COMMENTING PROOFS

James R,
Massachusetts
Artificial
Cambridge,

Abstract

The goal of this investigation is the develop-
ment of a semantics for 1 order theories based
on certain new syntactic structures in formal
proofs which derive from their pragmatic and
semantic aspects. The present report is mainly
concerned with these new syntactic structures,
the motivation behind them, their technical def-
inition and their basic properties. Their role
in a new semantics for Intuitiom stc Peano Arith-
metic is indicated in the last section.

1. Introduction

This paper constitutes a summary of a sem-
inar entitled "Commenting Proofs" given at the
Artificial Intelligence Laboratory at M, 1. T.
during the spring of 1974. The seminar was con-
cerned with new syntactical structures in formal
proofs which derive from their pragmatic and
semantic aspects. These structures can be used
to provide a semantical interpretation for proofs
quite distinct from that of Model Theory and
rather more akin to the construction semantics
for Intuitionistic Peano Arithmetic developed by
K. Godel and the A. L procedural interpretation
of the logical connectives and quantifiers a la
C. Hewit's Planner Language. The work is act-
ually a synthesis of elements from Yessenm-
Volpin's foundational studies {l)and G. Sussman's
work on building a "causal" history of a compu-
tation from the comments of the corresponding
documented program (2).

For the most part we shall restrict our-
selves to the context of Peano Arithmetic and
the primative recuresive arithmetic of addition,
multiplication and exponentiation in particular.
At the end of this report a few remarks will be
made on how these ideas are extended to a richer
deductive environment.

In our work we distinguish between formal
proofs (a sequence of sentences satisfying the
usual syntactic criteria) and "real"proofs (a
formal proof constructed by someone in accord-
ance with a motivational system of goals). In the
latter case each line may be commented by
intrinsic (formal-syntactic) remarks and extrin-
sic (goal related) remarks. These remarks not
only explain the purpose of a particular line, but
at the same time establish connections with other
lines (previous lines and lines yet to be construct-
ed). In tact these remarks point to connections
between the very signs that make up the lines of

Geiser

Institute of Technology
Intelligence Laboratory
Massachusetts

the proof. These connections, which, using
Yessenin-Volpin's terminology, are called
identificational connections or ids, are the
links of a very detailed syntactic structure

which resides implicitly in real proofs, a struc-
ture of causal chains connecting the occurences
of symbols. This is the new syntactic structure
mentioned in the first paragraph.

With this sort of information it becomes
possible to answer a question like "what part of
the term 11. 111 is responsible for the third
stroke in the right hand side of the equation
11111 = 111111 ?". Such a part will be called an
ingredient of a term, consisting of a certain list
structure whose atoms are the occurences of
symbols in the term. If we think of a term t
being evaluated to its numeral value Itl=11...1
then the ingredients represent the computational
history of each stroke in Itl.

Much of the present report is concerned with de-
fining the ingredients of a term and characteriz-
ing their dependence on the computational paths
used to evaluate the term. The semantics which
arises from this comes from considering a proof
as encoding a procedure for manipulating list
structures so that if, for example, the proof is
of t=s then the encoded procedure induces an
isomorphism from the ingredients of t onto the
ingredients of s. While ingredients and the re-
sulting semantics can be implimented it seems
best at this point to treat these ideas theoretically
and to be aware of their possible relevance to
such concepts as consistency, relevant entail-
ment, computational efficiency and methods of
proof. We wont develope these connections in
this report other than to briefly point out a con-
nection between computational efficiency and the
"normal" form of an ingredient in section 7.

j_-_Recursive Arithmetic.

Recursive Arithmetic consists syntactically
of terms and equations, and deductively of comp-
utations (constucted by means of the recursion
axioms and the substitution rule).

Terms are expressions formed from 1, + , ",

exp, (,) by means of the following rules.

1) 1 is a term.

Z) If t is a term then so is tl.

3) Ift and s are terms then so are (t + a), te s,

and exp(t, s) .

We shall use the symbols t, r,
t1,r1, s1, to denote terms. We shall make
use of the usual conventions for ignoring paran -
theses. Also note that our use of the word
"term" doesn't allow for the occurences of free
variables, i.e. they are always to be closed. *

S, ...,

Terms of the form 1, 11, C1(m

(n concatenated strokes) are called numerals.

An equation is an expresion of the form
t = s.

The Recursion Axiom Schemata:
Addition Al (t+1)=¢tl,

A2 (t+s8l)=(t +s)l,
Multiplication Ml t-1=t.

M2 te(sl)=tes 4 t.
Exponentiation El explt, 1}=t.

E2 explt,sl) - explt, s)t.

The Substitution Rule Schema:

Line LA t = s{r)

Line LB r - ¢’

Line LC t = s(r").

Here s(r) denotes a term in which the term r

has one or more indicated occurences, and s(r')
denotes the term resulting from the replacement
in s(r) of r by r' at the indicated occurences of
r in s(r) . Note that this is more general than
uniform substitution. We say that LC follows
from LA and L.B by substitution.

A proof or computation is formally de-
fined as a sequence of equations each of which
is a instance of a recursion axiom or else follows
by substitution from two previous equations. We
consider two simple yet illuminating examples.

Example 2.1,

L1 1+1l=(1+1)1
L2 1+1=11

L3 1+11=111.

Example 2,2 .

Il i ll=1-1+1
Lz 1-1=1

L3 111 =1+1
14 1+1=11
15 1-11 =11,

3, Commenting Proofs

We begin commenting these computations
by means of intrinsic and extrinsic remarks--
this terminology is after Sussman. Then we use
these remarks to generate ids between the oc-
curences of symbols in the computation. By

*

The notational methods that we shall
develope for +, * , and exp, will serve to
handle all other primitive recursive functions.

35

tracing out chains of ids we can establish an ac-
countability for every sign in the computation.
This will at the same time make explicit the
semantics of the computation, i.e. which oc-
curences of symbols are synonomous and what
are the computational roles of each sign.

The intrinsic or formal comments make
note of :
1) if the line is an axiom; in which case a pointer
is generated to the axiom schema in question;
2)if the line follows by substitution; in which case
pointers are generated to the lines from which it
follows and to the occurences of the term to be

replaced.

The extrinsic or goal-related remarks
consist of:
1) the top level goal statement (i. e. find the

value of term t);

2) the assertion that line L (s =. s') is generated
in order to simplify by substitution a term t(s)
in a previous line L';

3) the assertion that line L," is the result of a
substitution rule from lines L, L' whose pur-
pose it was to achieve simplification by means of
this substitution;

4) the assertion that the line matches the top

level goal.
Example 2.1 Commented,
The top level goal 15 to evaluate 1+ 11,

11 1+ 11 ={1+1} (Axiom A2} (Purpose 1s to
simplify 1+ 11 of top level goal.)

L2 1+1=11 (Axiom A]) (Purpose is to sim-

plify 1+ 1 of r.h.s, of Ll using substitution,)

L3 i+ 11 =111 (Sub. L1, L2Z) (Purpose is to
fulfill the goal of 1.2, L3 matches top level
goal.)

Example 2.2 is commented in a similar
manner.

4. |ldentificational Connections.

We now add a third type of comment to the
analyzed computation, namely we make note of

the identificational connections (ids). First of all
each axiom is to be accompanied by certain ids as
follows.
/-—h\‘
Al t+l\:i)t}
— .,
A2 t+ sl\:i—iﬂl
)
M ti=t
M2 t-{s])=t8 +1t
w12y
El expft, k=t
E2 exp(t, gl¥z-expit,s)t.

For example, in A2 we would say that s and

t in the r.h. s. are rewritten from the s and t in
the I.h. s. and this justifies their synonymity. On
the other hand we also make an identificational
connection between the two occurences of 1 and
this constitutes our semantical interpretation of
+in terms of the sucessor function xI.

Now consider M2. We say that both t's
in the r.h. s. are rewritten from the |.h.s t.
Similarly the s in the r.h. a. is rewritten from
the s in the |.h. s, However, we associate the
second t in the r.h. s. with the stroke 1 of the
l.h.s. this is part of our semantical interpre-
tation of * Thus we are looking at m-n as say-
ing add m to itself n times; in this computation
n acts as a counter for the n different rewrittings
of m. The strokes of m are the counter or con-
trol elements in this case.

Let A be an axiom and id(A) the set of ids
associated with A. More explicitly: if a stroke p
on the r.h. s is simply rewritten froma stroke q
on the I.h. s. (without a control element) then
put id(p,q) in id(A); if on the other hand p in the
r.h, s. is rewritten! from q in the 1. h. s. under
the control element q' and using an axiom for the
operation f (either » or exp) then put id(p, (q, q', f))
in id(A) .~

Ids come from the substitution rule in ac-

cordance with the following schema.
la t:r(s)

Ict=ri(s"}).

These ids actually come from the extrinsic com-
ments associated with these lines: Lb's purpose
is to simplify the indicated s in the r.h. s. of La.
Hence the s in the], n. s. of Lb is rewritten from
the s in the r. h. s. of La. Lc achieves the goal
of Lb; hence the context r in the r.h. s, of Lc is
rewritten from the context r in the r.h. s. of La
and the s' in the r.h. s. of Lc is rewritten from
the s* of the r.h. s, of Lb. Also, the 1. h. s, of Lc
is rewritten from the |I.h. s. of La.

Fully commented by ids Examples 2.1 and
Z, Z look like the following.
Example 2.1 Commented by ids.

R
L1 + 11 = (1+1)]
\Q_EEJI-L
—
Lz {1+1 = Ll&‘
e T
L3 1+1]1 = 11]1.
* A set of ids like id(A) is usually taken
symetrically, i.e., if id(u, v) is in id(A) then
SO is id(v, u).

36

Example 2.2 Commented by ids .

Ll

1.2

L3 l'l,l’:_}_tl
,-——--/'ﬂ
+1 =

14 l“‘“""""i

L5 1-11 = .

We can now trace out paths of ids, there-
by diagramming the computational relations be-
tween the different occurences of strokes in the
proof. For example, in Example 2. 1, if we de-
note the occurences of strokes in L3 by p,p',p",
g, q', q" (left to right) then we can see that pis

connected to q, p' is connected to q' and p" is
connected to gq". Further more these are the
only connections between the strokes of L3. This

yields a very nice correspondence between the
1. h.s. and the r. h. s. strokes of L3.

The case of Example 2.2 is more com-
plicated in that some of the occurences of strokes
act as counter elements and when in this role
they do not get rewritten. Lable the strokes in
L5 p, p', p" g9 q" (left to right). Trace out a path
from q or q' of L5 to a pattern of strokes p, p',
and p" of L5, using the ids for the axioms and
the substitution rule. We see that q traces out
to the pattern (p, p', -) and q' traces out to the
pattern (p, p", *). Thus we are lead to say that
q is rewritten from p under the control element
p' while q' is rewritten from p under the control
element p". (p,p',*) and (p, p", *) are the patterns
in 1.11 of L5 "responsible" for q and q' respect-
ively in this computation. These patterns, which
will be precisely defined in section 6, we call the
ingredients of 1.11. Generally speaking, when a
term t is evaluated (i.e. proved equal to some
numeral n) we may identify the ingredients of t
responsible for each stroke in n In section 7
we determine how the ingredients depend on the
computation path used to evaluate the term t.

5. Computation Paths .

On the previous pages we have presented
two examples in some detail inorder to give
an intuitive picture of what is happening with
proofs, comments and ids. We shall now turn to
a detailed study of the possible computation paths
from a term.

We shall restrict our attention to compu-
tations which have the following (standard) form:

L1 ll_"': ta

L2i 6] = Sil
L2i+l 1] = 4,

IL.2n-1 tl =1
where L1 is an axiom and fori = 1, ...
L2i+1 follows from LZi-1 and L2i
We shall assume that these computations have
been commented and the appropriate ids have
been made.

, N-2,

The sequence of terms t (=t1), to, . . ., t,
is called a computation path from t to t,. Consi-
der a step of the computation (called a simple
reduction)

La t =— ris)
Lb
o

Le t —ri(s'}.

We write r(s)- r (s') to indicate that r (s') has
been obtained from r(s) by a simple reduction.
If u = v is an axiom we shall also write u - v
and call it a simple reduction.

Define ID(r(s)—>r(s')) to be the set of
derived ids between the signs of r(s) and r(s').
Specifically :

1) If p is an occurence of a stroke in r(s') which
is rewritten from q in r(s) via the id a then
id(p.q) is in ID(r(s)—"r(s"))-

2) If p is an occurence of a stroke in r(s') which

is rewritten from q in s' of Lb via ¢ and q is re-
written from q' in s of the 1. h. s. of Lb (i. e. the
id id(q',q) is in id(s = s'), see section 4), and q'
is rewritten from q" in s in the r. h. s. of La via
b, then id(p,q") is in ID(r(s)—>r(s')).

3) If pis an occurence of a stroke in r(s') and is
rewritten from q in s' of Lb via ¢ and q is re-
written from q* in s of the 1. h. s. of Lb under the
control of q" in the I.h. s. of Lb for the function
f (i.e. id((q', q", f), q) is in id(s s'), and q'and
q" are rewritten from qgq* and q** respectively

in s in the r. h. s.
is in ID(r(s)—>r(s")I

4) If u — v is an axiom define ID(u — *-v) to be
equal to id(u - v).

Every occurence of a stroke p in r(s') is
associated through ID(r(s) —*r(s')) with a unique
stroke q in r(sj of La or a unique pattern
(g#:q™**, f) of strokes in r(s).

If tj, ...ty is a computation path P and t,
is a numeral then P is called an evaluation path
and t, is called the value of ti w. r.t. P.

Define T(t) to be the set of all terms oc-
curing in the computation paths from t; the rela-

by substitution.

of La via b then id(p, (g9*, q**, f))

37

tion s—>r determines a partial ordering of T(t)
which we will now investigate.

The notation s-->r denotes a computation
path frim s to r. We say that t,-->t, is a sub-
term path if none of the reductions t;:-1t;. 1
involve the main function (outer most function
symbol in polish notation) .

Definition5. 1 A loop consists of two different
computation paths going from a term t to a term
t'. A diamond is a loop which has either form

1 or Il below. We illustrate this using ¢« as the
main function symbol.
Form 1 LA (where the indicated
/ ; paths are subterm com-
. b putation paths)
Formll f'rl (where both broken pathe
P \, are subterm paths; we
s'-r'l §'r+ & may assume that each
\. -7 involves that same as-
§'*r'+ 5 sociated subterm paths

s-->s' and r-->r'

Definition 5. 2 Two computation paths are simple
variants if they differ by a diamond, i.e. they
look like

t

i

'

¥

fs'\

i M

YV

ur'

Two paths are homologous if there is a sequence
of computation paths PI, P2, Pn such that

Pl and Pn are the two paths in question and for
i-1,...,n-1, Piand Pi-1 are simple variants.
Note that homologous evaluation paths assign the
same value to a term.

Lemma 5, 3a, A split of the form

B-r or s 1l
g'er't’ dgrpr s Mser 1
can be resolved into a diamond. (The dotted paths
are subterm paths. Multiplication is serving as a
paradigm case.)
Lemma 5. 3b, Any split can be resolved into a
loop.

Lemma 5. 3 is an anologue to the Church-
Rosser theorem for the Lamda Calculus. The
proof of this and other results is by an induction
argument on the rank rk(t) of a term, where rk
is an integer valued function (primitive recursive)
defined so that a) if s is a subterm of t then rk(s)
< jjec(t) and b) if s—e t then j-kjt) < Hk(s). The
existence of such a function shows us that any
computation path from t has less than or equal to
rk(t) steps. If we were using all primitive recur-
sive functions then such a rank function could be

general recursive but not primitive recursive,
e.g. like Ackerman's function. The organization
of the proof is to dovetail 5. 3a and 5. 3b, first
proving 5. 3a for rk(t) < n and then 5. 3b for rk(t)
< n. The proof is somewhat more complicated
than the usual one because we do not require
substitution to be uniform, a condition which
would considerably simplify the structure of T(t),
namely any split of a major connective would al-
ways immediately resolve:

LN
2N, 8
t4

6. Ingredients.

denote the occur-
Ing(t) denotes the

Definition 6. 1. Let g1, ...,q
ences of strokes in the term t.

set of list expressions obtained from g1, . .. g,
",and exp, according to the following rules.

1) 9 ... gn are in Ing(t).

2) Ifi_and j_ are in Ing(t) and f is « or exp then

The members of Ing(t) are called the
abstract ingredients oft, and q,,...,q are call-
ed the simple ingredients of t. Ing (t) denotes
the set of simple ingredients of t. In the express-
ion (i,j,f), j is called the control element and
i is called the raw material . To understand the
motivation behind this definition let us once again
consider the recursive definition of u. v : u J = u
and u-vl r u. v +u. Thus v act as a control ele-
ment and u as a fixed parameter. Corresponding-

ly, if i and j were ingredients in r and s resp.
then in the term t equal r* s, (i,j,f) would be
an ingredient in t with j as the control element

and i as the "raw material" to be recopied.

In the analysis of ingredients and how they
change as we trace out the ids in a computation
it soon becomes clear that these changes tend to
respect the internal structure of ingredients and
can be characterized as "homomorphisms" of

this structure. So we make a definition.

Definition 6. Z. A mapping H: Ing(t)—*Ing(s) is a
homomorphism (horn) iff for all (i, j, f) in Ing(t)
H((ifji,0> = <H(iKHE),f) .

Facts about Homomorphisms.
6. 3a If H,G: Ing(t)-*Ing(s) are homomorphisms
which agree on Ingq(t) then H = G.

6. 3b Any map H: Ingoe(t)-—*Ing(6)

extends to a

unique horn from Ing(t) into Ing(s).
6. 3c Horn His 1-1 on Ing(t) iff His 1-1 on
Ingo(t).

There are
dients in Ing(t)
computations.
ism tosingle these out in a precise manner.

infinitely many abstract
only some of which

ingre-
represent real

We now use the idea of homomorph-

We associate with a simple reduction
t—ss the following hom H[t-—+s]l, Let ID{t —s)
be the set of ids accompanying t-—+»s as detined
in section 5. Hft—s] is the unique hom from
Ing(s) into Ing{t) determined by the {ollowing
{here q denotes any simple ingredient in Ing{(s}).
{ if id{p, q) is in 1D{t—s},
Hlt-rs] (g} = {
{p. p', I} if id{(p, p'. f}. q) i5
in ID(t—s),

Ht-—s] is 1-1 on Ingo(a)and hence is 1-] on all
of Ing(s), We can now define the computationally
meaningful ingredients,

Definition 6,4. Let P= t,,.,..,t_ be an evalua-
tion path for t; thus It| = t. De[ilne the hom
H{P)= HIt;—~t,1° Hlt,—~t Jo.. . °Hlt, |-t _lI.
The set of (real irﬁredients oft w, r,t. P is the
set H{Pl(Ing,(t,)} and is denotel by Ing(t;P).

Note that HLPJ) is a 1-1 map of Ing (1t])
into Ing(t). So the cardinality of Ing(t;:P) is
equal to the integer denoted by the numeral iti.
We think of H[P] (g} as the unique '""computational
pattern' in t which is "responsible' for g via P,

7. Invariance of Ingredients.

How does H{P] depend on P? This is an-
swered in Theorem 7. 6, but {irst consider the
following example,.

Example 7.1.

919, 93949
(1.

9697
T117 .11

" \
-

- b}

(11+11+11).11 »\ Q

rlrz !'3 1'4 !'5!'6 1'71'8 \‘

P . 11-111%11.111

‘\\\5132 833‘155 8687 5839310
-\.d ‘,“

11 1 1 1 1 1 1 1 1 1 1

Py P2 P3 P4 Ps P6 Py Pg Pg Pio P11 P
Computing HIP] (pq) and HIQJ (pg) we get
HIP] (pg); 1_: ((q.ln Q4l.): q7") and
H[QJ(P,?) - l - ((ql- q?: *)f (q4’ q'?t ’ ,l *) -

The basic difference bewtween i and j

is the temporal order in which the control ele —
ments q, and q_ are operating and not the ultimate

control relationships.

The above relationship between i and j is
made into a basic equivalence relation,

Definition 7. 2. l.et i and j be ingredients in

Ing(t), We define i = j iff there is a sequence
of pairs {ij, jjb--., (i, Jp)of ingredients of
Ing(t) suchthati = i,, j= j,, and for k=1,..,n
either

) L=y

2) there exists ingredients u, v, wand func-
tion symbols {, g such that *_ikviki equals

| Qv D wog), (o, w,g)iy,wgh0)} . or

3) there exists k', k' less than k such that

L= lpodmi? and ji = (xo jgaf).

Our Example 7. 1 suggests that as we
move from one computation path P to a simple
variant P' of P we will find that HCPj(q) s
changed into an equivalent ingredient H[P'3(q);
this is the content of Theorem 7. 7 .

7.3 Facts about =,

7.3a) = is an equivalence relation on Ingi(t).
7,3b) i~ j and i’ = i’ then (i,_j_, f) is equi-
valent to(i', j', f).

7.3c¢) Hig = jk for k = 1,2,3 then

(G 1,00 Thize 8 & (G100 B (s jse) 1),

Theorem 7.4.l.et H : Ing(s) —Ing(t) be a hom.
Then H preserves =~ , i.e, if1iand j are in Ing{(s)
and i R:ithen H(_i) S H(_i).

Theorem 7.5. Let G,H : Ing(s)—»Ing(t) be two
homs and suppose that for all p in Ing (5}, G{(p)
~ Hp). Then G(i) ~ H(i) for all i in° Ing(s).

Lemma 7.6. Lett be any term with rk(t} <n,

L If Pand Q are computation paths from t
to t' forming a diamond andi is a real ingredient
in Ing(t') then HIPJ (i) = HIQI(i}.

IL If Pand Q are computation paths from t
tot' and iis a real ingredient of Ing{t') then
HIPI(i) ~ HIQI(i),

The Lemma Jis proved by induction on n
and dovetailing Il and II. Lemma 5. 3 plays a
major role. As an immediate consequence of
this Lemma we get the main result of this section.

Theorem 7. 7.
and Q be two evaluation paths for t.

all pin Ingo(t), H[P]{p) = H[Q]{p)

(Invariance of Ingredients.) Let P
Then for

There is a natural direction of simplifica-
tion built into the equivalence relation = , namely
we will say that ((i ,k, f), (j, k, f), g) reduces to
((i,jg),k,f) . We then define an ingredient to be
in normal if it can't be reduced nor does it
contain any ingredients which can be so reduced.
If one tries to make a cost estimate for various
computation paths it appears that if H[P]{q) is in
normal form then P is the least expensive com-
putation path. Such estimates are not so easy to
make in a reliable way but the examples which
have been studied are quite suggestive.

8. Final Remarks.

The ideas presented in this paper can
straightfowardly be applied to other deductive-
computational systems such as the Lamda Cal-
culus and Curry's Combinatorial Logic.

The next step in this
tends our analysis to the full 1°' Order Intui-
tionistic ~ Theory of Peano Arithmetic. The
semantics developed provides a means whereby
with each theorem A we can associate a collect-
ion M(A) of procedures extracted from the proofs
of A. This will be the subject of a second paper
being prepared under an NSF grant through
Boston University.

investigation ex-

Two examples will idea of how

this semantics works.

give some

Suppose A is the sentence t == |t|l., Then
M(A) will contain the procedures which compute
the isomorphisms H[P] :Ing, {ltl)~+lng(t} de-
termined by each evaluation path P for t.

Suppose A is the sentence B DC. Then a
procedure in M(A) will be a method for convert-
int a procedure in M(B) into a procedure in M(B).
If A is the sentence B then a procedure in
M(A) would construct a sentence D (which is
either B or C) and a procedure in M(D).

Negation is defined in terms of implication
~A ZIA D1 =11, This at {first seems a little
odd because it says that you have a procedure
which will transform any procedure in M(A) into
a procedure in M{l = 11), and, ofcourse, with
the means that we allow there are no procedures
in M(I — 11). If we look at a concrete example
like 11 =" 111 D 1=11, this becomes less mys-
terious since with a little thought we can see how
a set of rules, proportedly establishing an iso-
morphism between Ing (11) and Ingo{l.ll) could
be actually modified so as to establish an iso-
morphism between Ing (1)and Ing (11}

The Induction Schema works out very
nicely. For if we have procedures M, M' in
M(A(1))and M{Vx (A{x}) D A(xl))) respectively,
then our procedure in M(Vx A(x)) starts with
M and makes a recursive call to M'.

References.

(1) Yessenin-Volpin, A.S., "UUraintuition”
ism and the Antitraditional Program for the
Foundations of Mathematics*, Procedings of the
Summer conference on Intuitionism and Proof

Theory at Buffalo, New York, 1968, North Holland.
Z) Sussman, G., "A Computational Model
of Skill Aquisition", Doctoral Thesis, MIT, 1973.

D3FIKITION THEORY AS T"A5I5 FOR A
CRMTIVA PROBLEM SOLVER

H.Andreka, T.Gergely, |.Nemeti
ftungarian Academy of sciences
Budapest, ungary

Abstract
In this paper the application of some
deep theorems of mathematical logic is
shown in the field of artificial intelli-
gence. Namely, using some of the results
of definition theory we give the mathema -
tical base to systems for automatic design-
ing. /SAD/, These systems are capable
of solving constructive tasks of such kind
that need some creativity from the psycho-
logical point of view. Above tasks contain
the imtlicite description of the object
to be contructed. First of all that unit
is investigated at SAD which provides an
explicit definition to the circumscribed
object.

Introduction
One of the main directions in research of
artificial intelligence is developing
problem solving systems namely, systems
for automatic designing /SAD/, Their
practical importance is invaluable. These
systems are capable to solve constructive
tasks, A task is constructive if the un-
known is some kind of an object of which
characteristics are described in the con-
ditions of the ta3k. Two kinds of these
are distinguished:

1. The objects to be constructed are defin-
ed explicitly:
al well-defined
b/

task

incompletely defined task - here the
conditions provide an incomplete
description of the object

The objects to be constructed are defin-
ed implicitly.

In these take the objects are not named
only certain expectations are given

40

about them.

Designing tasks appearing on the expecta-
tions of a non-professional customer
belong to latter type. It can't be expect-
ed from him to give an explicit definition
of a required program e.g. with the in-
put-output relation. All he can do is to
give some hints on his own expectations
towards some "programlike" thing.

Similar problems occur at decision making
where information is implicitly connected
with the question to be decided about.

A SAD capable of solving the 3econd type
constructive task, must consist of the
following two basic oomponents:

1. High-level problem defining unit which
provides an explicit definition to

the implicit object description
Solving unit which carries out the
explicitly defined task

Mathematical logic and its model theory
provides plenty of facilities in SAD
research. In our present study we intro-
duce the usefulness of definition theory,
an intensively developing filed of model-
theory, from the point of view of SAD.

Basic definitions

The following triple form a language:
(syntax, the set of possible worlds,
dity), or formally L =(F, M, F).

A type t is a pair of functions, .
t ={t' tPsuch that

l.Rgt'sw\ {o} where w-{O,J,z....]
2.Ret’s w

3. Do4'NDot'= @ where § denotes the empty

- e

vali-

e.

set.
Mere Dot and Rgt are the domain and
range of t respectively. Dot' is the
set of relation symbols and Dot" is the
set of function symbols.

the

In the followings we suppose that a t-type
first-order langugage 4L*-<4F*, M‘|)

E
is given. Here H® is the set of t-type
structures. A t-type structure ¥ is a
function for which

1. W) 2A
stru cturq

thw)
2. CX(R}YS"A for each relation

symbol R & Dot'
“rF

3 C}Z(F)i“' h-’A for each function
symbol F € Dot and if &'(F)-o

then (R (F)eA

is the universe of the

Aboves are to be found in more details
in [1] Notations of common knowledge
are also to be found there.

Prom now on when program is being dis-
cussed relation symbols will be used in
describing the camputer programs where
such symbols may show what relation the
input-output should have. This descrip-
tive method provides a far more natural
handling of the programs than the des-
criptions of programs by functions,
since this approach is more close to the
intuition of the non-programer customers.

Intuitive description of SAD based
on the definition theory

Let I‘G,F’ be a set of first-order formu-
las which provides the knowledge of a
discripline within that designing will
occur. S.E.P P provides the semantics
of a programing language and the proper-
ties of different implemented programs.

The customer give3 hi3 requests with the
help of a set of formulas 2Zl . This
implicitly defines one or more relation
symbols and/or function symbols which

do not occur in Dot' U Dot" in the
followings without limiting generality,
we supposec that Z'gives the implicit

definition of only one relation symbol
"P. E.g. .2° gives the implicit defini-
tion of such a program of which input
and output are in relation P. Let Z27(PJ
denote the set of formulas defining the
relation P implicitly.

41

d /!
L <*p'(‘tlf',:’,i>bee extension o f the
type t and F'® be the syntax of the

first-order language f:extended by relation
P. Thus X (P)e F™P |

T carry out the design of the required
object we have to give its explicit
description by a formula of ,F . bo as
to have the required program written in
our programing language we have to find
such a formula from F which defines V
explicitly.

Let P,P'Jaﬂ'u&t' be two n~-placed reluation
symbols and Z(P)C .F'*" . e say that 2’(p)
defines P implicitly if
Z(PIGZTP)EVH ™ (P(%) s P (X))
where X" E(X., xa) and VELYa . Vi,.

#e note that ZX{P’) is obtained from

by replacing P everywhere by P'.

/e give an equivalent definition to this:
Let (H;P)gUZUf(P,Q}} where (X cH* R
Civen any models(ZWR) ana F,P') for Z°(P)
then R»R', This means that Mimplicitly
defines P if for any model GH® there is at
most one n-pliced relation R interpreting
the relation symbol P such thot EX,R)eX(P).

+
Let Pe J . If it has n free variables
then we use the notation qL—Y‘"’J .

Zp) explicitly definea the relation P
if there is a formila L X"e F* for
which

ZP)E YR (P3P an pL ¥ "]}
Replacing P by Y in the set of formulas
3T everywhere we obtain (@} . For X (¢)
the following is true:

W I (@) m ZUPIUAVFN (PLF) wocpl)

where ™ is the symbol of semantical

sguivalence.

what is the task of a high-level problem
defining unit supposed to be at SAD? It
has to find a definition Qt,F* on the base
of I knowledge to the requested expecta-

tion of the customer given by < (P) g
that
Pu{vE™PE™eso (D)) = Z7(P) |

In other words using (¥) such formula

OLf ™€ negto be found for which ME2(6)

This task results in the following
questionsa:

1. Does & formila © exixt tol so
FeZ(0) , 1f such doesn’t exist then
could ' be extended, let’s eay, to a r
(l"'ch*) 80 ag to have the required formu-
la B existing such thut

re2'(0) .

This procedure can be done with the

help of a system consisting of a theorem
prover and of an inductive hypothesis
frenerator, irst it will examine the
truth of [TV {TAZ }F AT

/here AJ' is obtained so that all the
formilas of Z' are linked with the "and"
connective A /+« If is isn't true then

we examine whether [" W{IAZ }r A1

ig true. If this ien’t so then we take
another extension P“ etc.

, ' H
ie note that selecting I,M
an oriented inductivity.

suppose

The following problem belongs to here
also., Is 1t true that all certain
characteristic model &% (C2€HY of a
set of formulas [becomes & model of
2P) too, i.e. is it true that

AREZ () .
Let us suppose that the existense of
©¢F% is proved or that taking the risk
of o possible negative answer we suppose
the existence of & . In this
following question appears.

case the

2. ilow con we obtuain the suitable formila
® from sct of fornules [* vZ(P) =
lere we show some of theo pocsible ways

of producing formula £ .

3/ FuZ(P) e ¥X™ (P(X™N)esBLFM])

v/ POZ(P) = IF™IYF (P T™les O LX " 5™

i.e. the definition of P is parametrically
fiven by the set of formulas 2wP) . Here
G™N e (6, Um) , IG™e F6.. . Fom

o/ TuZe) g\, VX (P(x™)e> O, LRM]

15 i k

i.e.pr) defines P exnlicitly up to
disjunction.

8/ PuZ(P) m v IFTWI P78 L X F™]
l‘i"k

i.es & (P) defines P explicitly up to

parameters and disjunction.

It might happen that the set of formulas
i

" has to be extended till I’ as it is

mentionrd in 1. 80 a8 to define 9 .

In that case if set of formlns[b’}is

too weak then, similarly to the methods
described in [2] we huve to find such a
formila 6

r UiV P (i) es 6L Y™} =27

for which

The set of formulas h can be extended
here too if found necessary.

In that case if answer to queotion 1. ic

positive the following statement is true.
Lemma: a/ if PuZ@EFYI pE™)e 0IxX™)

then {* 27(8)
b/ it FUZ'(P)PVEV?"” ’(P(?“"P’Qf[Y
then [=27(8,) or [KFZ(B.), ...,

or " e Z(O.) .

le note here that we have to try the 9;‘
(svek) in b/ till the first formla
where the statement stands for true.

If the answer to question 1. is negative
then the knowledge within the disciplines
defined by (Mis not enough for the

explicit description of the required ob-
ject.

On the basis of aboves a "high-level"

problem defining unit of SAD should
operate the following way.

The basic knowledge of SAD is provided
by set of formulas [+ The customer
gives his required object description by
the help of set of formulas Z(P)

As a first step the unit has to find an
exact answer for the existence of & |
but since it ic to complicated a task
the following way is chosen. Firsb the
system controls whether Z€P) contradicts
to knowledge P , i.e. it tries to deduce
the identically false {(pAT¢p) fromUZ
If this doesn't suceed within a present
time period then the system presupposes

the existence of a formula and it will
proceed onto the 2. task, i.e. produc-
ing e

Let us suppose that we succeeded in
producing such a formula. It is followed
by tis trying:

re2(90)

If this is true then & really becomes
the requirements of the customer if not,
then it may be supposed that the knowledge
I” of the SAD is not satisfactory for
defining & Therefore I has to be
extended till ' and aboves have to be
repeated nov; for set of formulas T"

The system will go on with this either
until it proves the impossibility of Z(P)
on the basis of the extended set of
formulas or, it succeeds to produce
formula & « Of course the system goes

on with trying only for a fixed time.
W'enote that the extension of set of
formulas I need inductive logical means
from the system.

Now we shall see that case when Z(P)
defines V only up to the disjunction,
tha. is when

PuZP) =\ VR (p(F ") O LX)
The so @’tbttamed formullas 6 Cxd (1eve k)
have to be controlled one by one. So

M-Z'(8,) or MeZ(8,), ., or PrZ (6. .

“f

43

911-_7":6"],..—/

This control goes on until the first &y
for which MrZ(®;) | If neither B,
satisfies above condition then it might
be supposed that the knowledge 7 s
not satisfactory. In this case the pro-
decure goe3 on S|m|IarIy ie. ' s
extended until P/, etc.

theorems of definition
theory

Useful

In this chapter we introduce those theo-
rems of definition theory without proof
which provide the explicit definition of
P on the basis of Z¥P) and M « Their
proofs can be found in [1]. It is
expected to obtain different types of
theorems depending on the strenght of
Z'CP) . Ve begin with the theory contain-
ing the weakest conditions for Z(e).

If &(P), M and a model R
the conditions of the theorems contain
either that how many relations R<'A
are there for which &¢.R)=Z(P)}
that how many such relations l?k“A

there to such a relation RcA SO as

(¢ep,R)= (Lh,R)

is given then

or
are

1.Theorem /Chang - Makkai Theorem/. If
for every model {£¥,R) /for which Al>w/
of Zoul:

R :ca,R)E (R} <2
then there are a finite number of para-
metric formulas 81 L ¥ U’“")J,
&Lz Gom] of F*

A)

such that
Fuzice)rv EF"NV?"’{P(EN)“@C?MG“ﬂ
i

The theorem intuitively states if Z'(P)
circumscribes the relation P in some
measure then there exists a parameter-

- v.oe (6,...,0m) and there are
formulas &, [r""u-""’.] (=cs &) of , F*

such that one of them gives the definition
of P. In other words the set of formulas

Z'(P) defines P explicitly up to para-

meters and disjunction.

Theorem 2. If set of formulas Z'(P)
such that to each model ¢ceeMt® it
I{f (aR)EZ }l 2
then there exists a finite number of
first-order parametric formulas B¢ (4‘

wisk)so that

ruz®) »\/ SU"‘Vfr-' (P <> O, [7™ 5™])

is

is

|‘(‘
The intuitive meaning of the theorem
is as it follows: if the number of

relations satisfying set of formulas
Z'(®) is less than the number of all
possible relations then up to disjunction
Z'(P) parametrically defines relation P.
The condition of the theorems claims that
not all the possible relations should
carry the characteristics described by
the set of formulas Z(P),

Above theorems /Theorems 1. and 2./ are
true also for that case when the number
of the suitable relations is less than
not 241 LIA”. e . in this case
there exists a finite number of first-
-order parametric formula and such a
parametervector that one of the formulas
will give the definition of relation P
by the suitable parametervector.

ow let ua sec those cases wien the
possible mumber of relations satisfying
Z'(P) are Tinite in the models.

Theorem 3. If for every model (&, R) (cveti)
of Z(P)uZ it is true that
HR' : (&, @) Eea, @) J1 < w
then there exists such a kew and
there are such formulas &-L o1,
O, LF"g"™] (1evs&) yn F' gpas

FfuZw) e IF™ (o~ [F])A
A VT (erai™] =

5V E(p(7) s OLX T I)

1sisk

44

Theorem 4. 127¢(P)uJ? s such that
in every model LReM® it is {R'ERN
=2Z3<w then the statement of the

previous theorem is true#

Intuitively the above theorems /Theorems
3. and 4./ state the following: if Z€P)
is such that its required <characteristics
arc fulfilled in every model by at least
finite number of relations then there
exists such a formula 6“’4-'-‘,F* for
calculating parameters ¢,...,Um and there
exist formulas B,,..,B.€F* out of v/hich
one defines relation P by the parameters
determined by ©&”

Fron the point of view of SAD this means
that a theorem prover extended by induct-
ive elements can prove, that

Zrejvr - 3ot e lo™],

On the basis of thin proof a zero-order
termvector T (™) muct bo selected so
that _? s~ T "] _After this it has

to be nroved. that

' VTP) O LX T]).
Ihen “6h the basis of knowledge 7. we
select the suitable defining formula

& LT™]

Fow we Turther restrict the requirements
concerning set of formlas < (P)

Theorem 5. If for each model (C’;P) of

ZP)ul" there exists such a finite ki ,

50 l{_e' :(CP,E}-Q‘(C/?, R)H < k

then there exist such formulas JI’ L'é'-“"!?'
9.‘ Cym gim] (lej&rm , 1%C & J()
F‘* that
zr(p;ur ey 3T L] A VG ol
“V“
») YrM(P(¥") <Oy [¥i 1),
18 Vsk

“'ecorem 6, /Jiueker "heorem/: If & (Plv[
is such that for each model wert
there coxists a finite k>l , so

HER 4t R) - Z0k| €k

then there exist such formalas

L5

©, Lrom] (1st ek)
in ,F+ such that
el =35 [FNA Y F (s [-

MY T (P(T) v ©.L 75

istek

In these theorems similarly to Theorems
3. and 4. the formulas 8Y 0«=r)} and
the formula g’ serve to define the
parametervector. The definition of relat-
ion 3 is done also on the basis of
those described after Theorem 4- There is
a difference only when definition is done
on the basis of Theorem 5, because here
we have to try out the formulas not only

according t ¢ (4,{; L) t also
according to a” (feysr) -
The conditions of Theorems 5. and 6. for

I’fp) are so much stronger than those of
Theorems 3. and 4. that now we claim the
existence of such a finite k which is
upper-bound of the number of suitable

relations in each model.

The ZfP) s t e strongest in that case
if this conditions are satisfied in each
model by at least one relation. Now we
discuss those theorems which refer to

this.

Theorem 7. /Svenonius' Theorem/: If for

each model (€2 R} of Z(PIUI .

10" R)=(chr) } = 1
then there exists a finite m<&& and
there exist such formulas 9;'1:?0'{] [l""k)

in F eo that, _
ZPUI kV VE(PF) > O [x™)
(#1&

Intuitively it means that if we take two
extensions {£?,€.) and &) of any mo-
del (RéM®so that these become models of
o2 (P} and these are isomorphic then
Q. = p).

In this case the set of formulas < (P)
defines relation P up to disjunction.

45

Theorem 8. /Beth'a Theorem/: If the set
of formulas,Z@u is such that for each
model R & Mt

| {R: (LhR)=Z(P)II=<]

then there exists such a formula 95?("{]
F* that

TP ER (PR <0 [2™])

in

Intuitively if =27(P) ila so strong that
every model Qﬂ'fH‘ can be extended to a
model o Z'Uf y at the most one relat-
ion then 2’(P) defines relation V
explicitly.

Conclusion
As we could see from aboves the model
theory provides mathematical bases suitab-
le for the development of different kinds
of SAD important in the practice. This is
expecially important because to construct
implicitly described objects from psicho-
logical point of view is a task demanding
creativity. The degree of creativity part-
ly depends on the circumscription of the
required object and partly on the develop-
ment of the corresponding discipline. With
the help of the theorems of different
strength described in aboves we can obtain
different SAD-s of different degree of
creativity. So far we can see that the
research of artificial intelligence
requires the application of deep mathe-
matical results of mathematical logic. To
make SAD more effective we need the
following problem to be solved: if.Z'(P)‘;F‘p
and FQ,F*are given then what conditions

should Z(P) satisfy so as to have a
formula -Btlf'*existing for which §»Za@)
References

|.C.C.Chang, M.J.Keisler, Model Theory,
Worth Holland, 1973-

2.G.D.Plotkin, A further note on inductive
generalization, Machine
Intelligence 6, Editors B.
Meltzer, D.l.lichine, University
PresB, Edinburgh, 1970.

