Session 15 Robot Problem Solving

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES*

by

Earl D. Sacerdott

Stanford Research

Artificial

Abstract

A problem domain can be represented as a hierarchy
of abstraction spaces in which successively finer levels
of detail are introduced. The problem solver ABSTRIPS,
a modification of STRIPS, can define an abstraction
space hierarchy from the STRIPS representation of a
problem domain, and it can utilize the hierarchy in
solving problems. Examples of the system's performance
are presented that demonstrate the significant in-
creases in problem-solving power that this approach
provides. Then some further Implications of the hier-
archical planning approach are explored.

Problem solving, heuristic search,
abstraction space, robot planning,
planning.

Key Words:
representation,
hierarchical

Introduction

General purpose problem solvers, such as STRIPS st
or GPS,®> must do their work using general purpose search
heuristics. Unfortunately, by using such heuristics,
it is not possible to solve any reasonably complex set
of problems in a reasonably complex domain. Regardless
of how good such heuristics are at directing search,
attempts to traverse a complex problem space can be
caught in a combinatorial quagmire.

This paper presents an approach to augmenting the
power of the heuristic search process. The essence of
this approach is to utilize a means for discriminating
between important information and details in the prob-
lem space. By planning in a hierarchy of abstraction
spaces in which successive levels of detail are intro-
duced, significant increases in problem-solving power
have been achieved.

Section |l sketches the hierarchical planning ap-
proach and gives motivation for its use. Sections III
and |V describe the definition and use of abstraction
spaces by ABSTRIPS (Abstraction-Based STRIPS), a modi-
fication of the STRIPS problem-solving system that in-
corporates this approach. Section V describes the per-
formance of the system. Section VI discusses the impli-
cations of this approach for problem solving and for
robotics.

The work reported herein was sponsored by the Advanced
Research Projects Agency of the Department of Defense
under Contract DAHC04-72-C-0008 with the U.S. Army
Research Office.

References are listed at the end of this paper.

Institute

Intelligence Center
Menlo Park, California

94025

Il__The Motivation for Using
Abstract ion Spaces in Problem Solving

It was not quite fair to assert in the previous sec-
tion that a complex problem domain is beyond the combi-
natorial capability of general purpose problem solverB.
A problem solver deals not with the problem domain it-
self, but with some representation of that domain. So
it would be more correct to state that a complex repre-
sentation exceeds the scope of general purpose problem
solvers.

Unfortunately, a straightforward transcription of
a complex problem domain will yield a complex represen-
tation. However, a well-chosen transcription can lead
to a simpler representation. By choosing such a simpli-
fying representation, one can have the problem solver
do its work in a context that is simple enough for some
useful problem solving to take place.

In other words, the heuristic search through the
simplifying representation will be of sufficiently short
duration that a goal state in the problem space can be
reached. Such a representation displays what McCarthy
and Hayes term "heuristic adequacy,"

Attempts to achieve simplifying representations,
such as the "macro operator," or MACROP, of the STRIPS
problem solver,> have heretofore tried to preserve, in
McCarthy and Hayes' terminology, "epistemological ade-
quacy"; that is, the simplifying representations had to
preserve all the detail that was needed to solve the
problem at hand. A MACROP simplifies the representation
of a problem domain by providing a means of selecting at
one time an entire sequence of primitive operators,
linked in a semantically sensible manner. But it pre-
serves every detail of the preconditions and effects of
its constituent operators.

Such simplifying representations can provide only
limited enhancement to the power of a problem-solving
system because of a somewhat dismaying fact; For a suf-
ficiently complex problem domain, no epistemologically
adequate representation can be heuristically adequate.

Epistemological adequacy implies that every rele-
vant detail is properly dealt with. But attention to
detail is precisely what defeats heuristic adequacy.

A good heuristic evaluation function will enable a prob-
lem solver to reject most of the possible paths in a
situation space. But if all the details are attended
to, the evaluation function must be applied at all the
nodes at which the details are affected. The combina-
torics of the expanding search space will enable the
problem solver to solve only rather simple problems.

A superior approach to problem solving would be to
search first through an abstraction space, a simplifying

412

representation of the problem space in which unimportant
details are ignored. When a solution to the problem in
the abstraction space is discovered, all that remains

is to account for the details of the linkup between the
steps of the solution. This can be regarded as a se-
quence of subproblems in the original problem space.

If they can be solved, a solution to the overall prob-
lem will have been achieved. If they cannot be solved,
more planning in the abstraction space is required to
discover an alternative solution.

PonaB cites the importance of this approach for
human problem solving. It has been used by computer
programs to find proofs in symbolic logic® (ignoring
the nature of the connectives and the ordering of sym-
bols as details) and to detect edges in scenes’ (using
a shrunken picture with less detail).

The concept can readily be extended to a hierarchy
of spaces, each dealing with fewer details than the
ground space below it and with more details than the
ibstraction space above it. By considering details
only when a successful plan in a higher level space
gives strong evidence of their importance, a heuristic
search process will investigate a greatly reduced por-
tion of the search space.

The process of abstraction defined in Section 111
is general in that it is not domain-dependent. But it
is highly structured and very dependent on the syntax
of the problem domain. It is a first step, providing
no capability for a "representational shift" that would
restate a difficult problem in terms that render its
solution markedly easier. Rather, it employs a series
of representational nudges that increase the power of
the heuristic search process over a problem space.

11l Automated Definition
of Abstraction Spaces

The following sections describe the ABSTRIPS sys-
tem, a modification of the STRIPS problem solver."'2
A brief description of the aspects of STRIPS that are
relevant to the discussion to follow is presented be-
low.* The reader is encouraged to see Section Il of
Ref. 2 for a brief but thorough summary of the opera-
tion of STRIPS or Ref. 1 for a full description. as

Briefly, the representation of a problem domain
with which STRIPS deals consists of:

(1) A World Model—The world model is a set of
wffs in the predicate calculus, describing
facts (e.g., CONNECTS(DOOR1.ROOM1,R00M2)) or
laws (e.g., VRx,Ry,Dx CONNECTS(Dx,Rx,Ry) <=>
CONNECTS(Dx.Ry.Rx)) of the problem domain.

*In the interests of brevity and clarity, no further
mention will be made of the MACROPs in the STRIPS sys-
tem. A MACROP is the result of generalizing a previ-
ously completed plan. Most of its valid subsequences
of operators can be extracted for use in further plan-
ning. Each such subsequence could be treated by

For a

(2) A Set of Operator Descriptions—Each action
in the problem domain is represented by an
"operator" for changing one model into an-

other. An operator is defined by a precon-
dition wff, an add list, and a delete list.
For an operator to be applicable in a given

model,its precondition wff must be satisfied,
The add and delete lists describe which wffs
ar€ changed when an application of the opera-
tor transforms the world model.

A problem is stated to STRIPS as a goal wff.
STRIPS must develop a sequence of operator applications
that will lead to a world model in which the goal wff

true. A GPS-like means-ends analysis strategy3 is
employed to generate the operator sequence.

A "difference" between the initial model and the
goal model is extracted. STRIPS determines which in-
stances of which operators would reduce the difference;

the instance that most reduces the difference is se-
lected. If itis applicable in the initial state (i.e.,
its precondition wff is true in the initial world

model), the operator is applied, and a new world model
created. If the goal wff is true in the new model,
STRIPS is done. If not, the difference between the new
state and the goal state is extracted, and the process
continues,

if the operator instance that most reduced the
difference is not applicable in the initial state (i.e.,
its Drecondition wff is not provable in the world
model), the precondition is set up as a subgoal wff.
STRIPS will then try to develop a sequence of operator
applications that will lead to a world model in which
the subgoal wff is true. If the subgoal is achieved,
the operator instance can be applied as before. |If
not, another operator instance is selected, and the
process continues as before.

Abstraction Spaces in the STRIPS Context

practical problem-solving system, one would
like to have an abstraction space differ from its
ground space enough to achieve a significant improve-
ment in problem-solving efficiency, but yet not so much

to make the mapping from abstraction space to ground
space complex and time-consuming.

For the STRIPS system, this criterion is met by
having the abstraction spaces differ from their ground
spaces only in the level of detail used to specify the
preconditions of operators. Although the change in
representation provided by this choice may seem intui-
tively insufficient, it satisfies the criterion well.
The world model can remain unchanged; there Is no need
to delete unimportant details from it because they can
simply be ignored. No operators need be deleted in
their entirety; if all they do is achieve details, they
will never be selected as relevant. Any change to the

add or delete lists of the operators would cause the
operators' effects to be very different in different
spaces. Since the applicability of a particular oper-
ator at some intermediate state might depend on any
effects of any previously applied operators, the map-
Ping of plans among spaces would be rendered too com-

Thus, an abstraction space in the STRIPS context
differs from its ground space only in the preconditions
of its operators. The precondition wffs in an abstrac-
tion space will have fewer literals than those in its
ground space. The literals omitted will be those that
are "details" in the sense that a simple plan can be
found to achieve them once the more "critical" literals
have been achieved. For instance, consider a PUSHTHRUDR
operator, which describes the effects of a robot push-
ing a particular object through a doorway into an adja-
cent room. In a high level abstraction space, the op-
erator would be applicable whenever the object was
pushable and a doorway into the desired room existed.
In a lower level space, it would also be required that
the robot and the object be in the room connected by
the doorway with the target room, in a still lower
abstraction space, the door would also have to be open.
Finally, in the original representation of the problem
space, the robot would also have to be next to the box,
and the box would have to be next to the door.

For ABSTRIPS to be able to discriminate among var-
ious levels of detail, each literal within the precon-
ditions of each operator in a problem domain is assigned
a "criticality" value at the time the domain is first
defined. Only the most critical literals will be in
the highest abstraction space, whereas in lower spaces
less critical ones will also appear.

Assigning Critlcallty to the Literals of a
Precondition

There are many possible approaches to the assign-
ment of criticality values to the literals of an oper-
ator's precondition wff. They span a range from a
manual assignment as part of the specification of the
problem domain to a completely automatic assignment of
criticalities.

At one extreme, the definition of a problem domain
could include an explicit specification of criticali-
ties, reflecting the deflner's intuition about the do-
main. For example, if one were to define a "Turn on
the lamp(X)" operator, he might say it was essential
that / he a lamp. He might say it was very important
to be in the room with the lamp, less important that
the lamp's cord be plugged in, and still less important
to be next to the lamp. Specifying the criticality
value of a literal by a number preceding it in braces,
one might define the precondition wff of the "Turn on
the lamp" operator as

{a}Type(l,1amp) A Erx({3}1nroun(Me,rx)ﬂ
{alinroom(g,.rx)) A [2}Plugged-in{f) A

{1INextto(me,L}.

At the other extreme, a scheme can be developed to
perform an exhaustive analysis of the nl possible ordar-
ings of the n literals in a precondition in order to
determine which literals can be achieved once other
literals are assumed to be true. The results at this
analysis can be used to specify the criticality values
for literals of the precondition.

For ABSTRIPS, an intermediate approach to critical-
ity assignment was adopted, A predetermined (partial)
ordering of all the predicates used in describing the
problem domain was used to specify an order for examin-
ing the literals of the precondition wffs of all the
operators in the domain. First, all literals whose
truth value could not be changed by any operator in the
domain were assigned a maximum criticality value. Then,
each remaining literal was examined in an order deter-
mined by the partial ordering. |If a short plan could
be found to achieve a literal from a state in which all
previously processed literals were assumed to be true,
then the literal in question was said to be a detail and
was assigned a criticality equal to its rank in the par-
tial ordering. If no such plan could be found, the Ilit-
eral was assigned a criticality greater than the highest
rank in the partial order.

For the domain including the "Turn on the lampW

operator, the partial ordering might look like the fol-
lowing:
Type() Coler{) (Rank 4)
Inroom() (Rapk 3}
/
Plugged-In{) Unplugged{) (Rank 2)
Nextto() (Rank 1)

The Type(j!,Lamp) literal could not be changed by
any operator in the domain, and so it would be assigned
a maximum criticality (6, in this case). The two Inroom
literals would be examined next (an arbitrary order can
be chosen for literals whose predicates have equal rank
in the partial ordering). They cannot be achieved from
a state in which Type(4,Lamp) is asserted, and so they
would be assigned a criticality greater than the highest
rank in the partial order, in this case 5. Plugged-in
(£.) can be achieved from a state in which the Inroom
literals and the Type literal are true. It can be
achieved by a plan to go to the lamp cord, pick it up,
bring it to a socket, and plug it in. So it would be
assigned a criticality equal to its rank in the partial
ordering, namely, 2, Similarly, a plan can be found to
achieve Nextto(Me.i) from a state in which the previously
processed literals are true, and so it would be assigned
a criticality of 1.

Regardless of the method used to determine the
criticality values, they define a hierarchy of abstrac-
tion spaces. The next section shows how such a hier-
archy can be used to aid the planning process.

IV Utilization of Abstraction
Spaces in Planning

To take advantage of the hierarchical planning ap-
proach offered by the use of abstraction spaces, the
ABSTRIPS system—whose flow of control is shown in Fig-
ure 1—has a recursive executive program. This program
accepts two parameters. The first is a criticality
value indicating the abstraction space in which planning
is to occur. The second is a list of nodes front the
search tree in the higher space, representing a skeleton

414

EXT

Goal Wif

ERNAL

INTERFACE

“Criticality’’
+ Maximum

Preconditions of
Dummy +
Goal Wit

[

“Skeleton Plan'’
+ Dummy

Y

Set State to Inilial
World Model

!

“Step” + First Step of
“*Skeleton Plan"’
**Skefeton Plan” < Rest
of "Skeleton Plan™

¥

Pian to Achieve g Stete

the Operator that was
Applied in “'Step’” are True

Was
Planning
Succatsful
?

/

o — o= = e
Resume Process in s
Higher Abstraction |\

Space, Forbidding the /

. Choice of "Stq:f'_ P

Apply *'Step’s” Operator

|
I
|
I
|
|
|
| in which Preconditions of
|
|
I
I
I
I
I

Is
"Criticality"
minimum
?

Deterrmine
Lower
“*Criticality”

Y

Collect Steps
Along Successful
Path into New
“Skeleton Plan”

/

)

o — — — o — -

Invoke Process !
in Lower Space /

Genarste Successful
Plan, Build MACROP,
Exit Through all Lavels

|
|
|
|
I
|
I
|
I
|
I
|
I
I
|

L e e T

FIGURE 1

415

TA-T4082-5

FLOW OF CONTROL OF ABSTRIPS

plan. When a new problem is posed to ABSTRIPS, the
external Interface program sets the preconditions of a
dummy operator to the goal wtt. The domain's maximum
criticality, which was determined when criticalitieB
were assigned, is retrieved. The executive is called
with the criticality set to the maximum and the skele-
ton consisting of the dummy operator.

Within the highest abstraction space, the execu-
tive plans to achieve the preconditions of the dummy
step in the skeleton plan, i.e., the main goal. When
a plan is found, the executive computes the criticality
of the next lowest space in which planning Is needed,
and it builds a skeleton of nodes along the path of the
successful plan. The executive then invokes itself re-
cursively. The new invocation solves in turn the sub-
problems of bridging the gaps between steps in the
skeleton plan and of ensuring that the steps in the
skeleton plan are still applicable at the appropriate
points In the new plan. The final step in the skeleton
is always the dummy operator, and so the final applica-
bility check ensures that the original goal has been

reached. Mien all subproblems have been solved, the
executive invokes itself for planning in a still lower
space. This recursion continues until a complete plan

is built up in the problem space itself.

This search strategy might be termed a "length-
first" search. It pushes the planning process in each
abstraction space all the way to the original goal state
before beginning to plan in a lower space. This enables
the system to recognize as early as possible the steps
that would lead to dead ends or very inefficient plans.

If any subproblem in a particular space cannot be
solved, control is returned to the process in its ab-
straction space. The search tree is restored to its
state prior to the selection of the node that led to
failure in the ground space. That node is eliminated
from consideration, and the search for a successful
plan at the higher level continues.

This failure mechanism is analogous to the auto-
matic backtracking feature of the PLANNER language.
It has the major defect that when a failure of a lower
level process is reported, the process and the context
in which the failure occurred are no longer around for
analysis. So ABSTRIPS relies heavily on being able to
produce good plans at the highest level.

This requirement has led to two modifications to
the search algorithm originally employed by STRIPS.
The first is an alteration of the evaluation function
used to select which node in the search tree to expand
next. STRIPS emphasizes the estimated cost of achiev-
ing the goal from the given node and deemphasizes the
cost of arriving at the node from the initial state.
Thus, it has a tendency to find a slightly longer plan
quickly, rather than the cheapest plan more slowly.
But each extra step in a high abstraction space is
likely to lead to many extra steps in the corresponding
plan in the problem space. Thus, for ABSTRIPS, the
evaluation function has itself been made a function of
the level of abstraction. At the highest level, AB-
STRIPS gives equal weight to the cost of reaching a
given node and to the estimated cost of reaching the
goal from that node. This evaluation function changes

416

incrementally as the level of abstraction decreases,
until it reaches the old STRIPS function at the level
of the problem space.

The second modification involves postponing the
selection of one among several equivalent instances of
a relevant operator. During the process of selecting
relevant operators to reduce a particular difference,

a partial instantiation of the operators' parameters
may occur. For example, if the difference were that

the robot was not in Room 3, then the operator "Go
through a door into a room" might be selected and in-
stantiated to "Go through a door into Room 3." The pre-
conditions of this operator would then be analyzed by
the theorem prover to determine which door to choose.

If several choices seem equally good to STRIPS (3,e,,
the states in which the various choices can be applied
are equally difficult to reach), then it would arbitrar-
ily pick a door.

For ABSTRIPS, alternative instantiations in an ab-
straction space might appear equivalent, and yet one
choice might be substantially superior when further de-
tails are considered. So ABSTRIPS defers its decision
when more than one equivalent "best choice" of a rele-
vant operator is found. The partially instantiated
relevant operator (e.g., "Go through a door into Room 3")
is used in planning. When subsequent analysis in a
lower abstraction space reveals a preferred instantia-
tion, that instantiation is then chosen. If this selec-
tion should eventually lead to failure, the other in-
stantiations can still be chosen through the backtrack-
ing mechanism.

In summary, hierarchical planning using abstraction
spaces in a "length-first" search technique postpones
extending the search tree through the levels concerned
with the detailed preconditions of an operator until it
knows that doing so will be highly effectual in reaching
the goal (because the operator lies along an almost cer-
tainly successful path). By avoiding work on fruitless
branches of the search tree, the technique achieves sig-
nificant efficiencies in the formulation of complex
plans.

V__Examples of ABSTRIPS' Performance

To clarify the issues raised and the way in which
the ABSTRIPS system works, the system's performance is
traced through some examples below. The ABSTRIPS sys-
tem consists of some 370 BBN-LISP functions, which run
as compiled code on a PDP-10 computer. All the examples
presented were drawn from the environment of the Stan-
ford Research Institute mobile robot. The domain con-
sists of seven rooms interconnected by doorways. Oper-
ators have been defined that model the robot's ability
to navigate to any object or location within a room, to
push boxes within a room or through a doorway, to navi-
gate through a doorway, to block a doorway using a box,
and to unblock a doorway. In addition, fictitious oper-
ators have been defined to model the opening and closing
of doors; these actions are beyond the robot's capabili-
ties. In all, 167 predicate calculus wffs have been de-
fined as axioms to model the robot domain.

The definition of the domain is essentially iden-
tical to the one used for the examples in the latest
report on the STRIPS system.?

Definition of Abstraction Spaces

To enable the system to assign criticality values
properly to the literals of the preconditicns of the
oparators, two additional axioms, representing laws
about the world, were included in the world model:

¥x. PUSHABLE(x} D TYPE(x,0BJECT)
and
¥x. STATUS(x,CLOSBED) =-STATUS(x,0PEN)

The eriticality determinaotion algorithm required
approximately [ive minutes of running time,
ing ocperator descriptions are listed helow, The number
in braces preceding each literal in the preconditlion
wita representé the criticality ol the literal. The
literal will appear i{h the preconditicn in ahestraction
spaces of criticality less than or equal to the number
in braces.

GOTOB{bx) Go to object bx.

Preconditions: {8 |TYPE({bx ,0BJECT),
(Erx) [{5}INROOM(Bx, 72) A
{5}1XROOM (ROBOT, rx)]
Deletions: At{ROBOT,$1,$2),NEXTTC(ROBOT,$1}

Additions: *NEXTTO(ROBOT,bx)
GOTOD(dx) Go to door dx,
Preconditions: [6 ITYPE{dx,DOOR) , (Erx)(Ery)
[{5 INROOM(ROBOT, Fx) A
{8 JoONNRCTS (dx, rx, vy}]
At (ROBOT,$1,$2) ,NEXTTO (ROBOT, $1}
*NEXTTO(ROBOT, dx)

Deletions;
Additions:

GOTOL(x,y) Go to coordinate location (x,¥)

Precobditions: (Erx)i |5 JINROOM(ROBOT,rx) A
{6 JLoCTNROOM(x, ¥ ,7X) |
Deletions: At(HOROT,$1,$2),REXTTO{ROBOT,$1)
Additions: *At(ROBOT,x,¥)
PUSHE{(bx ,by] Push bx tu objeet by
Preconditiona: {G]TYPE(by.OBJECT),{B]PUSHABLE(bx),
{1 }NEXTTO(ROBOT, bx) ,
CErx) ({5} INROOM{bx , rx) A
{s}1vrOOM(by, %) A {5} INROOM(ROBOT, rx)]
Deletions: At{ROBOT,$1,%2),NEXTTO(ROBOT,$1), .
At(bx,$1,%$2) NEXTTO(bx,$1) ,NEXTTO($1,bx}
Additiors: *NEXTTO(by,bx),*NEXTTO(bx,by),

NEXTTO (ROBOT, bx)

PUSHD{bx,dx) Push bx to door dx

Preconditions: {6)PUSHABLE(bx),{6}TYPE(dx,Door),
{1 INEXTTO (ROBOT , bx}
(Exx) (Ery)[{5} INROOM(ROBOT, rx) A
{5)INROOM(bx, %) A {8 JCONNECTS (dx,T%,7y)]
Deletiona: At({ROBOT,$1,$2),NEXTTC(ROROT,51),

At(bx,$1,%$2) ,NEXTTO(bx,§1) ,NEXTTO{81 ,bx}

Additions: *NEXTTO(bx,dx),NEXTTCO(ROBOT,bx)

*The sddition clauses preceded by an ssterisk are the
Primary additions of the cperator. ¥hen STRIFS or
ARSTRIPS searches for a relevant operator, it consid-
era only primary addition clauses,

The result-

417

PUSHL(b%,x,y): Push bx to coordinate loecation (X,y)

Preconditions: {GIPUSHABLE(bx),[I}NEXTTO(RDBOT,bx).
(Erx) [{5 JINROCM (ROBOT , »x) A
{5} 1NROOM (b, #2) A {BILOCINROOM (x,¥,rx)]
Deletions: At(ROBOT,$1,%$2),NEXTTO(ROBOT,$1)

At{bx $1,$2) NEXTTO(bx ,$1) ,NEXTTO{%1,bx}
Additions: *At(bx,x,¥),NEXTTO{RCBOT,bx)

GOTHRUDR(dx,rx); Go through door dx into room rx

Preconditions: {6 }TYPE(dx,DOOR),{6}TYPE(rx,ROOM},
{2}5TATUS (dx, OPEN),
(Ery) [{5} INROOM(ROBOT , Ty) A
{6]oonnEcTs (ax, vy, rx)]
Deletions: At(ROBOT,$1,$2),NEXTTO({ROBOT,$1),

INROGM (ROBOT , $1)
Additions; *INROOM(ROBOT,rx)
PUSHTHRUDR (bx ,dx,rx): Push bx through door dx into
rogl 'K
{6]PUSHABLE (bx), {6 } TYPE (dx , DOOR) ,
{6 }7YPE(rx ,RDOM) , { 2} STATUS (dx ,OPEN) ,
{1 ¥EXTTO(bx ,dx), {1 JNEXTTO(ROBOT , bx) ,
(eey)[{5} INROOM(bx, ry) A
{ 5} INROOM (ROBOT, #¥) A
{6 }CONNEQTS (dx,ry, rx) |

Preconditions:

Deletions: At(ROBOT,%1,%$2),NEXTTC(ROBOT,$1),
At{bx,$1,$2) NEXTTO(bx,$1),NEXTTO($1,bx),
INROOM (ROBOT, $1), INROOM(bx, $1)

Additions: *INROOM(bx,rx},INROCM{ROBOT,Tx),
NEXTTO(ROBOT, bx)

OPEN(dx): Open door dx

Preconditions: {6 ITYPE(dx,DoOR), {5}STATUS (dx,CLOSED),

{5]REXTTO (ROBOT ,dx)

Deletions; STATUG{dx,CLOSED)

Additions: *STATUS{dx,0PEN)

CLOSE(dx): <Close door dx

6}TYPE(dx ,DOOR) , {5 |STATUS (dx,OPEN) ,
{5 INEXTTO(ROBOT, dx)
STATUS {dx , OPEN)
#8TATUS(dx ,CLOBED)

Preconditions:

Deletions:
Additions:

A Detailed Sample Problem

Figure 2 depicts the initial model that was defined
for this problem. The robot is im RHoom RRIL. The door
between RRIL apnd RCLK is clesed. BOX1 and BOXZ are
both in RPDP., The problew is for the system to plan to
achieve n state in which the two boxes are next to one
ancthey and the robot 1is in Room RUNI, as in Filigure 3,
The goal wif for this problem is: NEXTTO{BOX1,BOXZ) A
INROOM (ROBOT ,RUNI) .

STRIPS was able to solve this problem without using
pbriraction spaces, However, its solution reguired the
exploration of 119 nodes in the search tree, only 23 of
which were on the successful path.
toock over 30 minutes of computer time,
plcts the search tree.

This expleoration
Figure 4(a) de-

ABSTRIPS first pxamined the problem jin an sbstrac-
tion space in which the only precondition elauses cone
sidered were thome whose truth value could never he
altered by the robot. The difference between the ini-
tial state and the goal state was computed. The differ-
ence wag the goel wff itself, Five relevant operator

RUNI RMYS RRAM
DMYSAAM
DUNINYS DRAMHAL RHAL
DMYSPDP " DRAMCLK
Box1 || PMYSCLK u ROBOT
0 DCLKRIL %
RPDP
DPDPCLK ARIL
BOX3
TA-T405M -6
FIGURE ? INITIAL STATE FOR THE SAMPLE PROBLEM

instances were computed. The first of these, PUSHB
(B0OX2.B0X1), was examined. Its precondition wff in
this abstraction space was true in the initial state;
BO the operator was applied. This resulted in a new
state in which the robot, BOX7, and BOX2 were next to
each other. The difference between this state and the
goal state was computed and found to be INROOM(ROBOT,
RUNI). Two relevant operator instances were found, and
the first, GOTHRUDR(Parl2,RUNI), was examined. (Parl2
is an uninstantiated parameter.) Its precondition wff
in this abstraction space, TYPE(RUNILROOM) A TYPE
(Parl2,DOOR> A(Ery)CONNECTS(Parl2,ry,RUNI), was satis-
fied when Parl2 was instantiated to DUNIMYS. So
GUTHRUDR(DUNIMYS,RUNI) was applied, and this generated
a state ir which the goal wff was true. Figure 4(b)
depicts the search tree in the highest abstraction
space. The positioning of the nodes suggests the cor-
respondence to the nodes in the STRIPS search tree.

A skeleton plan was built consisting of the nodes
at which the two operators were applied. The plan was:

PUSHB(BOX2,BOX1); GOTHRUDR(DUNIMYS,RUNI)

Planning then began in the space of criticality 5.

The first subgoal was the precondition wff in this
abstraction space of the first operator, PUSHB(BOX1,
B0X2). The difference between the initial state and
the one in which the wff was true was INROOM(ROBOT,
RPDP). Operator instances relevant to reducing this
difference were GOTHRUDR(Parl7,RPDP) and PUSHTHRUDR
(ROBOT,Par20,RPDP). The precondition wff of the first
was tested, but it was not completely satisfied. There
were still differences INROOM(ROBOT,HMYS) or INROOM
(ROBOT,RCUC) before GOTHRUDR(Parl7,RPDP) could be ap-
plied (i.e., the robot was not yet in a room adjoining
RPDP). The PUSHTHRUDR operator was completely inappli-
cable because the robot is not a pushable object.

Then ABSTRIPS tried to reduce the differences that
would render GOTHRUDR(Parl7,RPDP) applicable. Four
relevant operators were found. The first was GOTKRUDR
(Par22,RMYS), and its precondition wff was not satisfied

{RUNI

©

lroeoT
DUNIMYS

DMYSPOP
—o

DMYSCLK

RMYS RRAM

DMYSRAM
DRAMHAL RHAL

CRAMCLE

L

DCLKRIL

APDP npopCLK
IBOX1

BOX3
5%z H ROLK [

FIGURE 3

RRIL

TA-10EM-7

A STATE IN WHICH THE GOAL QOF THE
SAMPLE PROBLEM 1S SATISFIED

either (the robot was not in a room adjoining RMYS).
The second relevant operator was GOTHRUDR(Par22,RCLK),
and its precondition wff was satisfied when Par22 was
instantiated to DCLKRIL. So GOTHRUDR(DCLKRIL,RCLK) was

applied, producing a state in which GOTKRUDR(DPDPCLK,

RPDP) was applicable. That operator was applied, pro-
ducing a state in which the initial subgoal, the pre-
condition wff of PUSHB(B0X2,B0OX1), was true. The PUSHB

operator was then applied.

Then a new subgoal was set up,
ditions of GOTHRUDR(DUNIMYS,RUNI)
true. The difference between the current state and
subgoal state was INROOM(ROBOT,RMYS). GOTHRUDR(Par27,
RMYS) was selected as a relevant operator, and its pre-
conditions were satisfied when Par27 was bound to
DMVSPDP. So GOTHRUDR(DMYSPDP,RMYS) was applied, pro-
ducing a state in which the subgoal was satisfied. The
operator associated with this subgoal, GOTHRUDR(DUNIMYS,
RUNI), was applied, and the goal state was again reached.
Figure 4(c) shows the search trees this space.

in which the precon-
in this space were
the

in

The following new skeleton plan was built up:
GOTHRUDR(DCXKRIL,RCLK); GOTHRUDR(DPDPCLK,RPDP); PUSHB
(B0X2.BOX1); GOTHRUDR(DMYSPDP,RMYS);GOTHRUDR(DUNIMYS,
RUNI). The planning process was then reinvoked in an
abstraction space of criticality 2.

The first subgoal, the precondition wff of the first
step in the skeleton plan, GOTHRUDR(DCLKRIL,RCLK), was
not satisfied in the initial model. The difference was
STATUS(DCLKRIL,OPEN). An analysis showed that it could
be eliminated by applying GOTOD(DCLKRIL) and then OPEN
(DCLKRIL). This resulted in a state that satisfied the
first subgoal. So GOTHRUDR(DCLKRIL,RCLK) was applied.

Each of the remaining subgoals of the process In
this abstraction space were immediately satisflable,
and so each step of the skeleton plan was applied in
turn, resulting in a state in which the original goal
was satisfied. The skeleton plan produced was GOTOD
(DCUCRIL); OPEN(DCUCRIL), followed by all the steps of
the previous skeleton plan. Figure 4(d) shows the
search trees in this space.

-

{a) STRIPS SEARCH TREE FOR THE SAMPLE PROBLEM

~
|

{c} ABSTRIPS SEARCH TREES
IN THE SPACE OF
CRITICALITY B

FIGURE 4 SEARCH TREES

Finally, planning took place in the ground space,
the space including literals of criticality 1. The
first three steps of the skeleton plan were applied in
turn. But the preconditions of GOTHRUDR(DPDPCLKRPDP)
were not satisfiable in a state in which the robot had
just come through DCIKRIL. The difference was NEXTTO
(ROBOT,DPDPCUC). and analysis indicated that it could
be eliminated by applying GOTOD(DPDPCLK), enabling
GOTHRUDH(DPDPCIC,RPDP) to be applied.

The next subgoal, the preconditions of PUSHB(BOX2,
BOXI), was not satisfied at this point. The difference
was NEXTTO(ROBOT,BOX2), which could be eliminated by an
application of the first relevant operator selected,
GOTOB(BOX2). After POSHB(B0X2,B0OX1) was applied, the
next two subgoals failed because the robot was not next
to the appropriate door. An analysis similar to the
one that occurred with DPDPCIX was performed, enabling
ABSTRIPS to finish the plan with an operator to go to
and an operator to go through DMYSPDP and DUNIMYS.

{d} ABSTRIPS SEARCH TREES
IN THE SPACE OF
CRITICALITY 4

{b) ABSTRIPS SEARCH TREE IN THE S$PACE OF

CRITICALITY B

.\‘

. }..?mh.._»“[

.
ABSTRIPS SEARCH TREES
IN THE PROBLEM SPACE

TA-T40824-8

{e)

FOR THE SAMPLE PROBLEM

Note that the planning in this space is Just as if
STRIPS were given seven small problems to solve consec-
utively, without the benefit of MACROPS. The search
trees for the ground space are shown in Figure 4(e).
The entire planning process for ABSTRIPS produced 60
nodes, 54 of which were on the successful path in one
space or another. This process required 5:28 of com-
puter time. This is less than one-fifth of the time
required by the nonhierarchical STRIPS.

Other ExampleB

The set of tasks from the most recent report on
STRIPS® was run on ABSTRIPS. The running times and the
search trees are compared with those from the STRIPS
system in Table 1. Figure 5 plots the planning time as
a function of plan length for STRIPS and ABSTRIPS on an
extended set of problems from the robot domain.

Table 1

COMPARISON OF PLANNING TIMES AND SEARCH TREES

Froblem 1 Problem 2 Problem 3 Problem 4 Problem 5

ABSTRIPS
Time to find plan {(minutes) 1:54 2355 2:24 2:30 B:dl
Total nodes in search irees 25 34 ao 33 63
--by spaces® 5,5,5,10 5,7,7,15 3,4,11,12 5,7,7,14 5,17,16,28
Nodea on solution path 24 32 2R 32 54
--by epnces* 5,5,5,8 5,7,7,13 1,4,10,11 5,7,7,13 5,11,15,23
Operators in plan 4 [+ 5 8 11
BETRIPS
Time to find plan (minutes) 1:40 Srdd d:34 9:47 > 20:007T
Total nodes in search troe 10 a3 2z 51 -
Nodes on selutien path 2 13 11 15 --
Operators in plan 4 € 5 7 —

STRIPE with MACROFs

Time to find plan (minutes) 1:40 2:06 5:18 3;00 5:49
Total nodes in search tree 10 o 14 2] 14
Nodes on solution path 9] k] g 14
Operators iu plan 4 8 5 6 11

*
The number of nodes {rom the search Lree in each space, from the one of highest eriticality
to the problem space itself.

1~
STRIP5 had not solved Problem 5 after 20 minutes,

\l Further Implications oi the Use

i I I | il 1 I I | of Abstraction Spaces in Planning
28 [~ == =G5TRIPS H
§ — ABSTRIPS !,_ This paper has shown how the representation of a
E / problem domain as a hierarchy of abstraction spaces
E 24 - J] dramatically improved the performance of a problem
i -] — solver. This section briefly considers the implications
7 of such a hierarchical representation for some other
z 20 ~ - .))
S 7 problem areas in robotics and problem solving.
o — ! I
g 16 - - / - Learning Task-Specific Knowledge
E /
11} B !] General-purpose problem solvers have tended to be
g 12 / - weak problem solvers. Because the heuristics they use
8 / to guide the search through the problem space must be
E generally applicable, they are not especially powerful
8 in any particular task domain. On the other hand, spe-
E cial purpose programs to solve problems in a particular
"] domain have been notably successful. The HEURISTIC DEN-
E 4 DRAL programg and the game playing programs display far
more problem-Solving power in their particular domains
of competence than a general purpose problem solver
0 could muster. This competence is derived to a large
0 2 4 6 8 10 degree from the great amount of task-specific knowledge
NUMBER OF OPERATORS IN THE PLAN that has been incorporated into their search heuristics.
TA-TAQG24-8

Unfortunately, while these special purpose programs
display intelligent behavior within their limited domain,
they are worth little in any other domain. Can a more
generally intelligent system be constructed that, when
presented with task-specific knowledge (basic to which

FIGURE 5 PLANNING TIME AS A FUNCTION
OF PLAN LENGTH '

420

is the description of incor-

porate that knowledge

the problem domain),
into

can
its search heuristics?

The process of automated definition of abstraction
space offers a possible approach. By applying a general
purpose problem solver to a particular domain in the
most general manner described in Section 111, a task-
specific detail hierarchy can be built up. The ability
of a system to discriminate important considerations
from mere details is an important aspect of task-
specific knowledge.

A further
facility for
space

aspect of
negotiating
that are easily traversible.
representation framework, easily

respond to subproblems of achieving details,
more critical aspects of a problem have been solved.

task-specific knowledge is the
those areas of the search

in the hierarchical
traversible areas cor-
once the

The AIiISTRIPS system determines that a Riven
is a detail when

literal
nlan to achieve a
state in which it plan can be saved
as a MACROP, to be used as the first-choice relevent
operator whenever the detail needs to be achieved. The
relatively small number of MACROPs in this way,
when added to the set of basic operators, constitute a

it has built a small

is true. That small

lormed

basic body of knowledge about how to solve problems in

a particular task domain.

Planning with Multiple Outcome Operators

The use of a hierarchical
greatly simplify

representation can

the process of creating conditional
plans, plans with information gathering operators, and
plans with loops. This is because the outcomes of these
operators are uncertain only to a particular level of
detail. Thus, in a higher abstraction space a simple
specification can adequately model the preconditions
and effects of the operators, although some of the ef-
fects may have to be described in terms of uninstanti-
ated parameters. A drawback to this approach is that,
as noted in Section Ill, the mapping of plans among
spaces becomes difficult when the effects of operators
are abstracted, Nevertheless, the simplicity of repre-
sentation of these rather complex operators renders
this scheme attractive.

As an example, in planning to drive to the airport

to catch a plane, one would use a "Park the car" opera-
tor. Such an operator might have the effect of "If Lot
A is not full, park inside Lot A. Else if Lot B is not
full, park inside Lot B. Else drive around, and then
park the car." If one plans at a high level of abstrac-
tion to drive to the airport, he does not consider the

"Park the car" operator in its full complexity. Rather,
he considers an image of the operator in an abstraction
space in which no uncertainties exist. It might have
the simple precondition At(Car,Airport) and might cause
the clause Parked-in-lot (Car,Parameter37) to be added
to the model. Further planning could continue without
considering as separate cases states in which Parked-in-

lot(Car,Lot A) or Parked-in-lot(Car,Lot B) were true.

An Integrated Robot System

A primary motivation for building the STRIPS sys-

tem, and Its offspring ABSTRIPS, was to build plans for

421

a mobile robot. In the Stanford Research Institute
robot system, the operator descriptions are models for
actions that the robot can actually take. The actions

modeled are termed "intermediate level actions" (ILAs).
When they are executed, they invoke "low level actions"
(LLAs), which are concerned with initiating and monitor-

ing motion of the robot.
commands to, and receive
a PDP-15 computer,
itself via a radio

Those routines in turn pass
information from, a program in
which communicates with the robot
link.

The ground space as viewed by ABSTRIPS is in fact
just another abstraction space from the point of view
of plans built up from basic operations at lower levels.
The problem solver can be extended to handle success-
ively finer levels of detail until a ground space is

reached in which the only remaining details are to roll
the robot around. This offers the enticing possibility
of a fully integrated planning and execution system.

But the interaction of planning and execution would re-

quire that the plans that
fered from the traditional
lem solvers.

such a system built be dif-
form of plan built by prob-

For a system
u real

that deals with complex problems in
as opposed to a simulated one, it
desirable to solve an entire problem with an epistemo-
logically adequate plan. too many reasonably
likely outcomes for each real-world operation. The num-
ber of hypothetieally possible states of the world at-
tainable by a particular plan will grow exponentially
with the length of the plan. Most of the effort of

such a system would be Spent reasoning about world
states and very little
toward its Roals.

world, is un-

There are

that would never be achieved,
of it would be spent moving the robot

It is desired that the system's planning eflorts
focus on reasoning about states of the world that are
likely to be traversed in the course of robot execution.
Thus, the overall planning should be roughed out in an
abstraction space that ignores enough levels of detail
so that the rough plan is fairly certain to succeed.

A few steps of the plan can be used as a skeleton,
to which more detailed steps are added in a manner sim-
ilar to ABSTRIPS. These new steps are fairly certain
to succeed at the level of detail to which they are
specified. Even more detailed steps can be filled in
for the beginning portion of this subplan, and the
process can continue until a short subplun of low-level
robot commands is built. These can be executed in se-
quence. Any deviations between the actual state of the
world and the hypothesized results of the subplan will
hopefully be mere details to the space that is an ab-
straction of the robot commands. Thus, the remaining
steps of the plan in this space, as well as all higher
spaces, are still on the solution path.

Further building and extending of the various sub-
plans can then take place, including a new bottom-level
subplan to move the robot. This subplan will accurately
reflect the precise results of previous execution, and
so it will be fully appropriate for achieving the ulti-
mate goal. The process of alternatively adding detailed
steps to the plan and then actually executing some
steps can continue until the goal is achieved.

If a grievous failure occurB at some point in exe-

cution and nondetalls in higher models no longer reflect
state of the world, subplans at affected

levels of detail can propagate the failure up to an

the actual

abstraction space in which the deviation from the pre-
dicted world model was a detail. Replanning can be
initiated from this level of abstraction, thus reusing
the results of as much as possible of the previous
planning.

Therefore, by using a hierarchy of abstraction
spaces to mask uncertainties
of planned operations,
planning and executing system can be created.
ing with a hierarchy of short, simple plans,
system will be able to cope effectively with truly com-
plex problems.

in the real world effects

an effectively integrated robot
By deal-

such a

Acknowledgements

The author is indebted to Richard Fikes, Peter
Hart, and Nils Nilsson for their enthusiastic encour-
agement and intellectual support. The research re-
ported in this paper was supported by the Advanced
Research Projects Agency of the Department of Defense
under Contract DAHCO04-72-C-0008 with the U.S. Amy Re-
search Office.

References

1. R. E. Fikes and N. J. Nilsson, "STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving," Artificial Intelligence, Vol. 2,
Nos. 3/4, pp. 189-208 (1971).

2. R. E. Fikes, P. E. Hart, and N. J. Nilsson,
ing and Executing Generalized Robot Plans,” Artifi-
cial Intelligence, Vol. 3, pp. 251-288 (1972).

"Learn-

3. G. Ernst and A. Newell, GPS; A Case Study in Gen-
erality and Problem Solving, AOM Monograph Series
(Academic Press, New York, New York, 1969).

4. J. McCarthy and P. Hayes, "Some Philosophical Prob-
lems from the Standpoint of Artificial Intelli-
gence,” in Machine Intelligence 4, B. Meltzer and
D. Michie, eds., pp. 463-502 (American Elsevier
Publishing Company, New York, New York, 1969.

5. G. Polya, How to Solve It, p. 8 (Princeton Univer-
sity Press, Princeton, New Jersey, 1945).

6. A. Newell, J. C. Shaw, and H. A. Simon, "Report on
a General Problem Solving Program," Proceedings of
the International Conference on Information Process-
ing, UNBSCO, Paris, pp. 256-264 (1960),

7. M. D. Kelly, "Edge Detection in Pictures by Com-
puter Using Planning,"” in Machine Intelligence 6,
B. Meltzer and D. Michie, eds., pp. 397-409 (Amer-
ican Elsevier Publishing Company, New York, New
York, 1971).

8. C, Hewitt, "Description and Theoretical Analysis
(Using Schemata) of PLANNER: A Language for Proving
Theorems and Manipulating Models in a Robot,” Ph.D.

422

9,

Thesis, Department of Mathematics, Massachusetts
Institute of Technology, Cambridge, Massachusetts
(1972).

B. Buchanan, G. Sutherland, and E. Feigenbaum,
"HEURISTIC DENDRAL: A Program for Generating
Explanatory Hypotheses in Organic Chemistry," in
Machine Intelligence 4, B. Meltzer and D. Michie,
eds., pp. 209-254 (American Elsevier Publishing
Company, New York, New York, 1969.

