
Session No. 15 Heuristic Problem Solving

BRANCH-AND-BOUND AND BEYOND

Patrick A. V. Hall
Department of Mathematics,

(Division of Computing Science),
City University,
London, EC1.

Abstract

The branch-and-bound algorithm is stated
in general i ty, and i l l us t ra ted by two
applications, unidirect ional graph search,
and reducing a sparse matrix to i t s
minimal band form. The algorithm is then
generalised to mult iple par t i t ions ,
applied to bid i rect ional graph searching
for both heurist ic and non-heuristic
searches, and further extended to graph
searches and problem solving with subgoals.

641

1.0 Introduction and Summary

The branch-and-bound algorithm is a
simple technique for the optimisation
search for the minimum (or maximum) of
a funct ion. It is very basic to
a r t i f i c i a l intel l igence and operations
research, and has been repeatedly
rediscovered and used in the solution of
hard problems. (1,2,6,9) In th is paper
I shal l give a general statement of the
algorithm, and then consider the
application to reducing a sparse matrix
to the band matrix of minimal band-width.
After th is I shall show that the well
known graph searching methods (4,5,9) are
somewhat disguised examples of branch-
and-bound.

This simple branch-and-bound idea
w i l l then bp extended to a more complex
optimisation search with multiple star t ing
points, in which form it w i l l be used to
solve the bid i rect ional graph-search
problem, giving a new unif ied view of
exist ing solutions, both heurist ic and
non-heuristic. F inal ly the application
of multiple branch-and-bound is further
extended to cover the use of subgoals in
graph search and problem solving.

Graph searching as a problem area
in a r t i f i c i a l intel l igence is important
because many problems can be represented
as a graph which requires a path to be
found between two given nodes (3,5,9) .
Any path between the start and termination
nodes would constitute a solut ion,
but a path of minimal length (= number of
steps) can be thought of as the most

'elegant' solut ion, and is often aimed fo r .
Hence icneral Problem Solving becomes
f inding the shortest path in a graph, which
in turn i s , as we shal l see, a special
application of the branch-and-bound
al Torithm.

However, not. a l l problems are most
natural ly formulated as graph searches;
for example the t rave l l ing salesman problem
is expressible as a shortest path problem,
but occurs more natural ly as a branch-and-
bound application (6). Another example is
a matching problem in chromosome analysis
considered by Montonari (7); the natural
way to tackle this problem is d i rect ly
using branch-and-bound, but the author
laboriously converts the problem to a
graph search and then applies the algorithm
of Hart, Nilson and Raphael (5).

642 Session No. 15 Heuristic Problem Solving

The actual lower bounding function g
depends upon the part icular problem and In
that sense is a 'heurist ic funcztion'. The
more information about the problem that is
used, the closer g approaches the
greatest lower bound g*, the more e f f ic ient
is the algorithm as outlined above. One
could even contemplate using any estimate of
the greatest lower bound, recognising that
if the bounding condition is v io lated, a
non-optimal solution may be returned, but
the error could be no more than the error
in the estimator.

In the form given, the algorithm
may only f ind a candidate solution point
after considerable searching and branching:
in practice this is undesirable since it may
be necessary to terminate search early with
a suboptimal solut ion, because of exceeding
either storage or time l im i t s . This requires
a modification to the basic algorithm to
force the search to refine part i t ions un t i l
a possible solution point has been found -
and then to continue searching un t i l the
minimal point is found; one way to do this
would be to subtract a depth factor from the
bounds to bias the search towards depth. An
additional advantage to locating a potential
solution point early in the search is that
pruning of the search tree is possible,
while we acquire the disadvantage of
(possibly) more i tera t ions. Note however
that we are s t i l l guaranteed f inding the
optimum providing that early termination is
not forced upon us.

2.1 Application to Band Matrix Reduction

A sparse matrix is one in which the

Session No. 15 Heuristic Problem Solving 643

majority of the elements are zero: these
arise in many problems such as engineering
structural analysis.(10) Storing sparse
matrices in the usual way is wasteful; one
solution is to store only the non-zero
elements, for example by using hashing
methods.(6) This leads to special numerical
techniques.(10) A preferred solution would
be to reduce the matrix by row and column
permutations to a band matrix (i . e . a matrix
in which a l l non-zero elements l i e in some
band close to the diagonal), for which only
the band elements need be stored: the
advantage is then that standard and ef f ic ient
numerical techniques are applicable. The
reduction to a band matrix is normally
carried out by ad hoc methods, by sk i l led
humans pr ior to computer runs: what is
desired is a guaranteeable method for
performing this reduction. The branch-
and-bound algorithm proved ideal .

For an n by n matrix, there are
(n!)2 possible configurations, and
exhaustive searches are untenable. The
technique used was to par t i t ion by row or
column selection. Assuming for the moment
that the lower bound function g is
available (this w i l l be outlined la te r) ,
then the f i r s t par t i t ion of the t o t a l i t y of
possible configurations is to consider the
n possible selections of part icular columns
of the or ig inal matrix for the f i r s t
posit ion in the reduced matrix. Among
these n subsets, the one with smallest
lower bound is selected, and the n possible
selections of rows for the f i r s t posit ion
of the reduced matrix considered. Among
the result ing 2n-l subsets that with minimal
lower bound is selected for row or column
par t i t ion as appropriate, and so on, for a
minimum of 2n par t i t ions .

The lower bound function computes a
best possible bandwidth for a par t ia l l y
determined matrix (with the f i r s t m columns
fixed and the f i r s t m or m-1 rows fixed)
as the maximum of the following-
(i) for the fixed portion at top l e f t ;
count from the diagonal of the fixed
portion along the rows and columns to
locate the last non-zero.element; within
the fixed portion (m by m or m by m-1) the
elements are f ixed, while beyond the fixed
portion it is assumed that the non-zero
elements could be positioned immediately
following the fixed columns or rows. Repeat
this for each row and column within the
fixed port ion, taking the maximum count
found.
(i i) for the unfixed portion at bottom
r igh t ; count the number of elements in each
row and column and assume that these could
be placed symmetrically about the diagonal -
hence bound to bandwidth here is maximum of

[(count + 1)/2] where [I] means the integ
part of I .

er

Figure 1 i l l us t ra tes the method for a
4 by 4 matrix of bandwidth 2. Figure 1(a)
shows the or ig inal matrix and Figure 1(b)
i l l us t ra tes in tree form the complete search.
Each node is labelled with the value of the
lower bound function g, and the matrix to data;
the elements whose positions are f ixed appear
in the upper left-hand submatrix marked with
thick l i nes . The search for the next node
to develop selects, when more than one node
has the minimal value, that node nearest the
bottom of the t ree. Each level of the tree is
labelled to show what development is being
made, which row or column is being f i xed :
each branch of the tree is labelled to
indicate which row or column in the or ig ina l
matrix is the one that is being f ixed in the
posit ion indicate for the whole l eve l .

FIGURE 1. The application of Branch-and-bound
to reducing a sparse matrix to i t s minimal band
matrix form.

(a) the or ig inal matrix
(b) the search t ree: branches are label led

with the row or column of the or ig inal being
f ixed in the posit ion shown at the l e f t ; nodes
are labelled with the bound, and the f ixed
port ion in the upper l e f t marked o f f .

644

The algorithm as actually implemented
(in Algol) uses a depth forcing i n i t i a l
search (as discussed previously) so that
suboptimal results could be returned on
exceeding storage bounds. Search length
has been found to be very dependent upon
the part icular matrix, varying from searches
direct to goal (as in the example) to
searches where only suboptimal (but acceptable)
solutions could be found.

3.0 Graph Searching as Branch-and-bound

We shall now examine graph searching
and apply the preceding algorithm to i t s
solut ion. We wish to f ind the shortest
route between two nodes s and t in a graph,
such as that i l lus t ra ted in Figure 1.

We shall define a weighted directed
graph as an ordered set (N,F,w) where N is
the set of nodes of the graph; E is a set
of ordered pairs of nodes which we cal l the
edges of the graph, saying that an edge
(a,b) goes from node a to node b; and w is
the weight or length function, mapping
E to the non-negative real numbers, saying
that w(a,b) is the length of edge (a,b).

The set X to be searched is the set of
a l l possible loop-free routes from s to t,
and the subsets of routes which w i l l be used
in par t i t ions of X w i l l be those which start
at s and have an i n i t i a l part in common.
The function g w i l l give the length of the
path in common - a l l routes in the set must
obviously be at least that long.
Part i t ioning w i l l be by extending the i n i t i a l
path by one edge for a l l possible edges
eliminating those which introduce loops:
each of these extended i n i t i a l paths defines
a subset of the refined pa r t i t i on . A
subset of the par t i t i on comprises a single
point when the defining i n i t i a l path extends
from s a l l the way to t.

With these de f in i t ions , the graph
search becomes a branch-and-bound problem,
and the search of a simple graph is
i l l us t ra ted in Figure 2. In part (a)
the graph is shown, a directed graph with
edge weights as label led. The search
process is shown in part (b)t subsets of

Session No. 15 Heuristic Problem Solving

the par t i t ion are named by the path that is
common (thus <sac> is the set of a l l paths
star t ing at s going through a and then c
and f ina l l y ending at t) . The search
starts with the par t i t ion consisting of
the single set <s> of a l l possible routes
from s to t. This is then part i t ioned into
two subsets, <sa> a l l those routes from s
through a to t and <sb> a l l those routes
from s through b to t. These have bounds
1 and 2 respectively. The minimum of these
is selected for further refinement, and thus
<sa> is refined to <sac> and <sad> with
bounds 6 and 7 respectively. And so on un t i l
stage 8 where the search for pa r t i t i on -
subset of minimum bound g finds <sbct> which
contains a single point which is therefore
the minimum. Part (c) of Figure 2 shows
the search process displayed as a tree with
nodes labelled inside by subset and outside
by bound. The sequence in which the tree
nodes are developed (i . e . subsets
part i t ioned) is in ascending order of bound,
with development from le f t to r ight where
nodes have equal bound.

This search procedure is almost the
D i j ks t ra (4) graph search method, excepting
that some redundant routes are eliminated
in the Di jkstra method - for example, having
two sets of routes with i n i t i a l parts ending
in c (i . e . <sac> and <sbc>) is wasteful
and only that of small bound <sbc> need be
retained after stage 4: ef fect ively one is
coarsening the par t i t ion by forming the
union of the two sets, and computing the union
bound from g(A U B) = min(g(A),g(B)). Note
that this pruning is also retroactive in the
sense that some unions would occur between a
new subset and one that was previously
part i t ioned (for example between
<sacd> and <shcd>), but in th is case cannot
change the ear l ier bound (of <sbca>) since
g has the monotonic property g(A) > g(B)
i f A C B.

The branch-and-bound algorithm can
further be extended to heur ist ic graph search
in a way comparable to the extension of the
Di jkstra Algorithm.(6,9) Suppose that we
possess a heur ist ic function h(x,y) which
estimates the distance through the graph
from node x to node y. If h(x,y) < d(x,y)
where d(x,y) is the ' t rue ' minimal distance
through the graph from x to y, then using
the bounding function

•g(<s...x>) = w(<s...x>) + h(x,y)

(formed from the length of the part in common
plus the estimate of the distance l e f t to go)
gives a lower bound for the set of a l l paths
i n i t i a l l y along <s...x> and thence to t.

Session No. 15 Heuristic Problem Solving 645

Using th is g in the branch-and-bound
algorithm applied to graph search leads to a
guided search, guaranteed to return the
minimum. Again irrelevant repetit ions
can be eliminated - if two par t ia l paths
have a common end point, one can coarsen
the par t i t i on as in the non-heuristic case,
but there is a note of caution: retroactive
coarsening could prune a branch of the tree

and not the new leaf, unless the monotonacity
property holds for g. This is the
"consistency condition" of Hart et al , (6)
and allows a ' t i d y ' algorithm, but in no way
affects the correctness of the solution
obtained.

A note on difference of emphasis
between the approach here, and the more
standard approach (6,9) to graph search, must
be made to avoid confusion. We have seen
above that in par t i t ions , sets defined by
par t ia l paths with common end points should

646 Session No. 15 Heuristic Problem Solving

in the interests of eff iciency be united:
the important parameter of the subset is
the terminal node of the common i n i t i a l
path. In the standard approach the
emphasis is upon the nodes, with the common
paths defined imp l i c i t l y by some form of
chaining. The search for the minimum for
next branching is over the node set,
res t r ic t ing the search to a subset of
nodes which are "open" or "v i s i ted" with
the consistency condition ensuring that
previously "closed" or "developed" nodes
do not need to be re-opened. Relating
this terminology to our viewpoint, the
open nodes are those at the end of a
common path for some set in the pa r t i t i on ,
and these become closed when the corres­
ponding subset is selected for subdivision.

The approach to graph search given
here, and the standard approach, lead to
the same algorithms: the approach via
branch-and-bound serves to add fresh
insight into the workings of unidirect ional
graph searches. Later, in more complex
searches, the branch-and-bound approach
w i l l f u l l y j us t i f y i t s e l f with the
generation of powerful new algorithms.

4.0 Multiple Branch-and-Bound

The natural extension of the branch-
and-bound algorithms discussed in section
2 is to use more than one pa r t i t i on ,
ref in ing each par t i t ion in turn (or in some
arbitrary order). At each stage of the
search we would have an effect ive
par t i t ion on the set of the product of the
separate par t i t ions :

The algorithm fol lows, again minimising
a function f on a set X, using as an aid a
lower bound function g and a new function q.
The minimum w i l l be located in a subset of
the product pa r t i t i on , and since this grows
much more rapidly than the individual
component par t i t ions , the actual search
would be expected to be considerably more
e f f i cient.

Session No. 15 Heuristic Problem Solving 647

using the multiple branch-and-bound
algorithm. Two part i t ions would be used,
generated from par t ia l paths anchored at
either end: thus one par t i t i on is determined
by subsets defined by common i n i t i a l paths,
(as in the Di jkstra search) while the other
par t i t ion is determined by subsets defined
by common f ina l paths. Two subsets (one
from each par t i t ion) intersect in a point
when they both have the same extreme point
on their defining par t ia l paths. Heuristic
and non-heuristic searches d i f fe r both in
the lower bound function used (the function
g) and in the way these combine on in ter ­
section (the function q). This double
d is t inct ion is important. The general
b id i rect ional graph-search w i l l be detailed
below, before proceeding further: ref ine­
ments of eff iciency w i l l be overlooked in
the interests of c l a r i t y , and as in the
unidirectional form, unnecessary par t ia l
paths w i l l be retained.

The problem is to f ind the shortest
path through a graph from node s to node t.
The set to be searched is a l l possible
loop-free paths start ing at s and terminating
at t. We shall ca l l the two par t i t ions
7T and TT and label the elemental subsets s t
of the part i t ions by the par t ia l paths
defining them (as we did previously in
section 2.1). X w i l l have two representa­
tions as <s- and <t>.

3.3.

3.4. The previous step w i l l have
produced a lot of new single
point sets in the product
par t i t i on Search a l l
additions to (i . e . search
the set for a l l

to
see whether these are single
points (the matching of the
last symbol in the label of
the set of with the f i r s t
symbol of the label for the
set of determines th is)

3.5.

TERMINATION

STEP 4.

STEP 5.

Update to the minimum of
g(Y) for Y

is path of minimal length M1N.

Heuristic and non-heuristic search
have the following part icular bounding
functions g and

(1) Non-heuristic

The bounding function g is the
length of the common path

The combination function q is given by

The intersection of two sets implies having
two par t ia l paths (one from each set) which
must be common to a l l paths in the
intersection set (note that our sets arc
such that one path cannot be included in
the other): hence one can compute a
bound for the intersection simply as

Session No. 15 Heuristic Problem Solving

the to ta l length of path common to a l l paths
in the set.

Heuristic

The bounding function g is given by

where h(a,b) is the heur ist ic estimator of the
minimal path length from a to b, and must
underestimate. For the one par t i t i on

and for the other par t i t i on
The combination function is given by

The usual form of these algorithms
includes an extra coarsening of the par t i t ion
at Step 3.3, removing redundant sets as in
the unidirect ional case. Two dif ferent
sets with labels matching at beginning and
end need not both be retained, only that
with shorter defining path being needed.
The result ing algorithms for b id i rect ional
graph searching are similar to exist ing ones.
(9), The heurist ic form is almost ident ical
to the general algorithm VGHA of I ra Pohl
(9), but our non-heuristic form is neither a
simple special isation of VGHA with h(x,y) = 0
nor a restatement of Pohl's VGA, but is
something of a marriage of the two. The
heur ist ic and non-heuristic cases have in the
past been tackled separately: here they are
united in a single general algorithm.

That our algorithms work follows from
the fact that they are part icular cases of
the multiple branch-and-bound algorithm:
there is no need to worry about the subtle
termination conditions that have proved
troublesome in the more conventional
approaches.(9)

4.2 Graph searches with subgoals

In graph searching, why should we stop
at a mere two par t i t ions? We can introduce
further par t i t ions by choosing a point as a
possible intermediate node, and then in
addition conduct further explorations from
there. This in problem solving is the
sett ing up of subgoals. No matter what
the number of subgoals, whether these are
added to during search, whether they are in
some sense paral le l or sequential (i . e .
whether they are al ternat ives, or whether
the solution path is thought l i ke ly to pass
through them both), the algorithm w i l l be
the same. Further, the search can be
heur is t ica l ly guided or not, using the
functions g and q as previously given.

(2)

Session No. 15 Heuristic Problem Solving 649

650 Session No. 15 Heuristic Problem Solving

if TT . is par t ia l }.

Note that II is not necessarily a
par t i t i on since i t s component subsets are
not necessarily d i s jo in t . But this does
not matter, and using this n at Step 3.4
gives the required algorithm.

To i l l u s t r a te this algorithm,
Figure 3 displays the search of the graph
of Figure 2(a) working forwards from s,
backwards from t, and backwards from a
single subgoal c. Note that the subgoal
only helped here because it was on the
solution path: the saving is small,
because the problem is small. The
advantages of the extension to subgoals
w i l l only be apparent on large problems,
and especially where looking for any path,
when the fortuitous choice of the subgoal
on the minimal path is not necessary.

To obtain some insight into the
savings possible with subgoals, let us
analyse a special class of graphs. Let
us define a binary tree as a graph in
which a l l nodes have exactly two edges
entering them and two edges leaving them;
a l l edges have unit weight and there are
no loops. Trees must hence have
i n f i n i t e l y many nodes. Two examples are
shown in Figure 4. (Note that we are not
intending rooted trees here.)

In a binary t ree, s tar t ing at a
point s there are exactly 2K paths of
length k. There may be 2k or less nodes
at distance k, depending on whether paths
converge or not. Suppose that we are
required to search a binary tree for a route
between two nodes, s and t, of minimal
distance K apart (there may well be routes
of length greater than K as we l l) . We
shal l consider only non-heuristic searches
with each par t i t i on taken in tu rn , and no
coarsening to remove redundant paths.
Then a unidirectional search w i l l undergo
between 2K-1 and 2K i terat ions.

Simple b id i rect ional search w i l l
undergo between 2.2[K/2]-1 and 2.2 [K /2]+1

i te ra t ions , where [K/2] means the integral
part of K/2.

If we have a bid i rect ional subgoal
(i . e . a subgoal searched in both direct ions,
thus defining a pair of par t i t ions) situated
halfway along a minimal path, the number of
i terat ions w i l l be between 4.2[K/4]-1 and
4.2[K/4]+1 . In general with n-1
bid i rect ional subgoals at equal distances
along the same minimal path the search w i l l
involve between 2n.2[K/2n]-1 and 2 n . 2 [K / 2 n] + 1

i te rat ions. An arbi trary set of n-1
b id i rect ional subgoals cannot be better than
this last case, but cannot be worse than for
n times the figure for simple bidirect ional

search. A graphical comparison is given
in Figure S, for the case K = 100.

The use of subgoals in problem
solving is a gamble, for you may take
longer to solve the problem, but you may
well save dramatically: however, you
cannot as a result f a i l completely if the
subgoals are used within the framework of
a multiple branch-and-bound algorithm,
for if a l l else f a i l s , the search must
succeed as a unidirect ional search.

0 References
1. Barrow,H.C. and Popplestone,P.J ., "Relational

Descriptions in Picture Processing", Dept. of
Machine Intell igence and Perception, Univ. of
Edinburgh. July 1970.

2. Purstal],P.M.,"Tree searching methods with an
application to a network design problem",
Machine Intell igence 1, pp65-87. Oliver & Boyd,
Edinburgh. 1967

3. Doran,J.,"An approach to automatic problem-
solv ing", Opus s i t . pp1C5-123. 1967

4. Di jkstra,E.,"A note on two problems in connec­
t ion with graphs", Numerische Mathematik. 1,
pp269-271. 1959.

5. Hart,P.,Nilsson,N.J. and Raphael,B.,"A formal
basis for the heurist ic determination of
minimum cost paths", IEEE. SSC-l. pp1C0-1C7,
July 1968. =

6. Lawler,E.L. and Wood,D.E.,"Branch-and-bound
methods: a survey", Operations Research.14.
PP699-719. 1966. =

7. Montanari,Ugo,"Heuristically guided search and
chromosome matching", A r t i f i c i a l Intel l igence -
1, PP227-245. 1970.

8."Morris,R."Scatter Storage Techniques", Comm.
ACM,11,1 ,pp38-44,Jan.3968.

9. PohI7lra,"Bi-direct ional and Heuristic Search
in Path Problems", Stanford Linear Accelerator
Centre Report 104, May 1969.

10. Tewarson,R.P. ''Computation with Sparse
Matrices", SIAM Review. 12 .4 .PP 527 -544 . 1970.

The algorithm w i l l be the f u l l
multiple branch-and-bound version of the
previous bid i rect ional graph search, but
with one generalisation. A l l except
one of the part i t ions w i l l be permitted
to be p a r t i a l , by which we shall
understand that while the sets of the
individual part i t ions must s t i l l be
d i s jo in t , they need not necessarily unite
to the complete set; the appropriate
generalisation of the product par t i t ion
w i l l be

