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Abstract Sf = <. Sf is the subset oi situstions
Methods are introduced to decide the to which f is applicable (see also
solvability of transformation problems. _Banerjif/z,/ and trnst /4/).
Such methods may be applied to save some a tranqsor:\auon problem in the problem
of the problem solving effort. Supposi- space (S, F) is an ordered pair (51'52)'
tion for applying the stated methods is where Sq4 sze.s and Sq and v, ere the

information about the structure of
is available for

that
the problem space
detecting separated subsets of the
situation set. Solvability of trans-
formation problems is decided by means
of systems of separated subsets of
situations. For a class of problem spaces
the detection of separated subsets of
situations and the decision of solvabili-
ty of problems are investigated in more
detail.

Introduction

The solution of transformation problems
can be more easily found if information
about the structure of the problem space
is available. Such information may be for
instance an evaluation function describ-
ing an approximation of the goal distance
or an approximative description of the
applicability sets of the operators

(Pohl / I/ ¢ Banerji /12/).

Structural information about the problem
space may also be used to decide the
solvability of any given problem. This
saves fruitless effort in handling in-
solvable problems. Authors usually do not
pay attention to this important question;
one exception is the article by Tiklossy
and Roach /3/.

paper there will be given

the solvability of trans-
in a problem space
properties of

In the present
statements about
formation problems
depending on structural
problem space.

In section 2 we shall discuss questions
of solvability of problems and give gene-
ral methods for deciding solvability in a
problem space.

Section 3 contains the definition of a
special class of problem spaces - the so-
called binary - coded problem spaces.
Finally, in section 4 we apply the gene-
ral methods stated in section 2 to binary-
coded problem spaces*®

the

Come general remarks on solvability
of transformation problems

Let S be the finite nonempty set of situa
tions of a problem space and F the finite
nonempty set of 1-place operators over S.
That is, for each fegfF, f: sf—-s, where
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initial situstion and the goal situation,
respectively. . solution to the problem
(51, 92) is o sequence cf operators from

F, ¥= f fy ees £ such that ¥ is appli-
cable to 8, and %’(51) = 5, Y is appli-

coble to s, if and only 1f_slesf and
1

1
f ooof.S)es
1 1( 1 fi+1
1€ {1, s m-1Y

ve want to investigate two important
questions on solvability of transforma-
tion problems in problem spaces (S, F).
Firstly, it is intereelinc to know
whether ell possible problems (s1,s2)

in s problem space are solvable. Problem
spaces with this property are called
totally-solvable problem spaces.

for all

econdly, we wish to formulate a method
for deciding the solvability of any given
problem.

For investigation of solvability of

transformation problems the concept of
type-k-separatec' subsets of the situa-
tion set S is introduced as follows:
Let S; be an arbitrary subset of S.

Definition 1:

1, 51

1if and only 1if for all fe F and
seS, NS, f(s)es,.

is a2 type-l-separated subset of §
all

2 S1 is a type-2-seperated subset of S

if and only if for all feF and all
se (S \ S;) M S, f(s)ES\SI. bl

3. S5, is a type-3-separated subset of S

if and only if 51 is both a type-1-
and a type-2-separated subset of S.

In the representation of a problem space
as a directed graph a type-l-separated
subset of S corresponds to a subset of
nodes not being left by an arrow and a
type-2-separated subset of S to a subset

*The express 8\ slaans exactly the

same as Sﬂsi.



of nodes not being arrived by an arrow.
Therefore, for instance, in the problem
space presented in Figure 1 {ss5, ssg} is

a type-1-separated subset, {sq, s,} s
a type-2-separated subset and {s;' sg}
is a type-3-separated subset of S*
& 32
51\
/'35
s

—-———-—-83--——-—-—- 84
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Figure 1

Using Definition 1, the following
theorem nmay be formulated on the total
solvability of a problem space.

Theorem 1; A problem space (S, F) is not
totally-solvable if and only if there is
a nonempty proper subset of S which is a
type-1-, type-2- or type-3-separated
subset of S.

Proof: {(&==) Suppose there is a non-
empty proper subset S; of S which is a

separated subset of one of the three
types. Obviously, in this case there
also exists a nonempty proper subset S;

of S which
of S. Then the problem (si4,

is a type-l-6eparated subset

815 Si and S, € N S:'l is insolvable.

(===>) Suppose (S, F) is not totally-
solvable and let s; be any situation in
S. If there exists no nonempty proper

subset of 5 which is a type-k-separated
subset (k * 1, 2, 3) then we can show by

induction that each 8,€ S can be arrived

from S, by applying an applicable ope-
rator sequence. Hence, all possible
problems in (C, F) are solvable. This
contradicts the assumption and completes
the proof* Q.E.D.

Theoremm 1 implies that algorithms which
detect type-k-separeted subsets may be
used to decide the total solvability of
a problem space.

Now to the second main question, the
decision of the solvability of concrete
problems.

Let S be a nonempty proper type-1-
separated subset of S. Then a problem

(S1 ,S2) with ' €288 not solvable
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if 8,€ 51 and 52¢ 81.

Analogous statements hold for type-2-
and type-3-separated subsets.
Let X = {51, oo, Sq} be a set of type-

1-separated subsets of 5 then, for de-
ciding the insolvability of a problem
(s1, s2) in (S, F) we can use the
following

is not solvable

Decision Rule 1: (S4, s2)

if there is an Sie&" such that s, € Si

and 32"-, S‘.i.

Similarly. Decision fule 2 and Decision
Rule 3 may be formulated for type-2- and
type-3-separated subsets, respectively.

On the other hand, if ¥ is any set of
(not necessarily disjointed) subsets of
S then we define so follows, assuming
k - 1, 2, 3:

Defi_nition 2__:

¥is a concistent type-k-system of sut-
sets of S if and only if for all 5,€ S,

s?_es the statement defined by Decision
Rule k is

It may be proved in & simple wey that ¥
is & consistent type-k-system of subsets
of S if anc only if for gll Sieﬂ" . Sy

is & type~k-separeted subset of S.
In the example of Figure 1 the aystem

(= {sg. sgf » {85, 99?}

is a consistent type-1-system of subsets
of S.

Using a consistent type-k-system of sub-
sets and the corresponding decision rule
for deciding solvability of transforma-
tion problems, we comnonly detect only
some of the insolvable problems. But
about the solvability of the other
problems in the problem space we know
nothing. Therefore, it seems to be
necessary to introduce the concept of an
admissible system of subsets.

Let ¥ be any set of subsets of S, then we
define (k = 1, 2, 3):

Definition 3:

true.

¥ is an admissible type-k-system of sub-
sets of S if and only if for all
S, azeS the following is true: (s, , s2)

is solvable if and only if for all
siea’ holds condition Ck, where C,, C2

and C3 are defined as follows:

C1: 8, € 51 implies 5, € 21 .
C2: 8, € S1 implies B, & Si .
C3 s,€8; if end only if 8, €S, .
Then, using admissible type-k-syeteme,

we decide the solvability of a trans-
formation problem (s4 s2) in the follo-
wing manner:

We construct the set E“l) of 81l Siex'



1 and

€ ¥ containing

containing the initial stkuation s

the set E(s,) of all §
the goal sifustion 32.3
Then the problem (31. 52) will be de-
cided

as solvable if end only if

E(al) = E(sz) for type-1-systems & ;
C(s,) 2 t(c,) for type-2-cystems ¥ ;
E(sl) = E(sz) for type-3-systems & .

An example of an admissible system of
subsets v,'ill be given later in Figure 3.
The concept of using systems of subsets
of S to decide solvability of trans-
formation problems mey be generalized to
using systems of type-different systems
of subsets of 5, for instance to using a
type-1-system and a type-2-system at the
same timee This comes from the possibili-
ty that sometimes both some type-1-
ceprrated subsets and some type-2-
separated subsets are easy to detect end
to describe, but the description of an
admissible type-1- or type-2-cyctem of
subsets of S is more difficult.

In tht next section we will introduce a
special class of problem spaces - the
so-called binary-coded problem spaces.

Description of a special class
of problem spaces

Let n be any positive integer, called

the degree of the problem epace.

Then the set S of situations of a binary-
coded problem space consists of all n-
dimensional vectors Xy ewe X, with

xi < {0. 1} for i = 1, sen, N. Any
special situation s, € S is specified by

the values of its components,
31(1) coe si(n). The set F of opcrators

is F = {fi' cne, fn'}, where for all
1 = 1, see, D fi negates the value of the
if it is eppli-

situation component x

i
cable. That i, if fie.F, 8, € S, f1
applicable to s, and fi(sl) = s, then

tke following conditions are satisgfied:

32(1) =1 - 51(1) ’
52(3) = 31(3) for all j = 1, +e., N with
i

According to section 2 the applicability
sets of the operctors f,, eeeo, ere

n
denotad by Sf s w®wy Sf *
1 n

Since the situation components are binary
the applicability sets may be represented
by Boolean conditions (applicability
conditions), P1....Pn ., where the

situation components stand for variables.

Figure 2 shows a simple binary-coded
problem space of decree A in graph re-
presentation. The edges of the presented
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labeled by the indices of the

operators.

graph are
corresponding

1020 — 4 1011 —3— 1001 —% 1000
2

1110 —2 1111 —3 9101 — A _34rc
1

0110 -t D111 —3 —r101—b _p1ra
2

0010 —2— 0011 —2 10N 1 —% 0000

~Hpplicebility concitionc of the one~
rators:

Py = Xo A X N X,

i

Po = Xg A X,

uxﬂ

identical true

Ficure C

With respect to the form of the applica-
bility conditions, subclasses of binery-
codec! problem spaces may be defined. For
instance, we define the claess of con-
junctive binary-codec' problem spaces
(celled briefly: conjunctive problem
spaces) in the following menner:

binary-coded problem spece of degree n
is a conjunctive problem space of degree
n if and only if all applicability con-
ditions p. may be represented as

n
* . vh ! e X x
Py ;:E ay vhere ¢, € {rJ X xJ\fo}
Consequently, the problem space of Figu-

re 2 is a conjunctive problem space”

For later investigations it ic con-
venient to define a binary relation M
over the operator set F of a coniunctive
problem space as follows (Fi, fJeF)z
fi>' fj if and only if d;4 € {x&, Ejﬁ .
The class of disjunctive problem spaces
may be defined analogous to the defini-
tion of conjunctive problem spaces.

solvability of transformation problems
in binary-coded problem speces

In this section we will state some solva-
bility theorems for binary-coded problem
spaces-e

First we give a necessary definition.

Definition 4:

A binary-coded prob.iem space of degree n,
(S,F') with the applicability conditions
e binary-




coded problem space of degree n,
with the applicability conditions
P, and only if for all

(S, F)

1, ..,

To decide solvability properties
it may be useful to approximate problem
spaces.

Let ( , F') and (S, F) be two binary-
coded problem spaces of the same degree.

Then, (S, F') is called an underepproxi-
mation of (S,F) if (S, F') is a sub-
space of (r, r). (", F') is called an
overapproximation of (r, F) if (r¢ F) is

a subspace of ( F')
Using these definitions we state the
following theorem (without proof):

Theorem 2:

1* Suppose (., F') is an underapproxi-
mation of (t F). Then the following
is true:

a) If (£, F') is totally-solvable
then (:, F) is also totally
solvable;

b) For all s , s,e S:

If (s., S;) is solvable in (r, F')
then in (", F), too.

2. Suppose (', F*) is an overapproxi-
mation of (", F), Then the following
is true:

a) If (T, F') is not totally-solvable
then (", F) is also not totally-
solvable ;

b) For all sq¢ szeS:

If (s-, s2) is not solvable in
(T, F') then also not in (', F).

Suppose that a binary-coded problem space
is described by applicability conditions
in disjunctive normal form. Then we ob-
tain an underapproximation if we con-
struct a set of new applicability condi-
tions by taking only one conjunction from
each of the original conditions to the
corresponding new conditions. The resul-
ting problem space is a conjunctive
problem space.

we obtain an overapproximation of the
original problem space if we construct
each new applicability condition as a
disjunction which contains only one
variable from each conjunction of the
original corresponding condition. This
resulting approximation is 3 disjunctive
problem space. That is, conjunctive pro-
blem spaces are suitable as under-
approximations of a binary-coded problem
space and disjunctive problem spaces as
overapproximations. Therefore, with
respect to theorem 2, solvability pro-
perties of binary-coded problem spaces
can be investigated by analysing solva-
bility properties of these two important
subclasses.

In this paper we shall iljustrate this
analysis for conjunctive problem spaces

n the statement P.'->P;, holds.
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only.
First, we give the following

Definition 5

viithin the operator set F of
junctive problem space there
with respect to the relation
only if there are operators

f:i. , € F such that

definition:

a con-
is a cycle
> 1f and

LA B ] f

1 |
f. ,\—h-fl >' L

1

. > f .

1 2 t1 *1

Further we ctate the following lenma
without proof (Florath /5/):

Lemma 1: In & conjunctive problem spsace

. there is a type-k-separated subset
of S (ke {1, 2, 37 ) if ancd only af
there is 2 cycle with respect to the
relation > within F.

Combining Lemma 1 and Theorem 1 we im-
mediatly get

Thegrem 3: A conjunctive problem spece

S, is totally-solvable i{ and only if
within the operator set F there is no
cycle with respect to the relation > .

After investigating the question of total
solvability we now shald define a method
for the construction of type-k-systems

of subsets for conjunctive problem spaces.
For simplicity, let us assume that the
graphs defined by the problem spaces are
undirected. Consequently, each type-k-
ceparated subset must be of type 3 and

we construct type-3-systems of subsets.

It can be chown, that for each cycle with
respect to the relation > within the
operator set F there exists a correspon-
ding type-3-separated subset of €.

Let Ci' cee, Cq be all the cycles with

respect to > within F, Let further
51' be the corresponding type~-3-

geperated aubsets. Hence,

X-o- {Slp o, Sq,S\Sl,

is a consistent type-3-system of subsets
of S. Then we construct the wanted ad-
missible type-3-system of subsets, X ,
stepwise from 3’0 in the following manner:

Let X, be the system sfter k steps

(k =1, 2, «o.). If for all s, € XL and
all fje F,
§ir S,€ with sl(J) ¥ s,(3), there
exists an 1=M':S1 such that s €8S,

X-=K.k '

and the process of construction termina-
tes.

In the other case, 1f there &re

S:l € X'k. fJe F such that there exist

8,, 8¢ Si with 81(_1) £ az(j) and for all
€€S;, 8¢S, then X'k must be mocifiecd.

L S
the system
cees 5 N sq}

for which there are situations

then we

J

set



ith il

we

and

- {51 seS; A s(})

]
O

]
[
——t !

= {s [ sesy A s())

construct b"k+1 as

yer = (X-k\{S:t% ) {Si' S?E .

It

construction process
sible

for all
spaces
applicability conditions
Moreover,
realized very simply.

is, possible to prove that the defined
ields an admis-
type-2-system of subsets of S
undirected conjunctive problem
if complete information about the
is available.
the construction of ¥ can be

Especially the

identification of an element of &'k

which should be
ments
coefficient

replaced by two new ele-
is accomplished through simple
matching.

Figure 3 shows an example of a con-

junctive problem space and

the construc-

tion of an admissible type-3-system

for this problem spece.
expression
set

If

conditions of a problem space
complete,

In Figure 3 an
like *11P means acylinder
of situations.

information about the applicability
is in-
then the described construc-

tion process yields a consistent but not
necessarily an cdmissible type-3-system

of

Insolvability of
tion problems may be decided,
stance,
subsets of the situation set,

in

Such additional
blems

subsets of S.

Conclusions

transforna-
for in-

by means of type-k-systems of

as defined

insolvable

section 2.
expense
is profitable if

in handling pro-

it is exceeded by

the saved amount of problem solving ef-

fort
However,

of

detecting

for insolvable problems.
information about the structure
the problem space is necessary for

type-k-separated subsets of

situations.
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1010 1011 —2 1001 —2 1000
2 2
3 4
1110 1111 1101 1100
1
011¢ 0111 —>— r161 —24——c1c0
2 5
3 4
0010 0011 0001 —2— 0000

Applicability conditions of the ope-
rators :

Py = X5 A Xg A §4
Fp = X3
Pz = X4
Py = X3
There is the cycle f4 > f, within F.
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Iteration of type-3-systerns of subsets
yields:

3’0 = {iﬂflo. HEN% \ *tlﬁi

¥, = {#11C, %010, sk \ xx10}
6’2 « { %110, 1010, 0010, #ekwae \ %10 |

¥, = {=%110, 101c, 0010, 1m#k “\ms10,
0%tk \ %#10 |

Y= &,

Figure 3
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