A NEW METHOD FOR PROVING CERTAIN PRESBURGER FORMULAS

W. W. Bledsoe
The University of Texas
Austin, Texas, USA

Abstract

This paper describes a new method for de-
termining the validity of certain formulas from
Presburger Arithmetic, namely those with only
universally quantified variables. To do this the
notion of a Presburger formula, is generalized
slightly to that of a quasi-linear formula.

This so called "sup-Inf" method seems par-
ticularly suited for proving certain verification
conditions that arise from program validation,
especially those in which "proof by cases" is re-
quired. It also eliminates the need for proof by
enumeration, inherent in some methods described
earlier In the literature, which sometimes require
a search through a large number of consecutive
Integers.

These algorithms have been programmed and
used extensively as a part of an automatic theorem
proving system.

1. Introduction

Presburger Arithmetic.

An expression Is said to be a formula in
Presburger arithmetic if It Is a (well) formed
algebraic expression, allowing only variables,
Integer constants, addition and subtraction, the
arithmetic relations < and =, the propositlonal
calculus logical connectives, and quantification
(either universal or existential). Constant
multiplication is also allowed. See [3], Davis
[2], and Cooper (1].

The Presburger algorithm is a decision pro-
cedure for Presburger arithmetic: Given a form-
ula in Presburger arithmetic decide whether it is
true or false. Two main steps are utilized in
this process: (1) Elimination of quantifiers
(and replacement of variables by constants) (11)
Evaluation of the resulting formula (which has no
variables) to determine its validity.

Cooper's method.
Cooper (1) utilizes such a procedure. For

example his method would convert the theorem
Wxi{x < 1 + x < 2) successively to
1
~ x(x<1lAl<x), ~ V[L+J< 1A 1+]],
3=l
~[2<1A1x2], which is easily verified as
true.

Apparently Cooper’s method can result in a
search through a list of consecutive integars
when the coefficients of x are not unity. For
example, the theorem VW x(5x < 11 » 7x < 16) 1s
converted to ~ 'ﬂ x(5x < 11 A 15 < 7x), and

35
~ V((I5<I5+IANAT5 4+ 3<??

J=1

A?75 + 1 F O0(mod 35)) ,
which requires testing the expression for each of
the integers, j= 1,2, ...,35. In fairness to
Cooper It should be stated here that such adverse
examples apparently do not arise often in the
applications he considers in [1].

Our method, and In more detail in [8],

which Is descriDea oeiow, nanaies only the case
of Presburger formulas with universally quanti-
fied variables. But it avoids the need for long
searches through consecutive integers, and facil-
itates certain types of "proof by cases." It is
not clear whether our methods can be extended to
handle all Presburger formulas, with both univer-
sal and existential quantification.

Presburger arithmetic has many applications
In the field of proving assertions about computer
programs* There a theorem about the program, is
required to be proved. Such theorems are often
not originally stated as formulas in Presburger
Arithmetic but are reduced to such as the proof
proceeds. For example for an array we might
be given the theorem: Vj{j < 4 A Vk(k < 5+Alk)
< Alk+1)) > A[3] < Af3+1]}"

Backchalnlng on the second hypothesis gen-
erates the subgoal (J <4+ jJ <3) which is a
formula in Presburger Arithmetic. Notice that
j is a universally quantified variable or free
variable and hence must be treated as a skolem

constant in the proof. Many applications result
In Presburger formulas with only universally
quantified variables. In this paper we describe
a procedure, the sup-inf method, for deciding the
validity of such formulas.

First let us note that the above formula
(1 <4 »§<5) Is easily verified by adding the
negation of the conclusion to the hypothesis,
getting (J < 4 A 6 < }) and then combining to
get the contradiction (6 < j € 4) Our pro-
cedure does essentially the same thing on this
example. We now describe in Section 2 our pro-
cedure for determining the validity of univer-
sally quantified Presburger formulas. In Section
3 we define the pivotal algorithms SUP and
INF and prove in Section 4 of [8] that they
terminate with desirable outputs when applied to
quasi-linear formulas. Several examples are
liated in Section 3, and given In more detail in
Section 5 of [8]. This method has been pro-
grammed and used extensively in a program veri-
fication system [6].

2. The Sup-Inf Procedure

An Example using the procedure.

We begin with an example and then outline
the general procedure.

Let F be the theorem

3 A Ky S X=Xy

+2x253) .

(3) (2%, + 3 < 5x A 3% €35

Notice that F has 3 (universally quantified)

The skolemization process will not be discussed
here. These universally quantified variables
(or skolem constants) will be referred to as

"variables" in this paper.

variables We will negate F and con-

vert it to the expression (8')
a range for each of these three x

xl,xz,xa-
below, which gives
's. (Ex-

pressions (5'), (7'), and (8') correspond to ex-
pressions (5), (7), and (8) given later in our
general procedure).
We first obtain
' -
(5°) (2:2+3£5x3A33gx1 x,
Adx < SA3E2x-1)°

as the negation of F, and then convert it to
S
L - oo =
(7") (xa *zi"l‘()A(o$x1.<.3)
2 . .3 -
A (0 x5y 2) A (0 X <% xs)
A (2 € x, < w)
=72
2 o +3
A(5x2+sgx3<w)h(05x35xl x,),
and finally to
5
' Lot
(8') (13+x2$_81£3)
5. .3
A (stzgmin(-z-x3-2,x1-x3))
2 3)
A(5x2+5§_xa«;xl-x2)

To show the invalidity of (B') we calculate

a lowaer bound x, for X and an upper bound i’l,
and check that the interval [3_1,;] contains no
integer. For this example, x, = ? and x =,

s 17 -1 v 1 3
and since 3 < g we are finished. x, and

x, are computed by the algorithms INF and SUP

given in Section 3.

Quasi-Linear Formulae.
The reader will observe that expression
(8') is not a Presburger formula because it con-

. , 5
tains non-integer constants (i’f’f'etc')’ and

"min". We now relax the condition on
integer constants to allow any rational number

and However, the variables
X2,X3 in the above example) will

the symbol
the
as well as wm
(such as x4

-

represent only non-negative integers. We also
allow the symbols "max" and "min". Such an ex-
tended Presburger formula will be called quasi-
linear. It will be called "quasi-linear in L"
if each of Its variables is a member of the set L.
We now describe our general procedure for
determining the validity of such quasi-linear
formulas.
Let F be a quasi-linear formula in the
variables Xps Xos oo X o We first want to con=

vert ~F to the disjunctive form
(Fy V F, V...V F) shere each of the F, 1is
conjunction of the form

2
How 3 < 2X,-1 is derived f rzxz £3 s ex-
plained in Section 3 of [8].

In our example above we had only one F; This
has been the case in most examples we nave tried
so far.

16

(a, < x Sbl) Ay A (an‘f_: xngbn) »

1
and each a

h

the other xk

1
sb, are quasi-linear expressions in

j)' This is done as

j

{but not in x
follows:
The Sup-Inf Procedure.

Firet, place ~F 1in disjunctive normal
form (01 Vv G2 VeV GP) where each Gt is a

disjunct of the form

m
A <B AC D)
j=1 i 1 i 1
and the Ai' Bi" Ct’ Di are quasi-linear ex-

pressions in X10 %o e eaX o We eliminate the

equalities in (4) by converting each (Ci-Di)
inte (Ci. < Di A I.‘v1 < Ci)a so that each ¢,
has the form

m
5) NLA, <BY

(=1 1 i
Now each (Ai < Bi) is converted into a set of
exactly n inequalities

(6) (augxlt_:_b“)/\...f\(<x_ <b,)

‘111 - n in

by "solving f.m'"5 each of the xj occuring in

A:I. and Bi in terms of the other X - Thus the

aij and bij
in the other xL

appearing in (6) are expressions
. If x
_1)

then we put a

(but not x does not

]

or B =0, b

i i
So (5) is couverted to
m m
() A (a, <% <b)AL A A (8, <
j=1 il 1 11 g=1 in

and finally (7) is converted to

cccur in A

1] iy

*a < bin)

(8) (8, €%, < b)A.LA (8 < x, S5,

1
" 6
where, for k=1, n, 8 (max T nzk...amk) .

bk- (min blk b2k' ..bmk). Thus, by this whole
process we convert ~F to a disjunct
Fl v F2 V...V FL V...Fp

4
In practice we do not always convert the equali-
ties to inequalities, but rather use a "substi-
tution of equals*™ technique to gain efficiency.
See [9].

In solving for Xq
sup (xl +2,x1) xa,
X

<
and xl_<_ 3 instead of one,

in an expression like

we obtain two answers: x. €

X3 -2 as indicated

in formula (6). However, this presents no diffi-
culty in proceeding to (7) and (8).

The function MAX (See Sect. 3) is applied to the
a.. . If the maximum is not immediately attain-
able then the symbol "max" is employed. Simi-

larly for MIN. See for example, (7') and (8')
above.

where each F_, has the form

(9) (‘Ll £ = bLl) Ao (o, < *n € bLn) ’
and the ‘Lk' bLk are quasi-linear expressions

in the X1.

Now we determine that F
ing that each F. is false.

is valid by show-

Since the a,k and Dbk are usually ex-

pressions in the other Xi (as was the case in
our example) it is not immediately obvious how
one can test for the invalidity of (9). Our
method (the "sup-inf" method) for doing this is
simply to test whether the interval

(info x ., supg x |,
contains no integer, for some k, k=1I1,2, ...,n,

where sup. xx and infs xx are defined as

follows:

Definitions.

If S is a set of inequalities of the form
(9) and x4', XxX2',...... ,X'" are real numbers, then
(x4', xb',...,x") is said to satisfy S if each

inequality in S
XK is

becomes true when each symbol

replaced by the number xy'.

If A is a quasi-linear expression in
X1, Xo2,...,Xn . and x4' x'2 ,...,x' are real

numbers then

A(xi/xl, - ,x"‘fxn)

denotes the number gotten from A by replacing

each symbol Xk by the number xy'
If A is a quasi-linear expression in
X1, Xo2,...,X then sups A is defined to be

the least upper bound of all numbers

A(xi/xl, ‘. .,x;‘/xn) ’

where (x'y, X2',...,X,') is a sequence of non-
negative integers satisfying S. Similarly,
inf% A is the greatest lower bound of such
numbers. When no confusion will arise we omit
the subscript S and write sup A and inf A.
Thus the validity of F haa been reduced
to determining sup. Xx. and inf. xx , where S

is the set of conjuncts of (9).
sups Xxx and infg X

and INF given in Section 3.
In Section 4 of [8] we prove that if S s

We compute
by the algorithms SUP

any set of inequalities of the form (9) where we
assume only that the a.i, bs are quasi-linear
in X1,...,X , then the outputs SUP (x, NIL)

and INF (xi,NIL) are numbers (or possible + w)

with the property
INF(xk,NIL) < i.nfs L A

sup X, < SUP (xk.NIL) .

17

Furthermore, we conjecture there that if the
set S is in "natural form", in that it has been
derived from a theorem F by the procedure des-
cribed above, then equality hold in the above
formula, i.e.,

INF(xk.NIL) = infg X o
sup, X = SUP (xk,NIL)

Thus to show the validity of F we need only
show that the interval

[INF(xk,NIL), SUP(xk,NIL)]
contains no integer for some k, k=1,2,...,n.

Some Discussion of the Procedure.

This procedure for deciding the validity of
a quasi-linear formula (and hence for a univer-
sally quantified Presburger formula) is called
the sup-inf method. Of course it serves much the
same purpose as the methods of Cooper in [1] and

others. However, we feel that the sup-inf method
has some advantages, especially for proving
theorems arising from program validation.
One such advantage is that a hypothesis,
such as
(2x2+3_<_5:3/\ x35x1 -x2A3x1_<_5)

from our earlier example can be stored in

the concise form

5
(10) (xy + %, <%, € 3)

to be used to establish various conclusions as

required. Thus if we desire to establish
(2x2 < 3) we need only update (10) with its
negation (3 < 2x,-1) to get (8') and then show
that (8') is invalid. Also, using this same
hypothesis (10) we might (later) be required to
prove another conclusion, which itself has a
hypothesis, such as
+ -
(11) (:t‘.3 < 51(2 x3 < 8)
In this case (x, < 5x,) 1o used to update (8')
getting
(x, + x, < %, < 2)
3 2="1-=13
x
A (max(2, 5) <x, < mln(z X, =31 % x3))
2 3
— ‘- -
A (5 %, 5) <% < min(xl xz), sz)) »
which is used to prove x3 < 8.

Also as mentioned earlier it avoids proof
by searches through long lists of integers.

While these arguments have merit, they are
not our main reason for prefering the sup-inf

1This conjecture has recently been proved correct
by Shotak [10].

method, which
certain "proof by cases."
[8, pp. 11-15), and in [7).

is our desire to efficiently handle
This is explained in

3. Algorithms

Here we describe the pivotol algorithms
and INF.

If A and B are quasi-linear expressions
in L (see definition in Section 1), then so
also are (A+B), max(A,B), min(A,B), and r *A,
where r is a rational number. We can also
divide a quasi-linear expression A by a non-
zero rational number r by multiplying by its

SUP

inverse, i.e., l/r*A.

Let S be a set of inequalities of the
form ag_xjg_b where a and b are quasi-
linear in xl""’xj-l’ xj+1""'xn' Recall the

definitions of sup, x, and ints xj given in

]

Section 2. We now give algorithms for computing
sups X; and infs x; for a given S. S will

be assumed to be fixed throughout the remainder
of this section.
Definition. MAX(x,y) 1s a function which returns
y {f x<y, x 1f y< x, snd ("max" x y)
otherwise . Similarly for MIN(x,y). If J {i=a
a variable, then S contains cne (and only one)
inequality of the form a < J < b, which repre~
sents knowledge about J. 1f a=0 and bs=+=»
then nothing is stated about J except that it
Tepresents & non-negative integer.

The notation LOWER(S,J) and UPPER(S,J)
is used to denote these lower and upper bounds
on J. For example, 1f (2 < J < 3-K) 1is in 8§,
then LOWER(S,.J) 1is 2, and UPPER(S,J) 1is
3-K.

SIMP is an algorithm that puts expressions
in canonical form. See (8,7]. AIll outputs from
the algorithms SUP, SUPP, INF, INFF, are auto-
matically simplified by applying the algorithms

SIMP to them.
SUP_and INF.

SUP and INF are each called with two
arguments, J and L. J is an expression and
L Is a list. SUP(INF) attempts to find the

can have con-
(See defi-
Section 2).

largest (smallest) value that J
sistent with the Inequalities in S.
nitions of sups xx and infs xx in

L is a set of variables. The first call to SUP
(or to INF) is usually given with NIL for L;
variables are then sometimes added to L by re-
cursive calls to SUP and |INF. See Tables I,I1I.

SUPP_and INFF.
SUPP and INFF are called with arguments x
and y. x is a variable and y is an expression.

SUPP is called by SUP when J is a variable
and J 4 L. Similarly INFF is called by INF.
SUPP is designed to handle the case when SUP(J,L)

returns an answer which contains J
See Tables |11, IV.
The action of
together a string of
If S consists of the

itself.

SUP
inequalities.
inequalities

can be viewed as putting
For example,
{{(0<J < k)

A0 kg 3] then SUP(JINIL) will determine
(J <k« 3), and return 3 as the carrect value.
However, if $ consists of (0« J< k) A

(0. k- 6-1)] then gets (J + k € 6=J) and

18

It must solve this inequality to determine:
(21 € 6), (I < 3), and again return the correct
value 3. This type of "solving" is done by the
algorithm SUPP. That is, SUPP (and analogously
INFF) handles the cases when SUP(J,L) might re-
turn an expression containing J itself.

For instance, In the above example, where
S consists of [(0< I k) (0<k<6-3)],
since J is a variable and J ¢ NIL, the al-
gorithm SUP (Step 2.2) finds the member
(0 <J< k) of S with J as its middle term,
and then puts Z: = (SUP k {J}). Since
SUP(k,(J}) (eventually) returns the value (6-J),
a call is made to SUPP(, (6-J)) which returns
the correct value 3. In evaluating SUPP (J,
(6-J)), SUPP expresses (6-J) in the form
b J+c, with b=-1, c¢=6, and returns the

< 6

value b = 31 = 3,

On the other hand {f § had consisted of
(0 I <kK)A (0<k g 6+T)], then SUPP
would have been called with arguments J and
(6+J) which would lead to b=1, c¢=6, and
regult in the correct value +=« for SUP(J,NIL).
That this i{s the correct answer can be seen as
follows: From S5 we get (J < k € 6+7J), which
implies 0 < 6. But this is no restriction at
all on J, and hence supg J = 4+,

Examples.

In Section 5 of [B], Tables I-IV and the
sup=inf method, are used to prove (or disprove)
Examples 1-4 below, and to compute the indicated
values of SUP and INF given in Examples 5-9
below.

1. (x<12»x< 2)
2, (5x < 11 » 7x < 16)

3. (5x < 16 » 7x < 16) FALSE

4. Qy+3<S52A <Xy AIXCT>2y < I)

5. S=({j: 0 k}{k: O §+L}(L: O 2-3))
supg k= 2 = SUP (k, NIL)

6. Se=({j: 0L}k: § §J){L: 0 (21 -3K)))
not "natural” (see Section 2)
1nfs ij= inf5 k= inf, L=0= sup, J= ::gs :-
INF(J,NIL) = INF(k,NIL) = INF(L,NIL) = 0,5
SUP (3§, NIL) = SUP(L,NIL) = 0, SUP(k,NIL) = +o .

7. s=({3: max(j,%" + -g-k) min(k,L)}

(e 3 min(g, 5 1-) (1 3 25-30))

(Thie is the naturalized form of 6.)
SUP(k,NIL) = 0. Other values of SUP and
INF are 0 as in 6.

8. S=([k: 0 §3{3: O LI{(L: 0 j-k +4}).
sup, k=4, SUP(k,NIL) =+ .

When S 1is naturalized, SUP(k,NIL)=4,
9. S=({J: Ok+L)(k: O05}{L: Ok)).
INF (3, NIL) = INF(k,NIL) = INF(L,NIL) = O,
SUP(J,NIL) = 10, SUP(k,NIL) = SUP (L,NIL) = S.
Acknowledgments. I am {ndebted to Mabry Tyson,
Michael Ballantyne and Mark Moriconi for their
help on this paper.

Table 1 Table II

ALGORITHM SUP(J,L) ALGORITHM INF(J,L)
IF ACTION RETURN IF ACTION RETURN
1. J 1is a number J 1. J 1s a number J
2. J 1s a variable 2 J is a variable
2.1 Jel J 2.1 Jel J
2.2 JdL Put b: = 2.2 JédL Put a: =
UPPER(S,J) LOWER(S, J)
Put 2: = Put 2: =
SUP(b,L U{J}) SUPP(J,2) INF(a,LU{J)}) 1INFF(J,2Z)
3‘ J= ('I_Ila) ("'"INF(A.L)) 3. J= (II-IISUP (A’L)) ("-"SUP(*,L))
4, J="/"A) ("/"INF(A,L)) 4. J= ("/"A) ("/"SUP(A,L))
5. J= (u*uA N), 5. In (u*uA N)
where N is N>0O ("*"INF(A,L)N)
& number N<O (" "'SUP(A,L)N)
N>0 ("'*"SUP (A,L)N)) N=0 0
N<O (" INF(A,L)N))
N=20 0
6. J= ("+"A B), where A has the form
("*'r A'), vhere r 1is a nuwmber and
6. J= ("+'A B), wvhere A has the fom A' 1{s a variable
("#'r A'), vhere r {8 a number and
A' 1is a variable Put B': =
Put B': = INF(B,L U{A')})
SUP(B,LU{A'}) 6.1 B'=B ("+"INF(A,L)B)
6.1 B*'=B ("+"SUP(A,L)BY) 6.2 Put J': =
6.2 B'¢dB Put J': = SIMP("+"'A B')
SM("+"A 5.) 6.2.1 J'= (u-nA B') ("+“INF(A,L)B')
6.2.1 J'= ("+"A B") ("+"'SUP(A,L)B") 6.2.2 J'4 ("+"A B") INF(J',L)
6.2.2 J'4 (YA R') sup(J’',L)
7. J= ("+'A B)Put J': =
7. J= {"+"'A B)Put J': = SIMP ("+"INF(A,L)INF(B,L))
SIMP ("+"SUP (A,L)SUP (B,L)) 7.1 J'=] -
7.1 J'=1J + o0 7.2 J' 43 INF(J',L)
7.2 J' 4 SUP(J',L)
8. J= ("max"A B) MAX (INF(A,L),
8. J = ("max"A B) MAX (SUP(A,L), INF(B,L))
SUP(B,L))
9. J= ("min"A B) MIN(INF(A,L),
9. Je ("min"A B) MIN(SUP(A,L), INF(B,L))
SUP(B,L))
10. Otherwise -or
10. Otherwise +

19

Table II1

ALOCORITHM SUPP(x,Y)

1F ACTION RETURN
1. y 1is a number Yy
2. X=y + o
3. x 1is not a variable + @
4, y= ("max"A B) MAX (SUPP(x,A),
SUPP(x,B))
5. y= ("min"A B) MIN(SUPP(x, A),
SUPP (x,B))
6. "min" or "max"
occurs in ¥
Pull "min" SUPP(x,vy')

or "max" to
fromt of y,

getting y'.
7. Otherwise express y as b x +¢, where
x does not occur in b or c.

7.1 b=0 y
1.2 b not a number + o
7.3 b« -

1-b

7.4 1<b +
7.5 b =1

7.5.1 ¢ 18 not a number + o

7.5.2 Cc < 0 - o

7.5.3c>0 4+

g Y

B
For example, Yy + ("max"y2y3) is converted to

("max"(y1-+v2)(y1-+y3))-

20

Table IV
ALGORITHM INFF (x,v)
IF ACTION RETURN
1. y 1is a number y
2. X=y 0
3. ¥ is not a variable -a
4. y = ("max"A B) MAX (INFF (X, A},
INFF{x,B))
5. vy= ("min"A B) MIN(INFF (X,A),
INFF (x,B))
6. "min" or "max"

occurs 1n y
Pull "min" or INFF(x,y')
"max'" to front
of ya, getting
]

Y
7. Otherwise expreses y as b x+c, where
x does not occur in b or c¢.
7.1 b=0Q y
7.2 b not a number 0
7.3 b<1 <
1-b
1.4 1 <b 0
7.5 =1
7.5.1 ¢ 1is not a number 0
7.5.2 ¢ >0 +w
7.5.3c¢<0 0

It is clear that the methods of integer
programming [11] can be used to prove theorems
of the type we consider here, and similarly our
procedure can be thought of as another method
for solving integer programming problems.

References
1. Cooper, D.C. Programs for mechanical pro-

gram verification. Mach. Intell. 6. Ameri-
can Elsevier, New York, 1971. 43-59.

2. Davis, M. A program for Presburger'a algor-
ithm. Summer Inst, for Symbolic Logic.
Cornell U., 1957. 215-233.

3. Presburger, M. Uber die Vollstandlgkeit eines
genissen Systems der Arithmetlk ganzer Axhlen,
in Welshem die Addition als einzige Operation
hervortritt, Sprawozdanie z | Kongresu
Matetnatykow Krajow Slowcanskich Warszawa,

1929, pp. 92-101.

10.

11.

Wang, Hao. Toward Mechanical Mathematics,
IBM J. Res. Dey. 4, 2-22.

Bledsoe, W.W., Boyer, R.S. and Henneman, W.H.
Computer proofs of limit theorems. Artif.
Infll. 3, 1972. 27-60.

Good, D.l., London, R.L., Bledsoe, WMW.

An Interactive Verification System. Pro-
ceedings of the 1975 International Conf. on
Reliable Software, Los Angeles, April, 1975,
pp. 482-492, and |IEEE Trans, on Software
Engineering, 1(1975), 59-67.

Bledsoe, WW. and Tyson, M. Typing and
proofs by cases in program verification.

The University of Texas at Austin Mathematics
Department Memo ATP 15, May 1975.

Bledsoe, WW. The Sup-Inf Method in Pres-
burger Arithmetic, The University of Texas

at Austin Mathematics Department Memo ATP 18,
December, 1974. (This Is essentially the
same as the present paper except that It con-
tains proofs of the theorems in Section 4.)

Bledsoe, WW. and Tyson, Mabry. The UT
Interactive Prover. The University of Texas
at Austin Mathematics Department Memo ATP 17,
May 1975.

Shostak, Robert. Private Communication,
Stanford Research Inst., March 1975.

Gomery, R.E, An algorithm for Integer
solutions to linear programs. Princeton-
IBM Mathematics research project. Technical
Report No. 1, 1958.

21

