-
ciause) furthermore Dy has to contain a literal K
opposite in sign to L with |K| and |L] unifiable.

From this refutation we can find a derivation
of an expression E = Ko with |E| and L unifiable
with unifier 6 : C; = Dy, C5,...,C. = Ko.

THBEOREM 2. If there existe a refutation of literal
L (unrestricted resolution) involving cubstitution
8 on L, then there exists a deduction of a literal
K which has aign opposite to L and where |K| and |1.|
are unifiable.

The proof proceeds by induction on the length of
the refutation.

Example

Given a set V and a multiplication operator ~ which
1s associative and left and right solutions are in
V then we want to prove the existence of the iden-
tity element. To translate this into predicate cal-
culus we use the predicate P(x,y,z) which can be
interpreted as x » y = z,



Problem input clauses:

1. P(g(x,y),x,y) 'Vx¥y3z: zrxxm=y.

2. P(x,h(x,y),y) 'Vivydz: x»zsey.

3.-P(x,y,z)-P{y,u,y) P(z,u,z) 'Vavyvevu{x+y=zAyy=
=ymzrusz |

4.-P(j(x),x,j(x)) 'negation of the theorem: 3yvx:
Khy=X.

We number the literals in the problem |

(clause 3 containing lit 3,4 and 5)

We first compute the classification matrix:

to b.

| | 2 3 4 5 6
I 0 0 944 0 0 0
2 0 0 0y4 Gay 0 0
3 0413 991 0 4] 49 0
4 0 %4 0 0 9y 0
5 0 0 935 %45 0 Oep
6 0 0 0 0 o 0

0 means not resolvable (identical to: opposite in
sign and the absolute values are not unifiable).
013 means literal 1 and literal 3 are resolvable
involving substitution o013 where variables occur-
ring, in literal 1 are indexed by | and variables
occurring in literal 3 by 3 so making the standard

izing apart quite easily. The following substitu-

tions are involved in the matrix:
M3 * ixy * g(x,yy). vy v Xy, 23 0y
Mp3 = kg m %y, y3 v oalxp.ayp), 23 0 oy
op4 = lyy » %y, vy » xy, ug » hix),xy)}
035 = Ix3 » zg, y3 * ug, 23 > zg)
95 = lyg » 25, vy > ug
Ogg ™ {25 + j(xb), ug xb}
We work this example out using connection
graphs [4]. If we use connection graphs it is al-
most necessary to use the substitution unification

algorithm because the arcs between the clauses

(literals) are in fact unifiers and new arcs can
be computed from old arcs using this algorithm.
The initial graph is made from the classification
matrix:
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/?}'LM
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3 4 45
e
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24

8] 3
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v

delete link 914
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= unifier o

=0

056 56' '.7]3
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» ynifier o - g

24 913 24

delete link o!
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4 43 5
\\“56
[s)
24 6
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4 024 unifier 024’056 o24
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— > delete 94 0

Note that 0&& = 044 because we are only interested
in those substitutions concerning variables in Iit
2 and lit 4,5.
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