Section!: Mathematical and Theoretical
Aspects of Artificial Intelliger.cc

CHECKING PROOFS IN THE METAMATHEMATICS OF FIRST ORDER LOGIC

Mario Aiello
Istituto di Scienze dell 'Informazione, Universita di Pisa,

Corso Italia 40,

and

56100 Pisa Italy

Richard Weyhrauch
A.T. Lab., Computer Science Department, Stanford University,
Stanford, California 94305 U.S.A.

Abstract

First order theories not only can be used in prov-
ing properties of programs, but have also rele -
vance in representation theory. The desire to rep-
resent first order theories in a computer in a
feasible way requires the facility to discuss meta
mathematical notions. Using metamathematics will -
eventually allow to construct systems which can
formally discuss how they reason. In this paper
we present two different first order axiomatiza-
tions of the metamathematics of the logic which
POL (First Order Logic proof checker) checks and
show several proofs using each one. The difference
between the axiomatizations is that one defines
the metamathematics in a many sorted logic and

the other does not. Proofs are then compared and
used to discuss the adequacy of some FOL features.

Section 1 Introduction

This paper represents a first attempt at axi-
omatizing the metamathematics of a first order

(First Order Logic). The logic whieh FOL checks is
described in detail in the user manual for this
program, Weyhrauch and Thomas 1974. It is based on
a system of natural deduction described in Prawitz
1965, 1970.

Our motivation in axiomatizing the metamathe-
matics of FOL was the desire to work on an example
which could he used as a case study for projected
features of FOL and, at the same time, had inde-
pendent interest with respect to representing the
proofs of significant mathematical results to a
computer.

The eventual ability to clearly express the
theorems of mathematies to a computer will require
the facility to state and prove theorems of meta-
mathematics. There are several clear examples:

a. Axiom schemas. How exactly do we express

that

P{d) A ¥ .(P{n) = PP{n+1)) = ¥n.P(n)

is an axiom schema? We need to say: "if for any
first order sentence V with one free variable y we
denote by P(n) the formula obtained from P by sub-
stituting n for y assuming n is free for y in P,
then the sentence

P{d) A V. (F(n) — P{(n+l)) - ¥n.P(n)

* K
This research was carried out while the author
was visiting at the A.l. Lab., Computer Science
Department, Stanford University.

is an axiom of arithmetic."
b. Theorem schemas. The following kind of
"theorem" is sometimes seen in set theory
books

vxloaaxn } S. 3T- 'G‘u- ("«xl,-..,xnﬁ' t. T z
3v.(<xl,...,xm,y> € 8)).

It asserts the existence of some particular projef
tion of n+1-tuples. In its usual formulation this
is not a theorem of set theory at all, but a meta-
theorem which states that, for each n, the above
sentence is a theorem. We do not know of any ma-
chine implementation of first order logic capable
of expressing the above notion in a straightfor-
ward way.

c. Subsidiary deduction rules. Below we show
how to prove that if there is a proof of Vx y. WFF
then there is also a proof of Vy x. WFF, where WFF
is any well formed formula. We chose this task be-
cause it seemed simple enough to do, and is a
theorem which may actually be used. The use of
metatheorems as rules of inference by means of a
reflection principle will be discussed in a future
memo by Richard Weyhrauch. Eventually we hope to
check some more substantial metamathematical
theorems.

d. Interesting mathematical theorems. We pres
ent two examples. The first is any theorem about
finite groups. The notion of finite group cannot
be defined in the usual first order language of
group theory. Thus many "theorems" are actually
metatheorems, unless you axiomatize groups in set
theory. The second theorem is the "duality princi-
ple" in projective geometry.

Finally, from the viewpoint of A.I. and re-
presentation theory the ability to state and prove
theorems of metamathematies can be very helpful in
answering the questions of how we "reflect" on the
reasoning we are doing and if a proper axiomatizat
ion of the metamathematics of an FOL language to-
gether with some sort of computationally realiza-
ble reflection principle allows us to discuss in
an adequate way our reasonings.

This paper is divided into two sections. In
the first one, we present the two axiom systems
and the proof of the metatheorem: "for all varia-
bles x,y and well formed formulas f, °°% x y.[°®
is a theorem also °°% y isf*® a theorem". In
the second section we look at proofs appearing in
the appendices in order to explore the features
of FOL that need improving and their use in earry
ing out formal proofs.

Section 2 The Axiom System

In this HOClion we present two axiomatiza-
Uons of the mctamalhcmatics of first order logic.
The 1IlUJi11 difference between Lhcm is that one is
done iu a many sorted first order logic and the
other not. These axioinilizalions represent an at-
tempt at experimenting with proots about proper-
ties of formulas and deductions. No effort has
been spent on guaranteeing that the axioms are in-
dependent. It would not only have been uninterest-
ing but also contrary to our basic philosophy. We
wish to find axioms which naturally reflect the
relevant notions. At the moment this axiomatizat-
ion is far from being in its final form. Neither
the extent of the notions involved nor the best
way of expressing them is considered settled.

Strings and sequences of strings have been
axiotnatized and used to define metamathematical
notions. For instance, well formed formulas are
represented as strings of symbols which satisfy
the predicate’ FORM defining which combinations of
constants, variables predicates and functions sym-
bols represent a wff.; deductions are then repre-
sented as sequences of wff's satisfying the predi-
cate PROOFTKKK.

2.1 The Sorts

The sorts we have defined correspond to the
basic notions ol the metamathematics i.e. terms,
formulas, individual variables, logical symbols,
function symbols etc. and the notions of the do-
mains (strings and sequences of strings) in which
the axiotnatization has been defined. KOI, (see
Weyhrauch and Thornas 1974) allows the declaration
of variables to be ot a certain sort. In the for-
mulas appearing in this paper, each variable is
declared to be of some particular sort. For in-
stance f,fl,f2,.,. are of sort well formed formulas
t,t1,t2... of sort terms etc. For the complete set
of FOL declarations see Aiello and Wcyhrauch 1974.

2.2 The Domain of Representation of the meta-
mathemat ics.

The basic notions of the metamathematics of
first order logic have been axiomatized in terms
of strings and sequences of strings. The primitive
functions on them are concatenation (¢ for strings,
cc for sequences) and selectors (car, cdr for
strings and scar, scdr for sequences), ¢ and cc
are infix operators.

2.2.1 Formulas and terms

Formulas and terms arc represented by the
string of symbols appearing in them. Terms are de-
fined recursively as strings which either represent
an individual variable or can be decomposed into
n+l substrings representing a function symbol of
arity n, followed by n terms. The two predicates
defining terms arc:

TERMSEQ(P, LAMBDA)
Vs, (TERM(n) INDVAR(R)V 3n . (fn=car{s)A
n=acity(ia) A TERRSEQ(n,cdr(8))))

Vo 2. (TEMSYQ(n ,8) ((car (s)=LPARSYM)A((len(a)gt s)
RPARSYMA Jnl. (TRRM(substring(s,2,nl))A
TERMSEQ(n~1, subatring(s,nl+*], len(s)-1))))

where the function substring(s,n,n) returns the

substring of s starting from its m-th element and
ending with the n-th. len(s) computes the length
of s and (n gP s))selecls the n-th element of s.

Well formed formulas (wffs) are represented
as strings which either are elementary formulas
(defined by the predicate KM-) or can be partition?
ed into substrings for formulas and logical con-
nectives. Formulas are defined by:

¥s, (ELF(8) (s=FALSESYM V PREDPARG(s) V In P.(P=
acar(s) A n=arity(P)A TERMSEQ(n,cdr(s}}))),

¥e. (FORM(8) . (ELF(s)V 3x f.(s={x gen) V s=
a(x ox {))V 301 £2.(s=(f1 dis f2)V s=
=(f]l con 2) v s=(f} imp] [2)) v 3 .s=ncp(f)))

gen is the infix operator that maps its arguments
x and f into the string "(FOKALLSYM c¢ x) c f" re-
presenting the well formed formula Vx.f. The oper
ator ex is used for the existential quantifier,
dis, con and impl are the infix operators for the
disjunction, conjunction and implication of two
formulas,Finally neg is the operator which maps
a formula into its negation.

We could possibly represent wffs as structur-
ed objects (lists, trees, etc.) which contain all
the information about the structure of the formula
and do not require any parsing. This approach a-
mounts to axiomatizing metamathematics in terms
of the abstract syntax of first order logic, in-
stead of strings of symbols. Both of these possi-
bilities should be explored. We have chosen the
first alternative because:

1) It is the most traditional, i.e. luetanuith
ematics, as it appears in logic books, is usually
stated in terms of strings.

2) Axioms in terras of abstract syntax are
simply theorems of the theory expressed in terms
of strings. Thus the two representations look sub
stantially the same with respect to "high level"
theorems.

3) Ill-formed formulas can be mentioned. This
is of course impossible in an axiomatization in
terms of the abstract syntax.

The properties of wffs relevant to our theory
have been defined by the predicates FR, FRN, GEB
and SBT, FR(x,f) is true iff the variable x has
at least one free occurrence in the wff f, while
FRN(x,n,f) and CEB(x,n,f) are respectively true
when the variable x occurs free or bound at the
place n in the formula f. In addition to these
predicates, some generalized selector functions
are defined, which evaluate the first or the k-th
free occurrence of a variable in a wff, or the
number of its free occurrences. The predicate SBT
is then defined. It axiotnatizes the notion of sub
stitution of a term for any free occurrence of a
variable in a wff.

vx t £1 £2.(SBT(x,t,f1,£2): ¥nl n2.((n2=
«(numbfrecocc(x,nl,f1)*(len{t)~1))+nl) -
((~INDVAR(nl gt €1) o (al gt fl)=
»(n2 gl £2))A(INDVAR(nl gl f1) .
((FRN(x,n1,£1)28UBT(t,£2,n2))A
{~FRN(x,nl,f1) = INVART(nl,{1,n2,£2)))))))

VU 12 02, (SUBT(L,E2,n02) ¥x2 k. {(k g3l t)=*x2 ~
FRN(x2,n2={len(t)~k),f2)))),

¥n £l nl £2.(INVART(n,£1,n1,£2) ((GEB(nl g? £2,
nl,£2) GEB(n g f1,n,£1)IA(FRN(nl gt £2,nl,£2):
FRN(n gt £1,n,£1))A(nl g £2)=(o g? £1)))

In the previous definition, nl is any posi-
tion in the string fl and n2 is the corresponding
position in f2. The axiliary predicate SHUT
states that the variables appearing in the term t
substituted for a tree occurrence of the variable
x are still free. INVART defines which properties
of fl are still true for 12. If the term t is a
variable, then SBT reduces to SBV:

¥xl x2 £1 £2.(SBV(x],x},[1,£f2)z¥n. ((MINDVAR(
n gl [1)o(n g (l)=(n gt F2)A(INDVAR(n gt fl)o
{({FRN(x1,n, {1))oFRN(x2,0,f2))ACVFRN(x] ,0,f1)
INVARV(n,[1,12)))))),

¥ 11 £2.CINVARV (i, £ 1, T2)2((CEB(n gt £2,n,{2) GLB
w0 gk £1,0,11))A(FRN(n g¢ £2,n,£2) FRN(n g2 f1,
n,f1))A(n go £2)=(n gt £1))).

The proof of the equivalence of SBT and SBV
when t is a variable is very simple. It is based
on the fact that n2 coincides with nl when the
term t has length 1 (see Aiello and Weyhrauch
1974), The function sbt (sbv) evaluates to the
siring representing the result of substituting a
term (variable) for every free occurrence of a
variable in a given wff. sbt and sbv are defined
from the predicates SBT and SBV as follows:

Ux t f1 f2.(S8T(x,t,01,12) sht(x,t,f1)=(2
¥x1 x2 f1 £2.(8SBV(x1,x2,f1,£f2) sbv(xl,x2,f1)=£2)

The problem of finding the best way of defi-
ning functions in FOL is crucial: in the axiom
system given in this paper a uniform way has not
been followed. In defining the substitution we are
interested in properties of the functions sbt and
sbv and in drawing conclusions from the fact that
a substitution has been made. It is thus useful
to have a predicate which defines the relation
between formulas before and after a substitution
instead of inferring it from the definition of the
functions (stated for example as a system of equa
tions, as in Kleene 1952). One of the motivationT
of the present experiment was to explore differ-
ent ways of defining functions. We do not yet have
enough examples of proofs to make a clear state-
ment about this matter.

2.2.2 Rules ot inference, deductions and the
notion of provability

The rules of inference with one premise, are
expressed by means of a binary predicate whose
arguments are two sequences of wffs (sq, pf) which
satisfy PROOFTREE.

The predicate is true iiff pf is the scdr of sq
and the first element of sq is a wff obtained by
applying that particular deduction rule to the
first wff of pf. The rules with more antecedents
are defined in a similar way.

Derivations are recursively defined as se-
quences of wffs which either are a single wff or
are obtained from one or more derivations by ap-
plying one of the deduction rules. The recursion
is implicitly stated by saying that there exist
objects of sort PKOOKTKKK which satisfy one of the
predicates defining the rules of inference. These

sequences represent the lincarization of a dedue-
tion-tree and are delined as follows:

¥eq.(PROOFTREE(sq) (FORM(sq)V 3pI.(OR1Cuq,pr)V
ANDE(sq,pf) VFALSEE(sg,pf) VNOTI(aq,pf)V
NOTE(sq,pf)VIMPL1(sq,pf))V 3pf x t.(GENI(sq,pf,
X,t)VGENE(8q,pf ,X,t)VEXI(8q,pf,x,t))V Fpfl
p£2.(ANDI(sq,p£fl,pf2)V FALSET(8q,pfl,pf2)V
IMPLE(8q,pEl,pE2))V IpLl pf2 x) x2.8XE(aq,pll,
pf2,x1,%x2)V 3pf1 pl2 pra ORE s, pr,pl2,p01)))

A sequence of wifs is a_prooliree it either
it consisty of a single wit or one ol the Lol low-
ing alternatives holds: there exists anoather prod
tree and a uvne premise deduction rule has been
applied; there exist two prooftrees and one of the
two premises rules has been applied; finally,
there are three prooftrees and the predicate de-
fining the V-elimination rule is true. Note that
the root of a prooftree is not necessarily a
theorem in a given theory. A predicate DEPEND has
been defined which is true if a given wff is a
dependence for the root of a prooftree. The axioms
about DEPEND allow to decide all the dependencies
of a prooftree.

Since some of the deduction rules (the impli-
cation introduction, for instance) eliminate depen_
dencies, not all the leaves of a prooftree pf are
dependencies for a wff f such that f-scar(pf). The
predicate DEPEND is true only for those leaves of
the prooftree which the formula f actually depends
on. The axioms DEPEND state which dependencies do
not change by applying the deduction rules and are
transferred from one prooftree to the other. The
axioms NDEPEND state which rules dicharge dependent
cies in a given prooftree.

Using this notion of dependence, the prova-
bility of a formula in a theory is defined as
follows:

Vi, (BEW(f) 3eq.(PROOFTREE(sq)A f=scar{sq)A
VEL. (DEPEND (aq,f1)SAXIOM(£1))))

A wff.f is a theorem in a given theory if
there exists a prooftree whose first element is f
and whose only dependencies are axioms in that
theory. We have limited our attention to theories
in which axioms have no free variables. This pro-
perty is defined by the axiom: ¥ x {.(AXIOM(f)w
FK(x.f)).

2.3 The Main Proof in the “any Sorted Logic

The main theorem we have proved in this axio-
matization of the metamathematics states that if
Vx f. wif is provable in some theory, then ¥ y x.
wif is also provable. We have chosen this theorem
because, even if very simple, it involves basic
notions of provability, substitution and universal
quantification, Its proof is found in sppendix 2.
The theorem depends on the first three lines of
the proof. The lirst step is a lemme stating that
¥x wif.abt(x, x,wff)ewlf, i.c. substituting a varin
ble x for any [ree ovecourrence of x in wif dovsn't
change that wif. Stepx 2 and 3§ give simple lacts
about sequences. The theorem is then proved by
instantiating tw other lommas: a) if ¥x.wif is a
theorem, then wiff is also o theorem; b) if wif is
provable, then x cannot be frec in the dependencive
of the proef of wif and so ¥x.wif (s provable., This
is of course true only for teorics with no free
variables in their axioms. '

2 (x gen f)=(x gen f)V(x gen f)=(x ex f)

3 Ixl £1.((x gen £)=(x1 gen £)V(x gen f)=(xl ex
£1))

& FORM(x gen £)

1.2 Printout of the oroof in the second axiomati-
zation

1 FORM(f)AINDVAR(x1)

2 Vsq s. ((SEQUENCE(8q)Asq¥SLAMBDA)O({STRING(a)->(s
cc $q)¥SLAMBDAY) (2)

3 ?; zqs((STHIHG(H)ASEquNCE(sq)).acar(s ce sq)=
s) (3

& V& sq.((STRING(s)ASEQUENCE '8q)). scdr{s cc sq)»
sq) (4)

5 Vaq.(({SEQUENCE(sq)Aaq¥SLAMDA): £ind(], scar(sq),
8q)) (5)

6 ¥f x.((FORM(f)AINDVAR(x))-STRINC(x gen £)) (6)

7 ¥s 8q.((STRING(s)ASEQUENCE(sq))OSEQUENCE(s cc
2q)) (7)

8 ¥x. (INDVAR(x)-'STRING(x) (B)

9 PORM(f): (STRING(f)A3sq.(FRR(sq)Af=scar(sq)))
10 3sq.(FRR(sq)Af=scar(sq)) (1 23 4 5 6 7 8)
11 FRR(SQ)Af=scar(SQ) (11)

12 PRR(SQM(SEQUENCE (SQ)A(SQASLAMBDAA (ELF (acar(SQ))
V(PER(5cdr(5Q))Ads]l 82. (STRING(S1)A(STRING(82)A
((scar{SQ)»NEG(s1)Afind(1,sl,scdr(5Q)))V((scar
(8Q)=(al dis s2)Afind(2,sl c x2,s8cdr{5Q))IV((
scar(8Q)=(sl con s2)Afind(2,sl ¢ $2,0cdr(SQ)))V
((ocar(5Q)=(sl impl s2)Afind(2,sl ¢ s2,scdr(sQ)
)IV({scar(SQ)=(sl gen s2)A(INDVAR(s1)Afind(1,s2,
2cdr(8Q))))v{scar(5Q)=(sl ex 82)A(INDVAR(S1)A
find(1,s2,scdr(SQXIDIDIHLMINY)

13 (SEQUENCE(SQ)ASQASLAMBDA)(STRING(x1 gen £)>
((x1 gen £) cc SQ)YSLAMBDA) (2)

14 (STRING(x1 gen f£)ASEQUENCE(SQ))=scar((xl gen f)
cc SQ)(xl gen £) (3)

15 (STRIRG(xl gen f)ASEQUENCE(5Q)):scdr((xl gen f)
cc 5Q)=8Q (4)

lﬁ(gngU!NCE(SQ)ASQfSLAHSDA)Efind(l,scar(SQ),SQ)

17 (PORM(£)AINDVAR(x1))=string(xl gen £f) (6)
18 INDVAR(x1)=STRING(x1l) (8)

19 YRR(x1 gen £) cc SQX(SEQUENCE((xl gen £f) cc 5Q)
A(((x1 gen £) cc U)¥SLAMBDAA(ELF(scar((xl gen f)
ce SQ))V(PRR(scdr((x) gen £) cc $Q))A3sl s2.(
STRING(s1)A(STRING(82)A{{scar{{s]l gen £) cc 5Q)=
NEG(sl)Afind(1l,s),scdr((x]l gen £) cc SQ))}IV((
scar((xl gen f) cc SQ)=(sl dis 82)Afind(2,sl ¢
82,0cdr((xl gen f) cc SQ)))V({scar((xl gan £) cc
SQ)=(sl con s2)Afind(2,s] ¢ s2,scdr((xl gen £f)
cc 8Q)))v{(scar((xl gen £) cc $Q)»(sl con s2)A
f£ind(2,8l ¢ 82,scdr((x] gen £) cc $Q)))V((scar
((x1 gen £) cc SQ)=(sl impl s2)Af{nd(2,s] ¢ s2,
scdr((x1l gen £) cc 5Q)))V((scar((x]l gen f) cc
8Q)=(sl gen 82)A(INDVAR(31)Afind(1,s2,scdr((xl
gen £) cc 8Q))))V(scar({xl gen £) cc SQ)=(sl ex
S2)A{INDVAR(s1)ALind(1,82,8cdr((x1 gen £) cc
sﬂ)))))))))))))))

‘20 STRING(XL)A(STRING(f)A((scar((x] gen F) cc SQ)
wNEG(x1)Afind{1,x1,scdr((x] gen £) cc SQ))IV

((scar{(xl gen £) cc SQ)=(x]1 dis £)Afind(2,x]

e f,medr((x] gen £) ce SQ)))V((scar({xl gen f)

21

22

23

25

26
27
28

29

cc SQ)=(x1 con E)Afind(2,x1 ¢ f,scdr((xl gea f)
cc SQ)))v((scar({xl gen f) cc SQ)={xl impl £)A
find(2,xl c f,scdr({x1 gen £) cc SQ)))Vv({(scar
((x]1 gen £) cc SQ)=(x1 gen £)A(INDVAR(x1)Afind
{1,€,8cdr((xl gen £) cc SQ))))V(scar({xl gen f)
cc 5Q)o(xl ex £IA(INDVAR(xL)Afind(1l,f,scdr((x]
gen £) cc SQNIMNNY) (1 2346567 811)

351 2. (STRING(81)A(STRING(82)A((scar((sl gen
£) cc SQ)~NEG(sl)Afind(1,8],ecdr((x] gen f) ce
SQ)) V((scar({xl gen £) cc 5Q)=(sl dis s2)A
£ind(2,81 c 82,scdr{(xl gen £) cc SQ)))V((scar
((x] gen f) cc SQ)=(sl con s2)Afind(2,sl c 82,
scdr({x) gen [) cc 8Q)))V((scar((xl gen £) cc
SQ)=(sl impl s2)Afind(2,sl ¢ 82,scdr((xl gen f)
ce SQ)))V((scar{(xl gen f)cc 5Q)=(sl gen s2)A
(INDVAR(s1)Afind(1,s2,scdr((xl gen £) cc SQ}))))
V(scar((xl gen £) cc SQ)=(sl ex s2)A(INDVAR(sl)
Afind(1,82,8cdr{(xl gen £) cc SQMIVINNN)
(1234567 811)

(STRING(x1 gen)ASEQUENCE(SQ))->SEQUENCE((x1 gen
£) cc SQ) (7)

FORM(x1 gen f) (STRING(xl gen £)A}sq.(FRR(sq)
A(x1 gen f)=scar(sq)))

FRR(x1 gen f) cc SQ)A(xl gen E)=scar({(xl gen f)
cc SQ) (1 234567 8 11) TAUTEQ 1:23

38q. (FRR(8g)A(x] gen f)=scar(sq)) (1 2 3 4 5
67811)

FORM(x1 gen £) (1 23 4567 811)
FORM(x1 geén £) (1 23 4 56 7 8)

(FPORM(£)AINDVAR(x1))-FORM(x! gen £) (2 3 4 5
6 7 8)

¥f x1.((FORM(f)AINDVAR(x1))OFORM(x] gen f))
(2345678)

Appendix 2

The proof that universal quantifiers can be

interchanged Printout of the proof in the wmany
sorted logic

(- TR Y TN S N X R

10
11
12

¥x f.sbt{x,x,f)=f (1)

Vf aq.scar(f cc sq)=f (2)
¥f sq.scdr{f cc #q)wsq (3)
BEW(x gen f) (&)
sbt(x,x,£)=f (1)

BEW(x gen f)z3sq.(PROOFTREE(aq)A({(x gen f)=pcar
(8q)AV£1 . (DEPEND(sq,£1)-AXIOM(E1))))

Jsq. (PROFTREE(sq)A((x gen f)=scar(sq)A¥Ll.(
DEPEND(sq,f1)2AXTOM(£1)))) (4)

PROOFTREE (sq)A({x gen f£)wscar(sq)AVEL.(DEPEND
(8q,£1)OAXTOM(£1))) (8) |

CENE(f cc 8q,8q,x,x): (scdr(f cc sq)=sqn(
PROOFTREE(sq)NAIL . (scar(sq)=(x gen {1)Ascar(f
e sq)=sbe (x,x,£1)))) .

scar(f cc sq)=f (2)
scdr(f cc sq)=sq (3)

scar(sq)e(x gen f)Ascar(f tc sq)=sbt(x,x,f)
(12348 | .

_}g;.(ici;(iQ};(x'gqu%fiihbclt(f_cgdlq)fibt(x,

x,f1)) (1 2 3 4 8)
14 GENE(f cc sq.8q,x%x,x) (1 2 3 4 B)

15 PROOFTREE(f cc sq)- (PORM(f cc sq)Vv(3pf.(ORI(f
cc 8q, pf)V(ANDE(E cc nq,pf)V(FALSEE(f cc sq,pf)
V(NOTI(f cc sq,pf)V(NOTE(f cc sq,pf)VIMPLI(f
cc 8q,pf)) 1)) IV(Ipf x t.(GENI(f cc sq,pf,x,t)
V(GENE(f cc sy,pf,x,t)VEXI{f cc 8q,pf,t)))V(3
pfl pf2.(ANDI(f cc sq,pfl,pf2)V(FALSEI(f cc sq,
pfl,pf2)VIMPLE(f cc 8q,pfl,pf2)))vipfl pf2 x
t.EXE(f cc sq,pfl,pf2,x,t)vipfl pf2 pf3.O0RE(f
cc sq, pfl,pf2,p£3))))))

16 GENI(f cc sq,9%q,X,x)V(GENE(f cc 8q,5Q,X,X)V
EXI(f cc sq,sq,x,x)) (1 2 3 4 8)

17 3pf x t.(GENI(f cc sq,pf,x,t)V(GENE(f cc sq,pf,
%, t)VEXI(f cc sq,pf,t))) (1 2 3 4 B)

18 PROOFTREE(f cc sq) (1 2 3 4 B)
19 ¥ f1.(DEPEND{8q,fl)->AXTIOM(f1l)) (8)
20 DEPEND(sq,f1)oAXIOM(fl) (8)

21 PROOFTREE(f cc 8q)>(PROOFTREE(eq)—((sq=scdr(f
cc 8q)->(DEPEND(f cc s8q,fl1XE DEPEND(sq,fl))E (
ORI(f cc 8q,8q)V(ANDE(f cc sq,sq)V(FALSEE(f cc
8q,8q)V(3£. ((NOTID(E cc #q,8q,f)V(NOTED(f cc
5q,8q,f)VIMPLID(f cc sq,8q,£)))Af¥f1)Vvix t.(
GENI(f cc sq,8q,x%,t)V{(GENE(f cc sq,sq,x,t)V
EXI(f cc sq,sq,x,t)))))))))

22 3Ix t.(GENI(f cc 8q,98q,X,t)V(GENE(f cc sq,sq,
x,t)VEXI(f cc sq,s8q,x,t))) (1 2 3 4 B)

23 DEPEND(f cc 8q,f1)OAXIOM(fl) (1 2 3 4 8)
24 VE£1.(DEPEND(f cc 8q,f1)DAXIOM(f1)) (1 2 3 4 8)
25 fegcar(f cc 8q) (2)

26 PROOFTREE(f cc sq)A(fescar(f cc 8q)AVEL.(
DEPEND(f cc sq,f1)oAXIOM(£1))) (1 2 3 4 8)

27 BEW(EX 3sq. (PROOPTREE(sq)A(E~scar(sq)AVEL. (
DEPEND(sq, f1)OAXIOM(£f1))))

28 3sq.(PROOFTREE(sq)A(f=scar(sq)AVEl. (DEPEND(sq,
£1)AXIOM(£1)))) (1 2 3 4)

29 BEW(f) (1 2 3 4)
30 BEW(x gen f)OBEW(f) (1 2 3)
31 BEW(f) (31)

32 Jaq. (PROOFTREE(sq)A(f=scar(sq)AVEL. (DEPEND(aq,
£1)OAXIOM(£1)))) (31)

33 PROOFTREE(sq)A(f=acar(sq)A¥fl.(DEPEND(sq,f1)>
AXIOM(£1))) (33)

34 V£1l.(DEPEND(aq,f1)-AXIOM(£1)) (33)
35 DEPEND(sq,f1)DAXIOM(f1l) (33)

36 APGENI(x,sq): (¥f. (DEPEND(aq, f)>4FR(x,£))A
PROOFTREE(8q))

37 AXIOM(£1)-=>~FR(x,f1)

38 DEPEND(eq, f1)oFR(x,£1) (31 33)

39 ¥£l.(DEPEND(sq,f1)FR(x,f1)) (31 33)
40 APGENI(x,sq) (31 33)

41 GENI((x gen £) cc sq,8q,%x,x)z (scdr(x gen f) cc
sq)-an(PaDOPTREE(sq)hgfl (scar({x gen f) cc
_ aq%;}:);en £1)A(scar(sq)=sbt (x,x,f1)AAPGENI(x,
g

42 acar{(x gen £) cc sq)=(x gen £) (2)
43 sede((x gen £) cc sq)=eq (3)

44 scar({x gen f) cc #q)=(x gen f)/.(scar(sq)=sbt
(x,x,EJAAPGENI(x,8q)) (1 2 3 31 33)

45 3f1.(scar({x gen £) cc sq)={x gen f1)A(scar(sq)
wsbt (x,x,F1)AAPGENI(x,5q))) (1 2 3 31 33)

46 GENI((x gen f) cc sq,sq,x,x) (1 2 3 31 33)

47 PROOFTREE((x gen f) cc sq) (FORM((x gen f) cc
8q)V(3pf . (ORI((x gen £) cc sq,pf)V(ANDE((x gen
£) cc 8q,pf)VIFALSEE({(x gen f) cc sq,pf)VI(NOTI
{((x gen £) cc sq,pf)V(NOTE((x gen f) cc sq,pf)
VIMPLI((x gen £) cc oq,p£f))))))Vv(3pf x1 t.(GENE
((x gen £) cc 8q,pf,x],t)V(GENE((x gen {) cc
8q,pf ,x1,t)VEXI((x gen f) cc sq,pf,xl,t)))V
(Iptl p£2.(ANDI((x gen £) cc sq,pfl,pf2)V(
FALSEI((x gen £) cc sq,pfl,pf2) VIMPLE((x gen f)
cc 8q,pfl,pf£2)))V(Ipfl pf2 x1 t.EXE((x gen {)
cc 8q,pEl,pf2,x1,t)Vipfl pf2 pf3.ORE((x gen f)

. ec sq,pEl,pf2,pf3))))))

48 GENI((x gen £)cc $q,99,%,X)V(GENE((x gen f) cc
8q,89,%,X) VEXI{(x gen f) cc sq,sq,x,x)) (1 2
3 3t 33)

49 3pf x1 t.(GENI((x gen f) cc sq,pf,xl,t)V(GENE
{((x gen £} cc sq,pf,x1,t)VEXI((x gen £) cc sq,
pf,x1,t))) (1 2 3 31 33)

50 PROOFTREE((x gen f) cc sq) (1 2 3 31 33)

51 PROOPTREE(x gen f) cc sq)—(PROOFTREE(sq)->((sq~=
scdr((x gen f) cc sq)>(DEPEND((x gen f) cc sq,
£1) (DEPEND(sq,f1))) (ORI((x gen £) cc &q,3q)V
(ANDE({(x gen f) cc sq,sq)V{FALSEE((x gen f) cc
8q,9q)V(3f.{(NOTID((x gen f) cc 8q,sq,f)V(NOTED
{(x gen £) cc sq,8q,f)VIMPLID((x gen f) cc sq,
8q, L)) IAf¥£1)Vixl t.(CENI((x gen £) cc sq,sq,
x1,t)V(GENE((x gen f) cc sq,8q,x1,t)VEXI(x gen
£) cc 8q,8q,x1,£)))))))))

52 3x1 t.(CENI((x gen £) cc sq,8q,x1,t)V(GENE((x
gen f) cec oq,8q,x1,t)VEXI((x gen f) cc sq,sq,
x1,t))) (1 2 3 31 33)

53 DEPEND((x gen f) cc s8q,f1)-AXIOM(£1) (1 2 3
31 33)

54 Vf1.(DEPEND((x gen £) cc sq,f1)-AXIOM(f1))
(12331 33)

55 (x gen f)=scar((x gen £) cc 8q) (2)

56 PROOFTREE((x gen f) cc sq)A((x gen £)=scar((x
gen £) cc sq)AVLL.(DEPEND((x gen £) cc sq,fl1)>
AXIOM(£1))) (1 2 3 31 33)

57 BEW(x gen £fX }sq.(PROOFTREE(eq)A((x gan f)=
scar(sq)A¥El, (DEPEND(sq,f1)AXIOM(£1))))

58 Jsq.(PROOFTREE(8q)A((x gen f)ascar(sq)AVEL. (
DEPEND(sq,f1)OAXIOM(£f1)))) (1 2 3 31)

59 BEW(x gen £) (1 2 3 31)

60 BEM(£)JBEW(x gen £) (1 2 3)

61 BEW(x gen £)=BEW(f) (1 2 3)

62 ¥x f.(BEW(x gen £): PEW(f)) (1 2 3)

63 BEW(xl gen(x2 gen f)): BEW(x2 gen £) (1 2 J)
64 BEW(x2 gen £):BEW(L) (1 2 3)

65 BEW (x1 gen £): BEW(f) . (1 .23)

66 BEW(x2 gen (x! gen £)).IEH(31 gen £) {1 23

67 :fﬂ;xg)gan (x2 gen !))JBEN(:Z gen (x1 gen £))

68 ¥x1 x2 £,(BEW(x]l gen (x2 gen £))-BEW(x2 gen (x]

gen £3)) (1 2 3)

Appendix 3

The axioms for formulas in the unsorted
logic

AKIOM FIND:
¥sq. (FIND(§,LAMBDA, 8q) - SEQUENCE(8q)),
¥n s 8q. (FIND(n 8, 8q) : INTEGER(n)ASTRING (8)A
SEQUENCE(sq)A3n sl s2. (INTEGER(n)ASTRING(s1)A
STRING (82)A (@<sns<slen(sq))A(sl=(n sgl sq))A
(s=(sl c 82))AFIND(n-1,82,89)));;

AXIOM FINDTOP:

Vaq. (PINDTOP(J, SLAMBDA, sq) : SEQUENCE(sq)) ,¥n s
sq. (FINDTOP(n, s, 3q) : INTEGER(n)ASTRING (a)A
SBQUENCE(sq)AJsl 82.{STRING(s1)ASTRING(s2)»
(s1YLAMBDAIA (s=(s]l ¢ s2))A(s=scar(sq))A
FINDTOP(n~1,82,scar(sq))));;

AXIOM TERM:

¥sq. (TERMSEQ(sq) =SEQUENCE(sq)A{ (slen(sq)=1A
INDVAR(1 sgl 8q))V(slen(sq)>IATERMSEQ(scdr
(8q))A(INDVAR(scar(sq))Vin s.INTEGER(n)A
STRING(s)A(s=car(acar(sq))JAOPCONST (s)An=arity
(s)AFIND(n,cdr(scar(sq)),scdr(8q))))))),

v:.(§fnn(t):srnxuc(:)niaq.(Tznnssqtuq)A:-c.r(
Q)i

AXIOM VWFF:

¥t . (BLF(f) =STRING{f A (£«FALSESYMVPREDPARO(f)V
dn sq. (INTEGER (n)ASEQUENCE(sq)APREDPAR(car
(£))rn=aricy{car(f))ATERMSEQ{sq)AFINDTOP(n,
cdz(f),8q9)))),

¥2q. (FRR{sq) zSEQUENCE (5q)A(sq¥SLAMBDA)A (ELF(
scar{sq))V(FRR(scdrisq))Adsl 82. (STRING(s1)A
STRING(e2)A(((scar{sq)=neg(s1)AFIND(1,x1,
scdr(sq)))V(scar(sq)=(sl dis s2)AFIND(2{sl c
82),scdr(sq)))Vv(scar(eq)=(sl con 2)AFIND(2,
(el c #2),scdr(sq)))V(scar(sq)=(sl impl s2)A
FPIND(2, (sl c 82),scdr{sq)))V(scar{sq)=(sl gen
82)ATRDVAR (81 JAFIND(1,82,8cde{sq))) V(scar(aq)
;;;1 ex s2)AINDVAR(s1)AFIND(]l,s2,scdr(sq))))

));
Ve . (FORM(£) ZSTRING(f)A3sq. (FRR(sq)AL»scar(aq)))

References

Prawitz, D,

1965 Natural deduction, A proof theoretical
study
Alaquist and Wikseil, Stockholm (1965).

Godel, K.,

1930 Die Voilatandingk.it der Axione dea
logischen Funktionenkslkule Monatshefte
gtérOMatheoatik und Physik 37, (1930) 349-

Godel, K.,

1931 Uber formal unentacheidbare Satse der
Principle mathematics und vervandter
Systems |, Monatahefte fur Matheoatik und
Physik 38,(1931) 173-198.

Veyhrauch, R.W., and Thomas, A.J.,

1974 POL: A Proof Checker for First-order
Logic,Stanford Artificial Intelligence
Laboratory, Memo AIM-235 (1974).

Aiello, M., and Weyhrauch, R.W.,

1974 Checking Proofs in the metaaetheaatics of
first order logic, Stanford Artificial
Intelligence Laboratory, Memo AIM-222
(1974).

