Session 3 Theorem Proving and
Logic; |

THE Q" ALGORITHM - A SEARCH STRATEGY FOR A

DEDUCTIVE QUESTION-ANSWERING SYSTEM

Jack Minker
Daniel H. Fishman
James R. McSkimin

The University of Maryland
Computer Science Center
College Park, Maryland 20742

Abstract

An approach for bringing semantic, as well as
syntactic, information to bear on the problem of
theorem-proving search for Question-Answering <QA) Sys-
tems is descrilsed. The approach is embodied in a
search algorithm, the 0* search algorithm, developed to
control deductive searches in an experimental system.
The Q* algorithm is part of a system, termed the Mary-
land Refutation Proof Procedure System (MRPPS), which
incorporates both the Q* algorithm, which performs the
search required to answer a ouery, and an inferential
component, which performs the logical manipulations
necessary to deduce a clause from one or two other
clauses. The inferential component includes many re-
finements of resolution.

The Q* algorithm generates nodes in the search
space, applying semantic and syntactic information to
direct the search. The use of semantics permits paths
to be terminated and fruitful paths to be explored.
The paper is restricted to a description of the use of
syntactic and semantic information in the Q* algorithm.

Keywords and Phrases: deductive system, heuristics,
problem-solving, proof procedure system, auestion-
answering, resolution, search strategies, semantic
heuristics, syntactic heuristics, theorem-proving.

1. Introduction

The purpose of this paper is to describe an
approach for bringing semantic, as well as syntactic,
information to bear on the problem of theorem-proving
search. The approach is embodied in a search
algorithm, the Q* search algorithm, developed to con-
trol the search in an experimental theorem-proving-
based question-answering system. This system, termed
the Maryland Refutation Proof Procedure System (MRPPS),
incorporates both the Q* alqorithm which performs the
search required to answer a ouery, and an inferential
component which performs the logical manipulations
necessary to deduce a clause from one or two other
clauses.

The inferential component of MRPPS provides a
variety of resolution-based inference rules. For a
given query, a user may select one, or a combination of
the following inference systems: wunrestricted binary
resolution with factoring, set-of-support, input re-
solution, Pl-deduction, A-ordering, paramodulation,
linear and SL resolution. A MRPPS user may also select
certain search options that are available in the sys-
tem.

The clauses from the negation of a given input
query and those in the MRPPS data base together with
the selected inference system define a search space

31

which is a directed graph whose nodes (states) are
(labeled by) clauses. The initial states are nodes
labeled bv clauses from the negation of the query, and
a goal state is a node labeled by the null clause, o .

The Q* algorithm generates nodes in the search
space, applying semantic and syntactic information to
direct and limit the search. This paper is restricted
to a discussion of the Q* algorithm. For a detailed
description of the algorithm and of the entire MRPPS
system, see Minker, et al. [1972].1 An overview of
MRPPS and of its infergntial component may be found in
Minker, et al. [1973].

The Q* algorithm has been developed for eventual
use in a question-answering system of practical scale.
Such a system would have a "large" number of axioms
stored in its data base. A substantial majority of
these axioms would be fully instantiated unit clauses,
termed "data axioms." The remaining axioms, called
"general axioms," define the predicates used and their
interrelationships. One would want such a system to
be very restrictive in permitting axioms to enter the
search, in order to limit the number of I/O accesses
to the data base as well as to avoid clause inter-
action and memory clutter. In addition, one would
want to be able to answer simple questions simply.
effective theorem-proving search algorithm for a
guestion-answering system should generate the search
space by: (1) selecting only those axioms from the
data base that are relevant to the query, such that
the "more premising" ones enter the search first; and
(2) deducing clauses from clauses already generated
in as optimal an order as possible.

An

Both of these problems are handled in the Q*
algorithm. The algorithm is subdivided into two dis-
tinct but cooperating subalgprithms: the base clause
selection algorithm which handles the first problem,
and the deduction algorithm which handles the second
problem. The base clause algorithm uses primarily
semantic information, while the deduction algorithm
uses primarily syntactic information.

Before discussing the algorithm, we review some
of the background which precedes the present work and
upon which this work has been based.

2, Background

There has been a great deal of research in mech-
anical theorem-proving since the resolution principle
was introduced by Robinson [1965]. Most of the re-
search has been centered on developing refinements of
resolution which reduce the size of the search space.
However, relatively little work has been reported in

developing improved search strategies or using seman-
tics for theorem-proving systems. (We have recently
learned that Reiter [1972]" is attempting to incorporate
semantics with a theorem prover by the use of models.)
Resolution theorem-proving programs typically use the
unit preference search strategy, developed by Vtos, et
al. [1964]? in which the merit of a clause in the
search is based on its length. While this is a useful
strategy for proving simple theorems, it is not nearly
powerful enough to successfully guide a search for
even moderately deep mathematical proofs. Furthermore,
it is not adequate for use in question-answering
applications which consist largely of unit clauses,
since it gives preference to ail unit clauses without
regard to their relevance to the query.

Green [1969]° in considering the application of
theorem-proving in question-answering systems, parti-
tioned clauses into two sets, active and passive. Ac-
tive clauses are inferred clauses and axioms selected
from the data base, whereas passive clauses are axioms
which have not yet been selected. Only active clauses
may be used in inferences. A passive clause is made
active only if it resolves with an existing active
clause; preference is given to passive unit clauses.
Green incorporated this search approach with the unit
preference strategy in the QA3 system which employs,
essentially, set-of-support as its inference system.

Kowalski [1970a,1970b]"®Separates the notions of
an inference system and a search strategy and describes
their respective roles in the theorem-proving search
problem. In addition, he defines a class of "upwards
diagonal" search strategies which may be applied to
arbitrary problem domains. These strategies simul-
taneously extend and refine the class of search stra-
tegies, which includes the A* algorithm described by
Hart, Nilsson and Raphael [1968]° Kowalski also pre-
sents a particular upwards diagonal search algorithm,
which he calls the J algorithm. In the J* algorithm,
the passive/active clause concept is employed. In
addition, the algorithm employs a clause merit evalua-
tion function in which both the length and level of a
clause are considered. Upwards diagonal search stra-
tegies could also be defined using heuristics other

than length and level (see Minker, et al. [1972])
In the 2 algorithm, the merit f(C) of clause

C is a tuple, (i,j) , in which i = length(c) , and

j = level(C) Kowalski defines an ordering on this

merit function which he terms "upwards diagonal merit,"

denoted by the symbol u Given clauses Cy of
merit (i, ,j1) and C, of merit (i2,j2) tnen
Ciy £ucC, (l.e., C, is of better or equal upwards
diagonal merit than C,) if

(i) iy + jy < iag+jo, or

(i) i+ jo =iz2+j2 and iy < i, .
Thus, if the length and level of two clauses sum to
the same value, it is better to generate the shorter
clause, since the goal of the search strategy is to

generate a clause of length zero. It is thus advan-
tageous to discriminate between clauses in this manner
rather than solely on the basis of the sum of the
merit components, as is done in earlier search al-
gorithms such as the A* algorithm (Hart, et al.

[1968] P.

Based on this merit function,
the search space into merit sets, called A-sets, into
which clauses of equal merit are generated. The J*
algorithm generates clauses into these merit sets in
increasing upwards diagonal order, It first tries to
generate a clause into A(0,0) which would be possible

Kowalski partitions

32

only if the null clause were in the starting set of
base clauses. It then successively attempts to gen-

erate (by selecting a clause from the base set, or by
inference) clauses into the sets A(0,1) , A(1,0) ,
A(0,2) , A{1,1) , A(2,0) , A(0,3) , etc. Any time a

clause is generated, an attempt is made to recursively
generate all of its successors and successors of its
successors which are of better merit than the current
merit to which the algorithm has sequenced.

*

r

While the above description of the [/ algorithm
is necessarily terse, the reader is referred to
Kowalski [1970a, 1970b],”'®and to Minker, et al.
[1972, 1973]"'%*for more detailed discussions.

3. A View of Resolution Theorem-Proving Search
as Problem-Reduction Search

Before describing the operation of the Q* al-
gorithm, it will be useful to describe how resolution
theorem-proving search may be interpreted as problem-
reduction search. In a problem-reduction search, an
operator is applied to a problem P to reduce it to a
set of subproblems such that solution of all the
successor subproblems implies a solution to P .
Equivalently, the conjunction of these subproblems may
be considered a new problem which must be solved for
the given problem to be solved. This reduction pro-
cess is recursively applied to each generated subprob-
lem until the original problem has been reduced to a
set of primitive subproblems which are trivial to
solve.

Moreprecisely, a problem-reduction consists of

three sets:
(1) a set of starting problems;
(2) a set of operators that reduce a problem to
a set of subproblems; and,
(3) a set of final problems which are, by
definition, solved.

In the context of resolution theorem-proving, a
clause corresponds to a problem and a literal corres-
ponds to a subproblem. Thus, a clause is a conjunc-
tion of subproblems since all subproblems must be
solved for the problem to be solved (i.e., all lit-
erals must be eliminated).

The starting set of problems corresponds to a
starting set of base clauses. The actual members of
this set will depend upon the inference system being
used. For instance, if the inference system is set-
of-support, or if it includes set-of-support, the
starting set of problems corresponds to the clauses
the negation of the cruery. For other inference sys-

tems, it consists of the entire set of base clauses,
i.e., all of the axioms together with the query
clauses.

Clauses may also be regarded as operators which
are applied to problems by means of inference rules.
However, the set of operators that may be applied will
vary depending on the inference rule used, e.g., fac-

toring, paramodulation, and various refinements of re-
solution. For a resolution operation, two clauses are
involved. In general, the choice of which clause is
the problem and which is the operator is somewhat
arbitrary. However, for certain inference systems, it
seems natural to make a clearer distinction between
the two. For instance, if input resolution is used,

each clause of a linear chain may be regarded as a
problem and all base clauses may be regarded as oper-
ators. For linear and SL resolution, ancestors of a
problem may also be considered as operators, in
addition to all the base clauses.

A clause may also be a final problem. In parti-
cular, the null clause is the only such clause when
one is attempting to refute a conjecture. Thus, when
a null clause is generated, we know that a starting
problem has been solved. Determining when a subprob-
lem is solved is more difficult. This may be seen by
considering the process involved in solving a subprob-
lem. A subproblem P (which corresponds to a literal
in a clause), may be solved in either of two wavs:

1) it may be solved in a single step bv applving an
operator that refutes it (a unit clause); 2) alter-
nately, an operator may be applied to P that spawns
a set of subproblems such that P is solved if and
only if all of the subproblems are solved. In prac-
tice, the determination of when a given subproblem has
been solved may be quite difficult. Depending on the
inference system used, subproblems are attacked in
arbitrary order. Consequently, the bookkeeping re-
quired to keep track of which literals of a given
clause have been spawned by which subproblems may be
quite involved.

However, one inference system, SL resolution
{Kowalski and Kuehner [1971]},10 stands out as being
particularly well suited for this task. In the first
place, SL resolution requires that only one subproblem
be attempted at a given level. Secondly, the required
bookkeeping is built into the clause representation
used in SL resolution. In this representation, a
clause is referred to as a chain. In SL resolution, a
subproblem to which a solution is sought is actually
carried along (and duly tagged) in each of the success-
or chains. Such literals are called "A literals" in
the successor clauses. As new literals (called "B lit-
erals") are introduced in the attempt to solve a sub-
problem, they are placed to the right of the A literal.
When all such B literals have been resolved awav (re-
solution is only performed on rightmost B literals) and
an A literal is exposed on the right, then that con-
stitutes a solution to the subnroblem from which that
A literal descended. At this time, SL resolution re-
quires that the exposed A literal be removed from the
clause - an operation which is called truncation.

Only at this time, (and not before as with other re-
finements of resolution) may a new subproblem from the
original problem be selected for solution.

4. The Q* Algorithm

The Q* algorithm is based upon the / algorithm
of Kowalski together with the idea of Green to allow
only certain base clauses to enter the active clause
space. Both of these approaches have been extended in
the current algorithm. The Q* algorithm is subdivided
into two major components:

1) the deduction algorithm which uses primarily
syntactic information; and,

2) the base clause selection algorithm which
uses primarily semantic information.

The deduction algorithm generates new problems by
the application of operators to problems already in
the search space. Any operator that is applied must
itself have been previously generated either bv infer-
ence or by the selection of a base clause.

Problems and operators are generated bv two major
subalgorithms, FILL and RECURSE, which are adaptations
of analogous subalgorithms of the £ algorithm. As a
clause is generated, it is placed into an A-set corres-
ponding to its merit. The algorithm uses a generalized
upwards diagonal merit function to calculate the merit
of a clause, and generates clauses in approximately
upwards diagonal order. (Further details on this
function as well as on the deduction algorithm are con-

tained in Minker, et al. [1972, 1973]"2%))

In using this merit function, it is hoped that
clauses of better merit will be more useful to answer-
ing the query than those of worse merit. However, in
practice, it is extremely difficult to develop com-
nonents of the merit function that adequately reflect
the relevance of clauses with respect to the query.
Most components used to date have been syntactic in
nature, rather than semantic, and have led to very in-
efficient search strategies. (See Slagle and Farrell
[1971]"" and Minker, et al. [1972] for examples.) Con-
sequently, theorem-provers using such a search stra-
tegy are often deluged with irrelevant clauses and
thus are inadequate for most applications.

There are two ways to alleviate this problem.
First, after a problem is generated by an inference
step, various deletion rules may be applied so that
the problem may be eliminated in case it is redundant
or semantically meaningless. Thus, tautologies,
alphabetic variants and subsumed clauses may be
eliminated. Furthermore, subproblems as well as prob-
lems mav be eliminated by predicate evaluation. This
mav be done bv referencing stored semantic information
about the problem domain. For instance, let
C v F(Mary, x) be a generated problem, where C is
the remainder of the clause. If it is known that the
first argument of the father predicate must be male,
and we know that Mary is female, then the literal
F(Marv, x) will never have a solution (i.e., no unit
clause/ F{Mary, a) , can be true, for any person a).
We can thus evaluate the literal F(Mary, x) as being
true relative to the interpretation given to the prob-
lem domain and may eliminate the entire problem from
the search space since it is wunsolvable. With most
inference systems completeness should not be violated
bv deleting the clause. On the other hand, if a lit-
eral of a clause is evaluated as false, that literal
alone, mav be removed, since it corresponds to a sub-
problem that is solved.

Although predicate evaluation using semantic in-
formation about the problem domain will be useful in
theorem-proving, it does not prevent irrelevant
clauses from being generated and entered in the search
snace. We thus feel that a more effective method by
which to cut down the size of the search space is to
avoid generating irrelevant clauses in the first
place. In particular, this can be accomplished by
carefully selecting those operators that are most re-
levant to the search in progress and by inhibiting
those which are irrelevant. This is the function of
the base clause selection algorithm.

Depending on the inference system, the algorithm
treats one or all of the literals of a generated
clause as a specification with which to select axioms.
Thus, each literal is termed a "spec literal." (This
mav be viewed as the selection of operators to apply
to a subproblem.) In order to select axioms relevant
to the querv, the Q* algorithm initially generates
clauses from the negation of the query. Each spec
literal is used to Jocate those axioms which either
resolve with the generated clause on that literal,
or, in some cases, which possess a literal which will
unify with the spec literal. The axioms that have
been located for a particular spec literal may be re-
duced in number by filtering out those which are found
to be semantically inappropriate (e.g., because of in-
compatible argument types). The remaining operators
for a given subproblem then become candidates for
generation and must be ordered so that "more promis-
ing" operators are tried first. The list of candi-
dates for a spec literal is placed on a list called
the SPECLIST, which is itself ordered by using various

heuristic criteria. Thus, the ordering of the SPECLIST
reflects the judgment of the base clause algorithm as
to which subproblems from among all subproblems in all
generated clauses should be attacked first. That is,
from among all literals in all generated clauses that
are eligible for resolving, the base clause selection
strategy picks the best one.

As a result of the control maintained over the
base clauses by the base clause selection algorithm,
the FILL operation of the deduction algorithm will not,
in general, acquire all base clauses of a given FILL
merit. It obtains only those base clauses made avail-
able to it by the base clause selection algorithm. As
a result, the base clauses that are selected will not
necessarily be generated in merit order. Consenuently,
and in contrast to the J* algorithm, the Q* algorithm
is not admissible. However, as the exanples in Section
5 demonstrate, the loss of admissibility may be of
only theoretical importance since it would seem to be
more important in practical QA amplications to find anv
solution quickly rather than to find a simplest solu-
tion at great expense, at the risk of finding no solu-
tion at all because of space and time considerations.

The following sections describe the manner in
which axioms are located, the way certain of these are
filtered out, and the way those that remain are order-
ed. Section 4.4 presents a discussion of a olanned
extension of the search strategy in which the base
clause algorithm may prune the search space and delete
certain candidates from the SPBCLIST upon the recogni-
tion of certain events in the search process.

4.1 Locating Candidate Axioms

As already indicated, the literals of generated
clauses are used to locate axioms which may become
candidates for generation. The inference system that
is being used by the deduction algorithm will deter-
mine which generated clauses should be used for this
purpose, and what criterion should be applied to
select the axioms. If the inference system in use is
set-of-support, or if it incorporates set-of-support
as does SL resolution, then only the literals of
supported clauses will be used. Furthermore, the
axioms which become candidates will be those which
could resolve with the generated clause. On the other
hand, if the inference system does not include set-of-
support then all genera-ted clauses, including generat-
ed axioms, will be used to locate axioms. In addition,
the resolution criterion must be weakened, so that an
axiom will potentially become a candidate if it con-
tains a literal which unifies with a literal of a gen-
erated clause. The weakening of the resolution
criterion is necessary in order to assure the refuta-
tion completeness of the algorithm, e.g., in cases
where the only refutations for a given ouery involves
the use of a lemma, and the ouery is not used until
the lemma has been established.

Not only does the inference system dictate which
clauses are to be used in locating axioms, it also
dictates which literals should be used. Thus, in
"single literal" inference systems such as SL resolu-
tion or A-ordering, only one designated literal of
each generated clause is used, while for other infer-
ence systems, all of the literals will be used for
this purpose.

The approach to locating axioms which may enter
into the search, may, for a given query, preclude the
generation of certain axioms. That is, there may be
axioms which are completely unrelated to the ouery in
that they concern a different problem domain. But
since these are completely irrelevant to the query,

the search strategy will not be hindered from finding
a refutation if one is attainable.

4.2 Semantic Filtering of Candidate Axioms

Once the potential candidates for a given spec
literal are found, these may be subjected to semantic
filtering, and only those which are semantically con-
sistent with the spec literal and its host clause may
become candidates. This filtering may be done on the
basis of the class membership, or type, of a variable
or constant in the spec literal. For example, suppose
the generated clause literal is ~PARENT (Dan, Brett)
and it is known that Dan is a male, or the literal is
~PARENT (x, Brett) and, from context, it is known that
x corresponds to a male. Suppose further that the
two potential base clause candidates:

(1) ~FATHER(uyv) V PARENT(uyv) , and
(2) ~MOTHER (u,v) V PARENT (u,v)

were found in the data base. Applying the filter,
axiom (2) would be found semantically inconsistent
with the spec literal since the variable u in the
PARENT literal is found to be of type female from con-
text, (i.e., from its use in MOTHER literal), and
what is necessary is a PARENT literal whose first
argument is of type male. Thus, only (1) would be-
come a candidate.

A further type of filtering may also be perform-
ed. When all of the solutions to a subproblem are ex-
plicit in the data base, it becomes unnecessary to
generate any general axioms which might be used to de-
duce a solution to the subproblem. For example, let
~MOTHER(x, Emily) be a generated clause literal.
Also assume that it is known that every individual has
exactly one mother. If the axiom MoTHER(Roz, Emily)
were found in the data base, then, since this com-
pletely solves the subproblem at hand, it would be-
come the only candidate. No other axioms that could
resolve with ~MOTHER{x, Emily) would be entered to
satisfy this subproblem.

The filtering we have described can be seen to
reduce the number of axioms which are generated into
the search space. As a result, fewer clauses will be
available to interact logically and so the total num-
ber of clauses which may be generated is thereby re-
duced, clearly, the clauses of the implicit search
space which have become ungeneratable as a result of
this filtering could not have contributed to a refu-
tation so that although the search algorithm fails to
be complete (in the sense of exhaustive), it remains
refutation complete.

4.3 Ordering of Candidate Axioms and Subproblems

Once the candidate axioms have been located and
subjected to semantic filtering, they must be ordered
so that the "more promising" ones will be generated
first. As already noted, there is a two-level order-
ing that is performed: the candidates associated with
a particular spec literal must be ordered (this
corresponds to the ordering of operators to be applied
to a subproblem), and the lists of candidates for the
various spec literals are ordered with respect to one
anoth)er (this corresponds to the ordering of subprob-
lems).

In ordering the candidates for a particular spec
literal, two different approaches may be employed. In
one approach, they may be ordered according to a
Teooimendation by the user. This is analogous to the
recommendation lists in PLANNER (Hewitt, [1971])"2.
Another approach is to order candidates according to

the merit ordering, f , used by the deduction strategy,
making sure that data axioms (i.e., fully instantiated
unit clauses) precede any general axioms.

With respect to ordering the subproblems, a
heuristic guideline is applied when one or more con-
stants occur in literals of the query clauses. In
this event, the candidates located by using constant-
carrying literals of generated clauses will precede in
the ordering those candidate axioms located by the use
of general literals. The reasoning behind this heuris-
tic is that (1) constant-carrying literals will gen-
erally resolve (or unify) with fewer base clauses than
will general literals, and (2) if a query is about a
particular individual (constant), then the search
mechanism will make more informed decisions about the
relevance of candidate axioms if it concentrates on
this individual, -and to others which are found to be
related to it, rather than going off blindly on the
basis of some general literal. In many cases, the
general literal may actually unify with a large subset
of the axioms in the data base while only a few of
these may be relevant. Furthermore, by pursuing this
policy, literals which are uninstantiated at one level
of the search may become instantiated at a subsequent
level. Thus, in this approach, it will often be the
case that clues (in the form of constants) to direct
the search will be passed from one subproblem to
another as the search progresses.

Figure 1 illustrates a proof that was derived
giving preference to those literals that contain con-
stants. In Figure 1, clause (l)yields two literals
for the SPECLIST. The literal M(y, Sally) would be
given preference on this list since it contains a con-
stant. The axioms that can interact with the literal
M(y, Sally) are entered into the search before other
axioms that may apply to that_clause. Similarly, in
clause (3), the constant in H(v, Rita) gives this
literal preference. Although proofs can be found
without using this heuristic, such proofs will tend to
generate many unneeded clauses.

It is reasonable to assume that in question-
answering applications a large percentage of the
queries will contain constants. Even if constants
appear in a given literal, it may be reasonable to
give preference to a literal containing only variables
based upon a lower estimate of potential candidates
satisfying each of these literals. However, we would
expect this to happen infrequently in question-
answering systems.

There may be several subproblems (spec literals)
containing constants which must be ordered with re-
spect to one another on the SPECLIST. |In this case,
the ordering of candidate lists by their spec literals
is accomplished by using a prediction of the merit, f |,
of a resolvent between the spec literal's host clause
and the first axiom in the ordered list of candidates
from that literal. One consequence of this ordering
is that if a generated unit clause is contradicted by
a unit axiom, then this axiom surely will have become
a candidate, and it will be placed first in the order-
ing so that it will be the very next axiom to be gen-
erated. Each time an axiom is removed from the list
of candidates, the next candidate in the list is used
for a new prediction, and the corresponding SPBCLIST
entry is reinserted into an appropriate position of the
list — it may remain on top of the list, or some other
subproblem may emerge as "most promising."

In some data bases, there may be certain constants
which occur in a large number of the data axioms.
Generally, these would be non-specific, class specify-
ing types of constants such as MALE and SINGLE as used

in the data axiom.
PERSON(OHN, SMITH, ID475, MALE, FEMALE)

Since such constants do not designate particular in-
dividuals, and since they do occur throughout the data
base, thev will be of little value in directing the
search. Thus, for the purpose of ordering the
SPECLIST, spec literals containing these types of con-
stants alone are treated as general literals.

4.4 Semantic Actions During the Search

It was noted in Section 4.2 that some subproblems
may be comnletelv solved by data axioms stored in the
data base, More generally, some subproblems have an
exact number of solutions while others have an in-
definite number of solutions. If the number of solu-
tions to a given subproblem is known, then, during the
course of the search, the progress of the search rela-
tive to finding these solutions can be monitored.
When all of the solutions have been found, that por-
tion of the search graph which has been unnecessarily
generated in the attempt to find these solutions can
be pruned. In addition, the candidate axioms located
through the use of literals in the pruned clauses or
in clauses along the solution path will have their
candidate status removed. The effect of this pruning
is to reduce the number of irrelevant clauses in the
search space. Of even greater significance is that
the potential successors of these clauses are effec-
tively prevented from being generated.

The bookkeeping required to apply these semantic
actions would be quite complex when arbitrary infer-
ence systems are employed, since, for a given clause
(problem), attempts to solve all of the subpro-
blons are carried out simultaneously. However,

SL resolution is particularly well suited for this
approach, since only one subproblem is attacked at a
time and because the bookkeeping required to detect
the solution of a subproblem is built into the SL
clause representation, as noted in Section 3. Seman-
tic actions are taken when truncation occurs, since
truncation only occurs when a subproblem has been
solved. The semantic action taken is to increment a
count and test it against the number of solutions
sought. If this number is met, then pruning can be
performed.

The above approach does not require that all
solutions to a given subproblem be obtained before
progressing to another subproblem. It would seem to
be desirable, in some cases, to continue the search
for additional solutions to the subproblem, while at
the same time advancing to the next subproblem.

5. Example Runs With MRPPS

The MRPPS system incorporates a preliminary ver-
sion of the Q* algorithm plus an option for selecting
the algorithm. The current implementation of Q*
does not yet include the semantic filtering of candi-
dates, and no mechanism has been included to take
semantic actions. The current version includes the
deduction strategy as outlined, together with a base
clause selection strategy which locates and orders
axioms essentially as described. All details concern-
ing the current implementation are described in
Minker, et al. [1972]'. The implementation of the £
algorithm uses the same deduction strategy as Q*, but
the base clause selection strategy merely locates
axioms in merit order, that is to say, by length,
without regard to other clauses generated by the
search.

We present comparative statistics for two differ-
ent queries, in which set-of-support and SL resolution
were the chosen inference systems, and the merit com-
ponents were clause length and level. Clause length
and level bounds were both set at eleven, and an f
value bound (= length + level) was set at eleven. The
data base used contains 295 data axioms which expli-
citly state the (1) mother, (2) father, (3) birth date,
and (4) birthplace of individuals in terms of their
identification (i.d.) numbers, and (5) which relate
the first and last name of each individual to their
identification number. The data base also includes 88
general axioms which define the various predicates in
terms of other predicates.

Question 1. "What is the name of Brett Fishman's moth-

The significant aspects of this simple question is
that its negation in clause form is a unit clause con-
taining constants. With the data base used, it re-
quires four axioms and four levels of search to achieve
a refutation.

*

%
Both the / and Q* algorithms successfully com-
pleted the search, however as the statistics in Table
2 demonstrate, with considerably different levels of
work and resources required. Whereas the Q* algorithm
fortuitously generated the minimal number of base
clauses, the }* algorithm has to generate all axioms
of length one (i.e., all the data axioms), two, and
three and some axioms of length four before the re-
quired general axiom (of length four) was obtained.
Once this general axiom was resolved against the query
clause, the resolvent, having support, could be resolv-
ed against many of the axioms already in A-sets, and
similarly for the resolvents obtained. As a con-
sequence, many more resolvents were generated.
Furthermore, the presence of a large number of clauses
in A-sets required the use of a considerable amount of
free space to keep track of the clauses as well as a
significant increase in the search time required.

Question 2. "Is there a person who is the grandfather
on the father's side of individual 67 and the grand-
father on the mother's side of individual 7?"

The negation of the Question in clause form is:
FF(x, 67) V FM(x, 7)

where FF is the predicate "grandfather on the

father's side", and FM is the predicate "grandfather
on the mother's side." This question, which requires
six levels of search requires the following six axioms
from the set of 295 data axioms and 88 general axioms:

F(x, y) V M(y, z) v FM(x, 2z)
F(x, y) VF{y, z) VFF(x, 2)
M(4, 7), F(6, 4), F(6, 63), and F(63, 67)

Proofs were found using set-of-support and SL
resolution as the inference mechanism. The statistics
for set-of-support indicate that the Q* algorithm was
quite selective as compared to both with respect to
the number of resolvents and axioms generated. How-
ever, 0* did obtain considerably more general axioms
than actually needed.

The same question was tested using SL resolution
as the inference mechanism. The table shows statistics
for the Q* algorithm as generated by the computer, it
also shows statistics, generated by hand, for the Q*
algorithm when the semantic rule of counting the number

of possible solutions to a subproblem is used. The Q*
and 1 algorithms without the use of semantics gener-
ated the same number of inferences. However, £
brought in 381 axioms, only 6 of which were needed.
Q* when not using semantics brought in 16 axioms, only
6 of which were actually needed. Q* without semantics
performed better when using SL resolution than when
using set-of-support as the inference mechanism. The
use of semantics for Q* shows its general utility.
The number of axioms entered were 7, while only 6 were
needed for the proof. Although there is a significant
decrease in the number of axioms generated using
semantics, the one example should not be considered to
be the type of improvement that one will always
achieve using semantic considerations to restrict the
search. However, it is indicative of the use of
semantics. The trace of clauses generated by SL re-
solution and the proof are shown in Figure 2.

6. Summary

We have described a search strategy for theorem-
oroving which uses both svntactic and semantic infor-
mation to direct the search in a Question-Answering
System. Most theorem-proving systems have used
primarily syntactic information such as clause level
and clause length to direct the search. Others have
attempted to use only refinements of resolution with a
breadth-first search or an ad hoc use of heuristic
rules. Experience with such systems may have led some
to speculate that means other than theorem-proving
must be developed to perform deduction in question-
answering, or in other problems (e.g., Anderson and
Hayes [1972])"® The reason for this skepticism of
theorem-proving may stem from the inadequacy of search
strategies to limit the search to a "reasonable" num-
ber of nodes in finding proofs. We agree that the use
of only logical rules and syntactic heuristics will
not be sufficient for most systems. However, it is
our hope that the introduction of semantic information
to aid in directing the search will be useful.

We have tried to show where semantic information
may be used in a theorem prover, and how it may coor-
dinate with the syntactic heuristics and logical de-
duction. There are several places where semantics
enter into the search process:

(1) at the time a clause is generated, to deter-
mine whether it is semantically meaningful;

(2) in selecting a literal of a clause to ex-
pand;

(3) in the filtering out of irrelevant oper-
ators; and

(4) in taking actions when a literal is solved.

There is, however, a tradeoff as to when semantics
should be applied. It may result that the attempt to
determine whether or not a clause is solvable could
take more time than the solving of the problem.
Hence, studies must be performed in this area to
determine the various costs involved.

With an arbitrary inference system it is not
always easy to determine when a literal from some
clause has been solved. The bookkeeping that might be
involved could become unmanageable. However, as de-
scribed previously, SL resolution minimizes the book-
keeping problem. SL resolution has the additional
advantage of providing the opportunity to select which
subproblem to attack next.

Some of the semantic information we use is gen-
eral, e.g., the count of the number of solutions to a
subproblem; if such information is supplied by the

user it could be used to advantage for any problem
domain. A general framework for representing and
applying semantic information is needed. In addition,
our semantic considerations have been directed
primarily at the meaning of constants, and not at the
meaning of functions and Skolem functions that may
frequently occur in clauses. These must also be con-
sidered.

We have presented a first version of the Q* al-
gorithm that carbines syntactic and semantic consider-
ations. Improvements must be made in the algorithm to
handle parallel searching such as in CONNIVER (Sussman
and McDermott[1972])" and to implement some of the
features that were described, but not incorporated in-
to the first version. However, based on limited ex-
perience with the current version of Q*, it has been
observed that the search does restrict the generation
of clauses.

The area of semantics and theorem-proving re-
quires considerably more research and experimentation.
Thhis paper has described a first step in exploring
this area.

References

1. Minker, J., Fishman, D.H., and McSkimin, J.R. The
Maryland Refutation Proof Procedure System (MKPPS).
TR-208, Computer Science Center, University of
Maryland, College Park, Md., 1972.

2. Minker, J., McSkimin, J.R., Fishman, D.H.
MRPPS-An Interactive Refutation Proof procedure
System for Question-Answering. TR-228, Computer
Science Center, University of Maryland, College
Park, Md., 1973.

3. Robinson, J.A.
the Resolution Principle."
23-41.

"A Machine Oriented Logic Based on
JACM 12, I(Jan. 1965),

4. Reiter, R. The Use of Models in Automatic Theorem
Proving, Technical Report 72-09, Department of' '
Computer Science, University of British Columbia,
Vancouver B.C., Canada, September, 1972.

5. was, L.T., Carson, D.F., and Robinson, G.A.
Unit Preference Strategy in Theorem Proving."
E’)r(%cézﬁJCC, Thompson Book Co., New York, 1964,

6. Green, C.C. "Theorem Proving by Resolution as a
Basis for Question-Answeriiig Systems." In:
Meltzer, B. and Michie, D. (Eds.), Machine Intelli-

nce 4, American Elsevier, New York, 1969, 183-
5:—

7. Kowalski, R. Studies in the Completeness and
Efficiency of Theorem-Proving by Resolution. Ph.D.
Thesis, U. of Edinburgh, 1970a.

"The

8. Kowalski, R. "Search Strategies for Theorem
Proving." In: Meltzer, B. and Michie, D. (Eds.),
MachinelIntelligence 5, AmericanElsevier, Hew
York, 1970b, 181-266.

9. Hart, P., Nilsson, N., and Raphael, B. "A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths." |EEE Trans. Sys. Sci. Cybernetics 4,
2(1968), 100-107.

37

10.

1.

12.

13.

14.

Kowalski, R. and Kuehner, D. "Linear Resolution
with Selection Function." Artificial Intelligence
2, 3/4, (1971), 221-260.

Slagle, J.R. and Farrell, CD. "Experiments in
Automatic Learning for a Multipurpose Heuristic

Program." Ccmm. ACM 14, 2(Feb. 1971), 91-98.
Hewitt, C. "Procedural Embedding of Knowledge in
PLANNER." Proc. IJCAI, British Computer Society,

London, England, 1971, 167-182.

Anderson, D. and Hayes, P.J. An Arraignment of
Theorem-Proying or the Logician's Folly, Memo No.
54, Dept. of Computational Logic, School of A.I.,
University of Edinburgh, Scotland, 1972 .

Sussman, G.J., and McDermott, D.V. "From PLANNER
to CONNIVER - A Genetic Approach." Proc. FJCC,
AFIPS Press, Montvale, N.J., 1972, 1171-1179.

stion 1 ;
g:e In Q* E* '%s;mn z Ia_
No Semantics Sm‘tics(z)
¥ inferred clauses 1 65 39 492 B 6 8
Pactors 1 1i 3 3 0 0 0
resolvents 10 64 36 489 &] 8
axions generated™) | 4 |32 | 18 | 3m 16 7 381
data axioms 3 295 6 295 s 4 205
genmeral axioms 1 47 12 BS 11 3 86
axioms needed 4 4 6 & 6 8 i)
data axiams 3 3 4 4 4 4 4
general axioms 1 1 2 2 2 2 2
variants eliminated 3 17 8 122 0 0 0
clauses in A-sats i3 10l 50 752 25 14 390
freespace used (words) (5) 431 94564 {1303 {43751 375 w267 1137
time required (seconds} | 13 [12.4 | 1.8 | s9.0 .37 <57 2.5
Inference Systen Jsosm sos | s0s | sos s SL SL.
Table 1

(1) Figures do not include the clause from the negation of the theorem

(2) These calculations were performed by hand since the routines that are to handle
semantics have not yet been implemented.

(3) Set-of-support
(4) Linear resolution with selection function

(5) Freespace refers to the storage needed by clauses formed by resolving or factoring

38

PROBLEMS OPERATORS

Tix,y) vy, saly) D M{Rita, Sall
MC(x, Rita)(2) N@,v) vHv,w) vMuw
M(u,v) v {{v, Rita) (3) Fix,y) vM(z,y) VHIx,z)

H(u,\n) VF(V,Ma Sall
Hiu,v) v Fiv, Sally)(s) F(Jack, Sall

Fitu, Jack)t®) M(Rose, Jack

M

Figure 1. The use of constants to guide the search.

39

TRACE OF GENERATED CLAUSES

(~THEOREM)
(AXTON)
a, 2)
(AxTOM)
a, 8
(5, 5
(RO
6, 7
8, 8
0 (9, 9
D (axrom)

LT- - B - T I A A I

12 (AXTOM)
Q) axzom
19 eoaom
@ wxom
8) om
17 (AxTOM)

@8 taxrom
Q9 (o

€0 a1

@D @xrom

@ (20,21)
€3 (22,22)
€4 axom

25 {10,12)
26 (AacM)
27 (25,26)
28 (27,21)
29 (AXIOM]
30 {28,29)
3l (30,30}
32 (31,31)

=FF (x3,67)+-M{x3,7)

=F (%, y) =My, 2)+PM (%, 2)

~FF (x3) , 67} #[=FM (x3,7)]+F (x3 ,x4) +=M(x4,7) 3
M(%,7)

-FF (x3,67)+[-FM (23,7}]4+-F (x3,4)+[-M(4,7)] 4
-FP (x3, 67) 4 [PM(x3,7) J+F (x3,4} 5
Fie, &) 6
=FF(6,67)+[-FM(6,7}]+ [-F(6,4)]

-FF (6,67} +[-FM(6.7)] 7
-FF(6,67) 8
~PMA (x1, 32, ¥] 2} +H0M [x] %2, x, 0, v,W)

+=HEM (v, v2,v,v1,v2, v} +PM {x,y) 9
=F(x,y)+F (y,2)+FF {X, 2} 10
~MX, y)+Wix, z)+F(z,y) 11
MM (2], %2, 7, M, ul ,u2)+0 (%, y) +F (v, x} 12
~F(x,y)+H(x,2)M(z,y} 13
=NAM {1, %2, ¥, F,ul ,u2) 40 (X, y) H {y, X) 14
=FFa {x1,12,yl,y2) +HaM(x] %2, x,1,v,w}

+=NEM (v1,v2,v,v1,v2,v3)4FFix,y) 15
=FA (x],x2,y], y2) M {1, x2, %, 9, v, W) 16
=M (vl y2,y,v1,v2,v3)+F (x,y) 17
MR (el x2,y1,y2) —HAM (el , %2, x, 0, v, W) 18
+—HNAMIvl, v2,v,v1,v2,v3)4M{x,y) 10

=FF (x3,67)4[~FM{x3, 7}]+=22M (x1, %3, 23 0,7 ,w)

+—FMA (3, %2, vl, y2) 1AM (y), y2, 7 ,v1,v2,v3)}

NaM IMIA, HIGR, 7. M, 1, 28)

=FF (x3, 67)+ [-PM(x3,7)]+—PMA (x1,x2 ,MTA , HFA)
+NAM (1, X2, %3 4, v, W)+ [-NAM (MIA HKR, 7, M, 1, 28)]

~FF (x3,67)+ [-PM{x3,7)] +-MBM (x5, x4 ,x3, %8 X7, x6)

+-FMA (x5, x4, MIA HKR)

~PM(x, yI—NAM {31, %2, %, 0,v, W) +=1EM {yl, v2,y,v1,v2,v3)

+FMR(xL, %2, y1,y2)
[-FF{6,67)]+F(6,y)+F{y.67)
F(63,67)
[-FF (6,67} 1+F(6,63)+[-F (63,67}
[-FF{6,67)] +-F(6,63)
F(6,63)
[-FF(6,67) 1+ [-F(6,63}]
[-FF{€,67)]
NULL CLADSE

Pigure 2.

40

PROOF

(~THEOREM) ~FPF(x3,67)+MM(x3,7)

{AXTOM) =F (X, y}M (v, 2) +FM [x, Z)

1,2) -FF{x3,67)+[-PM({x3,7))
+-F (33, x4) +M{xé,7)

{AXTOM) M,

(3,4 —FF{x3,57)+[-"(x3,7)]
+F{x3,4)+[-M4, 7]

(5,5} ~FF{x3,67)+[-PM(x3,7)]
+=P{x3,4)

{(AXTOM) F(6,4)

(6.7) -FF(6,67)+[-PM(6,7)]
+[~F{6,4))

{8,8) ~FF (6,67)+[-PM(6,7)]

{9,9) =FF(6,67)

(AXTOM) -F{x,y)+F (y,2)+FP (x,2)}

{10,11) [-FF(6,67) |+-F (6,y) +F{y,67)

{AXTOM) F{63,67)

{12,13) [-FF {6,567} }+F(6,63)
+[-F{63,67)]

{14,14) [~FF (6,67} 1+F{6,63)

(AXTOM) F(6,63)

(15,16} [=FF{6,67)]+[=F(6,63))

(17,17 [-FF(5,67)1]

{18,18B) NULL CLAUSE

LEGRD

Trace of Generated Clauses - No Semantics

Used

Clauses 1=32 generated,

Trace of Generated Clauses - Semantics
Added

All marhared clauses that are not circled
ware ganarated.

Interpretation of Predicate Letters =

Q a=§§;§ g E q E:!ﬁ

fathar

mother

name (correlates alphabetic name
and munber of parson)

father of the father (grandfather
on the father's side}

father of tha mothar (grandfather
on the mother's side)

alphabetic nama of the maternal
grardfather

alphabetic name of the fathar
alphabetic name of the mother
wife

alphabetic name of the paternal
grandfather

offepring

Syntax of Chain -

[] denotes an A litaral - clauses trixe
cated one literal at a time

+ denotes disjunction (V)

Computer Outpurt for Question 2 With SI Resclution

