Session No. 15 Heuristic Problem Solving

BRANCHAND-BOUND AND BEYOND

Patrick A. V. Hall

Department of Mathematics,
(Division of Computing Science),

City University,

London, EC1.

Abstract

The branch-and-bound algorithm is stated
iIn generality, and illustrated by two
applications, unidirectional graph search,
and reducing a sparse matrix to its
minimal band form. The algorithm is then
generalised to multiple partitions,
applied to bidirectional graph searching
for both heuristic and non-heuristic
searches, and further extended to graph

searches and problem solving with subgoals.

641

1.0 Introduction _and Summary

The branch-and-bound algorithm is a
simple technique for the optimisation
search for the minimum (or maximum) of
a function. It is very basic to
artificial intelligence and operations
research, and has been repeatedly
rediscovered and used in the solution of
hard problems. (1,2,6,9) In this paper
| shall give a general statement of the
algorithm, and then consider the
application to reducing a sparse matrix
to the band matrix of minimal band-width.
After this | shall show that the well
known graph searching methods (4,5,9) are
somewhat disguised examples of branch-
and-bound.

This simple branch-and-bound idea
will then bp extended to a more complex
optimisation search with multiple starting
points, in which form it will be used to
solve the bidirectional graph-search
problem, giving a new unified view of
existing solutions, both heuristic and
non-heuristic. Finally the application
of multiple branch-and-bound is further
extended to cover the use of subgoals in
graph search and problem solving.

Graph searching as a problem area
in artificial intelligence is important
because many problems can be represented
as a graph which requires a path to be
found between two given nodes (3,5,9).
Any path between the start and termination
nodes would constitute a solution,
but a path of minimal length (= number of
steps) can be thought of as the most
'‘elegant’ solution, and is often aimed for.
Hence icneral Problem Solving becomes
finding the shortest path in a graph, which
In turn is, as we shall see, a special
application of the branch-and-bound
al Torithm.

However, not. all problems are most
naturally formulated as graph searches;
for example the travelling salesman problem
IS expressible as a shortest path problem,
but occurs more naturally as a branch-and-
bound application (6). Another example is
a matching problem in chromosome analysis
considered by Montonari (7); the natural
way to tackle this problem is directly
using branch-and-bound, but the author
laboriously converts the problem to a
graph search and then applies the algorithm
of Hart, Nilson and Raphael (5).

240 The Brancheand=Bound Alcorithm

Consider the problem of minimising
a function f in som~ (discrete) set X:
i,e, f:X-»R and we wish to find x* in X
such that f{x*)<fr(x) for all x in K.
Suppose that we have available a function
g:2"—»R which computes a lower bound for
f in a set A:

g(A)s f(x) for all x¢A and ACX

We shall also require that when A is a
single point a, then

g(A) = af {a}) = f(a)

thoursh this can easily be waived since
the alegorithm assumes the ability to test
whether a set comprises a single point,

Informally, describ-d elsewhere (2,464),
the strateocy is to 1ivide up (partitions

the set X into successively smaller
portions, each time only further subdividing
the most promisinc subset of X, as measured
by ¢, until eventually a subset containing

a single point is selected for subkdivision,
which terminates the alcorithm with the
single point as the minimum,

Definition: a partition YU of a set X is
a set of subsets of X which are mutually
exclusive and exhaustive:

n:: {A.'pno-pAm:Aigx,AinAJ :ﬁlf 1 # j,

m
andil._._J1A1 = K} 0
Formally, the al-sorithm is:
START
STEP 1. Set partition T\ = {x} .
ITERATION
STEP 2. Find the Y in Y{ such that g(Ym)

is minimal, If more than one,
choose any of them,

STEP 3, 1f Ym is a set containine a single
point, go to TERMINATION, STKP 5.
STEP 4. Partition Ym into le,...,Y

mn’
and remove Ym from , replacing
it by le,sz’ooo’Ymn. Heturn
to Step 2.
TERMINATION

STEP 5. The minimum x* is the single point
contained in Y , with fx*) = g(Ym).

O
Clearly the above algorithm does locate

the global minimum for any lower bounding

Session No. 15 Heuristic Problem Solving

function g (providin-’ only that ¢ ani f
coincide for sets of sin-’le points) and
any partitionins poliev. When g cnmputes
the rreat~st lower bound g*, the
algorithm is mest eff icient and makes no
unnecessary partitions; while if g were
constint for all sets of more than one
element, the search would have to
ultimately evaluate f at every point,
making an exhau.tive search, These are
tte two extreme cases: it is verv readily
secrn that for intermediate cases, if
g1ég2_<_g“ ttten using g must result in

at least as many partitioning iterations
as usin- oo

Two common properties of lower boundin
functions are worth remirking on: they will
appear later in praph searching., These are

(1) g(A) > g(B) if ACB
(11) &(AnB)> max {&(h), g(B)} .

The actual lower bounding function g
depends upon the particular problem and In
that sense is a 'heuristic funcztion'. The
more information about the problem that is
used, the closer g approaches the
greatest lower bound g*, the more efficient
Is the algorithm as outlined above. Ore
could even contemplate using any estimate of
the greatest lower bound, recognising that
if the bounding condition is violated, a
non-optimal solution may be returned, but
the error could be no more than the error
in the estimator.

In the form given, the algorithm
may only find a candidate solution point
after considerable searching and branching:
In practice this is undesirable since it may
be necessary to terminate search early with
a suboptimal solution, because of exceeding
either storage or time limits. This requires
a modification to the basic algorithm to
force the search to refine partitions until
a possible solution point has been found -
and then to continue searching until the
minimal point is found; one way to do this
would be to subtract a depth factor from the
bounds to bias the search towards depth. An
additional advantage to locating a potential
solution point early in the search is that
pruning of the search tree is possible,
while we acquire the disadvantage of
(possibly) more iterations. Note however
that we are still guaranteed finding the
optimum providing that early termination is
not forced upon us.

2.1 Application to Band Matrix Reduction

A sparse matrix is one in which the

Session No. 15 Heuristic Problem Solving

majority of the elements are zero: these
arise in many problems such as engineering
structural analysis.(10) Storing sparse
matrices in the usual way is wasteful; one
solution is to store only the non-zero
elements, for example by using hashing
methods.(6) This leads to special numerical
techniques.(10) A preferred solution would
be to reduce the matrix by row and column
permutations to a band matrix (i.e. a matrix
in which all non-zero elements lie In some
band close to the diagonal), for which only
the band elements need be stored: the
advantage is then that standard and efficient
numerical techniques are applicable. The
reduction to a band matrix is normally
carried out by ad hoc methods, by skilled
humans prior to computer runs: what is
desired is a guaranteeable method for
performing this reduction. The branch-
and-bound algorithm proved ideal.

For an n by n matrix, there are
(n!)* possible configurations, and
exhaustive searches are untenable. The
technique used was to partition by row or
column selection. Assuming for the moment
that the lower bound function g is
available (this will be outlined later),
then the first partition of the totality of
possible configurations is to consider the
n possible selections of particular columns
of the original matrix for the first
position in the reduced matrix. AMong
these n subsets, the one with smallest
lower bound is selected, and the n possible
selections of rows for the first position
of the reduced matrix considered.
the resulting 2n-l1 subsets that with minimal
lower bound is selected for row or column
partition as appropriate, and so on, for a
minimum of 2n partitions.

The lower bound function computes a
best possible bandwidth for a partially
determined matrix (with the first m columns
fixed and the first m or m-1 rows fixed)
as the maxmum of the following-

(i) for the fixed portion at top left;

count from the diagonal of the fixed
portion along the rows and columns to

locate the last non-zero.element; within
the fixed portion (m by m or m by m-1) the
elements are fixed, while beyond the fixed
portion it is assumed that the non-zero
elements could be positioned immediately
following the fixed columns or rows. Repeat
this for each row and column within the
fixed portion, taking the maxmum count
found.

(ii) for the unfixed portion at bottom
right; count the number of elements in each
row and column and assume that these could
be placed symmetrically about the diagonal -
hence bound to bandwidth here is maxmum of

643

[(count + 1)/2] where [lI] means the integer
part of |I.

Figure 1 illustrates the method for a
4 by 4 matrix of bandwidth 2. Figure 1(a)
shows the original matrix and Figure 1(b)
iIllustrates in tree form the complete search.
Each node is labelled with the value of the
lower bound function g, and the matrix to data;
the elements whose positions are fixed appear
in the upper left-hand submatrix marked with
thick lines. The search for the next node
to develop selects, when more than one node
has the minimal value, that node nearest the
bottom of the tree. Each level of the tree is
labelled to show what development is being
made, which row or column is being fixed:
each branch of the tree is labelled to
indicate which row or column in the original
matrix is the one that is being fixed in the
position indicate for the whole level.

FIGURE 1. The application of Branch-and-bound
to reducing a sparse matrix to its minimal band
matrix form.

(a) the original matrix

(b) the search tree: branches are labelled
with the row or column of the original being
fixed in the position shown at the left; nodes
are labelled with the bound, and the fixed
portion in the upper left marked off.

1a) X
0
X
0

~ QOO
O < O

X
0
X
X

1b)

position being
fixed at this
level of tree

18t column 2 ggxg 2 8§x§ 2 gogg 3 00 2
s s S 0} = 2
1
1st row 3 gxég 2 g ox
3% "¢ X082
] /
5 0 X000 00
2nd column < p%0% by 20K 3 §§§
X0XX oxX XX0
X000 X000 00
2nd row 3 3 ‘;1§%
8 TR 8
d 1
3rd column e XXX 3 XOX
88 8
17 3
ird row 2 X 8 2
38 3%
both these matrices are
minimal

644

The algorithm as actually implemented
(in Algol) uses a depth forcing initial
search (as discussed previously) so that
suboptimal results could be returned on
exceeding storage bounds. Search length
has been found to be very dependent upon
the particular matrix, varying from searches
direct to goal (as in the example) to
searches where only suboptimal (but acceptable)
solutions could be found.

3.0 Graph Searching as Branch-and-bound

We shall now examine graph searching
and apply the preceding algorithm to its
solution. We wish to find the shortest
route between two nodes s and t in a graph,
such as that illustrated in Figure 1.

We shall define a weighted directed
graph as an ordered set (N,F,w) where N is
the set of nodes of the graph; E is a set
of ordered pairs of nodes which we call the
edges of the graph, saying that an edge
(a,b) goes from node a to node b; and w is
the weight or length function, mapping
E to the non-negative real numbers, saying
that w(a,b) is the length of edge (a,b).

We define a path or route between two
nodes s and t as a sequence of nodes

wis,t) = ~S=n0,n1,n?,...,nk_l,nk=t3
and define the length of this path as

win(s,t)) =) w(n, ,n.).
j=1

The set X to be searched is the set of
all possible loop-free routes from s to f{,
and the subsets of routes which will be used
in partitions of X will be those which start
at s and have an initial part in common.
The function g will give the length of the
path in common - all routes Iin the set must
obviously be at least that long.
Partitioning will be by extending the initial
path by one edge for all possible edges
eliminating those which introduce loops:
each of these extended initial paths defines
a subset of the refined partition. A
subset of the partition comprises a single
point when the defining initial path extends
from s all the way to t.

With these definitions, the graph
search becomes a branch-and-bound problem,
and the search of a simple graph is
illustrated in Figure 2. In part (a)
the graph is shown, a directed graph with
edge weights as labelled. The search
process is shown in part (b)t subsets of

Session No. 15 Heuristic Problem Solving

the partition are named by the path that is
common (thus <sac> is the set of all paths
starting at s going through a and then c
and finally ending at t). The search
starts with the partition consisting of

the single set <> of all possible routes
from s to t. This is then partitioned into
two subsets, <sa> all those routes from s
through a to t and <sb> all those routes
from s through b to t. These have bounds

1 and 2 respectively. The minimum of these
is selected for further refinement, and thus
<sa> is refined to <sac> and <sad> with
bounds 6 and 7 respectively. And so on until
stage 8 where the search for partition-
subset of minimum bound g finds <sbct> which
contains a single point which is therefore
the minimum. Part (c) of Figure 2 shows
the search process displayed as a tree with
nodes labelled inside by subset and outside
by bound. The sequence in which the tree
nodes are developed (i.e. subsets
partitioned) is in ascending order of bound,
with development from left to right where
nodes have equal bound.

This search procedure is almost the
Dijkstra (4) graph search method, excepting
that some redundant routes are eliminated
in the Dijkstra method - for example, having
two sets of routes with initial parts ending
iIn ¢ (i.e. <sac> and <sbc>) is wasteful
and only that of small bound <sbc> need be
retained after stage 4: effectively one is
coarsening the partition by forming the
union of the two sets, and computing the union
bound from g(A U B) = min(g(A),g(B)). Note
that this pruning is also retroactive in the
sense that some unions would occur between a
new subset and one that was previously
partitioned (for example between

<sacd> and <shcd>), but in this case cannot
change the earlier bound (of <sbca>) since
g has the monotonic property g(A) > g(B)

if A C B.

The branch-and-bound algorithm can
further be extended to heuristic graph search
In a way comparable to the extension of the
Dijkstra Algorithm.(6,9) Suppose that we
possess a heuristic function h(x,y) which
estimates the distance through the graph
from node x to node V. If h(x,y) < d(x,y)
where d(x,y) is the 'true' minimal distance
through the graph from x to y, then using
the bounding function

°g(<s...x>) = w(<s...x>) + h(x,y)

(formed from the length of the part in common
plus the estimate of the distance left to go)
gives a lower bound for the set of all paths
initially along <s...x> and thence to t{.

Session No. 15 Heuristic Problem Solving 645

®
o T 1.1 1 |
~ o
o~ Y
o
- G
{_.;- ~
N 'g V! O
S ™
BV S S = B
L2
CHE: c}
o N o~ 3
B \ - ©
a ~1/ ™ 2 N
ae o <
o ~ 8 g >l |3 .
~ = O
© o ol 2|on £
~ 2 £ CAPN W
E 5 = MEIREE
] ~ o Q » @
< ~] < e~ * A —
© o ~ - L A
N - 7 — \!l/. +2
A~ ~ ‘8 N Q
3 n O
o o ~ Q o
ot r—4 -— N
~~ G -
NS g o e
) b LD -+
° g il A |
o 7 " : AEEERE
T8 8 b e - Q
L8 o + AN +
3e g.m L~ i o £
e b o o)
5 5038 8 2
0O L et o n
£ — BT n bp -1
| O @ % g. o 'S ol o
e L Q N - g o ~ o]
LS K Q /)] « A o
? g) @ :‘,8 - 0 | =
~— O
L o g 5) & 0 g w
Ok~ n Q - &Nl o
5 U!.g; L O -~ +2
L o0 O O O g
- + @ + o r~
L O OvY 0 .C n 2 | o
L OO +> ~ ~| E
£8%aqdgm C Tl & |
Y e bl g't! ! |+
E335P o8 5| ~
o R X mg “ ﬁ .8 o <ﬁt
o 0O L 0 & % Py o~
Teg o on A=1R? PRI Kol bl Rt
-EY S @gﬁa“'ﬁpﬁ"”
—S 98 o 0 HIS|I S| S|SB S
—~ g n oo 4 .
Big L f e g8
LR ~| g
é’:-ﬁ,ﬁﬂ":ﬂ ~ | @ ot i A A S
g - @ 0“
NEo RSB
+ QO a b
w2 L Q L+
HITES 2
o » b
32y £ o
id 829 5 3
and not the new leaf, unless the monotonacity
property holds for g. This is the
"consistency condition" of Hart et al,(6)
and allows a 'tidy' algorithm, but in no way
_ _ _ affects the correctness of the solution
Using this g in the branch-and-bound obtained.
algorithm applied to graph search leads to a
guided search, guaranteed to return the A note on difference of emphasis
minimum. Again irrelevant repetitions between the approach here, and the more
can be eliminated - if two partial paths standard approach (6,9) to graph search, must
have a common end point, one can coarsen be made to avoid confusion. We have seen
the partition as in the non-heuristic case, above that in partitions, sets defined by
but there is a note of caution: retroactive partial paths with common end points should

coarsening could prune a branch of the tree

646

iIn the interests of efficiency be united:
the important parameter of the subset is
the terminal node of the common initial
path. In the standard approach the
emphasis is upon the nodes, with the ocommon
paths defined implicitly by some form of
chaining. The search for the minimum for
next branching is over the node set,
restricting the search to a subset of
nodes which are "open" or "visited" with
the consistency condition ensuring that
previously "closed"” or "developed" nodes
do not need to be re-opened. Relating
this terminology to our viewpoint, the
open nodes are those at the end of a
common path for some set in the partition,
and these become closed when the corres-
ponding subset is selected for subdivision.

The approach to graph search given
here, and the standard approach, lead to
the same algorithms: the approach via
branch-and-bound serves to add fresh
insight into the workings of unidirectional
graph searches. Later, in more complex
searches, the branch-and-bound approach
will fully justify itself with the
generation of powerful new algorithms.

4.0 Multiple Branch-and-Bound

The natural extension of the branch-
and-bound algorithms discussed in section
2 is to use more than one partition,
refining each partition in turn (or in some
arbitrary order). At each stage of the
search we would have an effective
partition on the set of the product of the
separate partitions:

Definition: given a set of partitions

my,m~,...,n_ we shall define a product
partition a8
n
M= »my « oewong = (A=A A€)
1=1]

The algorithm follows, again minimising

a function f on a set X, using as an aid a

lower bound function g and a new function q.

The minimum will be located in a subset of
the product partition, and since this grows
much more rapidly than the individual
component partitions, the actual search
would be expected to be considerably more
effi cient.

X

As previously, g : 2 » R i1s defined

by

g(A) f(x) for all x 1in A, and AC X

e

and g({atl) f(a) for all a in X.

in

Session No. 15 Heuristic Problem Solving

In addition we are given a ''combination"
function q such that

n
g* (N A) > A(g(Aq),....g(A))zmax(g(Ay),

1=] 1
...g(An)J

for any Ay € 7n,,A> € T,,..

-:An € "no

where g*(A) 1is the greatest lower'bound of f
A and where m;,...,n, are partitions that
we will progressively refine. We shall
denote by m_, the minimum g(A) for A in
m !
Min
m = A€ n_(g(A)).
1 1

Two parameters x* and MIN will be used to
record the best point found so far.

STAR'
STEP 1. Set MIN=« and n)z{X}
and mj=g(X) for all j.
I'TLRATION
STEP 2. Choose any of the n] for
further refinement.
STEP 3. Supposc that ™ sclected:
3.1. S SUC
5.1 clect Yme " such that g(Ym)
1S minimal. If more than one,
choose any of them.
3.2 Partition Ypu into Yo, Ypo,.o o, Y
3.3, In " replace Ym by le""’Ymk'
3.4. Check whether Y. A 2 15 a single
point x ftor all 1=1,...,k and
" € ”L,
(where Hq 1s the product
partition of all the separate
partitions other than n)
If it 15y then evaluate f(x) and
if f(x) MIN then change MIN
to f(x) and x* to x.
3.5. Update mc to the minimum of
the g(Y) for Y e ..
STLP 4. If MIN > q(m;,m.,...,m;) then

Session No. 15 Heuristic Problem Solving

repeat from STEP 2: otherwise,
terminate with STEP S,

TERMINATION

STEP 5. X* 1s a minimum with value MIN.

Q

The choice of partition to refine at
Step 2 is entirely arbitrary, and could be
random, or each in turn, or always choosing
the one with fewest members. We could
even always choose the same partition,
in which case we obtain a variation of the
simpler algorithm of section 2.

That thas algorithm does indeed
return a minimum point follows from the
observation that the algorithm terminates
when first

MIN ¢ q(my,m,,...,mp)

from which we deduce

MIN ¢ q(g(A}),@(As)...,g(A))
for all Al € 'ﬂl) A? € 11:), etc.

from the definition of the mi's. Hence
from the definition of q

MIN ¢ g* (A, o) A n-..nAn)
= g*(A) all A €l

and hence

MIN ¢ min g*(A)
Aell

Note that while partitioning and
associated searches occur for the

individual partions nj, the minimum is
identified by reference to the product
partition T. The terminating condition is

encountered by virtue of the properties
of g and q.

Note that Step 3.5 and Step 4 could
be replaced by directly testing at a modified
STEP 4 whether MIN > g(Z) for all Z in the
product partition 1. The usefulness of
the function q is that it obviates this
necessity and introduces a radical improve-
ment in efficiency over this more naive
approach. The simplest form for q, always
possible, is q(xj,...,x,) = max(xp,...,xq);
but as we shall see, other functions are
also possible.

4.1 Application to Bidirectional
Gragﬁ Searching

The bidirectional graph searching
problem (9) can be very naturally solved

647

using the multiple branch-and-bound
algorithm. Two partitions would be used,
generated from partial paths anchored at
either end: thus one partition is determined
by subsets defined by coomon initial paths,
(as in the Dijkstra search) while the other
partition is determined by subsets defined
by common final paths. Two subsets (one
from each partition) intersect in a point
when they both have the same extreme point
on their defining partial paths. Heuristic
and non-heuristic searches differ both in
the lower bound function used (the function
g) and in the way these combine on inter-
section (the function q). This double
distinction is important. The general
bidirectional graph-search will be detailed
below, before proceeding further: refine-
ments of efficiency will be overlooked in
the interests of clarity, and as in the
unidirectional form, unnecessary partial
paths will be retained.

The problem is to find the shortest
path through a graph from node s to node t.
The set to be searched is all possible
loop-free paths starting at s and terminating
at t. We shall call the two partitions
7; and 'lt'l' and label the elemental subsets

of the partitions by the partial paths
defining them (as we did previously in
section 2.1). X will have two representa-
tions as <s- and <t>.

START

STEP 1. Set ng = {<s>} and Ny = {<t>)
and MIN=wo, ms=mt=0.

ITERATION
STEP 2. Choose to refine either Mg OT m,.
STEP 3. Suppose that n_ were chosen: a

symmetrical set of steps would

be done if Ty Were chosen,

5.1. Find the set <s...x> 1in Mo such
that g(<s...x>) 1s minimal.

If there are more than one,
choose any of them.

3.2. Partition <s...x> by finding all
the successors y;,...,yy of
node x (i.e. all nodes connected
by a single edge from x) but
rejecting all successors y on
the path s...x , and form

Sets <S...XY1>,...,<S...XyK>.

3.3. Replace <s...x> by <s...xy,>,

<S...XY2>,..,<5. . Xy >,

3.4. The previous step will have
produced a lot of new single
point sets in the product
partition n, x n,. Search all

additions to n, x n, (i.e. search

the set <S...Xy:> N\ Z for all
i=1l,...,k and all Z € n,) to

see whether these are single
points (the matching of the
last symbol in the label of
the set of n_ with the first
symbol of the label for the
set of n, determines this)

and if the intersection is a
single point <s...xy;...t>,

if f(<s...xyj...t>) < MIN
update MIN and x* respectively
to f(as...xyi...t~) and

"'S.Q.xyi...ta.

3.5. Update m; to the minimum of
g(Y) forY € n.

STEP 4. 1f MIN - q(ms,mt) then repeat
from STLP 2.

TERMINATION

STEP 5. x* is path of minimal length M1N.
O

Heuristic and non-heuristic search
have the following particular bounding
functions g and q:

(1) Non-heuristic

The bounding function g is the
length of the ocommon path

gl Xge o - Xp') = WX, ..oXp”).

The combination function q is given by

q(g(A),g(B)) g(A) + g(B).

The intersection of two sets implies having
two partial paths (one from each set) which
must be common to all paths in the
iIntersection set (note that our sets arc
such that one path cannot be included in
the other): hence one can compute a

bound for the intersection simply as

Session No. 15 Heuristic Problem Solving

the total length of path common to all paths
In the set.

(2) Heuristic
The bounding function g is given by

g(<Xp...Xp>) = h(s,xo) * W(<xg...Xp>)+h (xp,t)

where h(a,b) is the heuristic estimator of the
minimal path length from a to b, and must
underestimate. For the one partition

xo = s and for the other partition x, = t.
The combination function is given by

q(g(A),g(B)) = Max(g(A),g(B)).

The usual form of these algorithms
includes an extra coarsening of the partition
at Step 3.3, removing redundant sets as in
the unidirectional case. Two different
sets with labels matching at beginning and
end need not both be retained, only that
with shorter defining path being needed.

The resulting algorithms for bidirectional
graph searching are similar to existing ones.
(9), The heuristic form is almost identical
to the general algorithm M3A of Ira Pohl
(9), but our non-heuristic form is neither a
simple specialisation of VGHA with h(x,y) = 0
nor a restatement of Pohl's VGA but is
something of a marriage of the two. The
heuristic and non-heuristic cases have in the
past been tackled separately: here they are
united in a single general algorithm.

That our algorithms work follows from
the fact that they are particular cases of
the multiple branch-and-bound algorithm:
there is no need to worry about the subtle
termination conditions that have proved
troublesome in the more conventional
approaches.(9)

4.2 Graph searches with subgoals

In graph searching, why should we stop
at a mere two partitions® We can introduce
further partitions by choosing a point as a
possible intermediate node, and then In
addition conduct further explorations from
there. This in problem solving is the
setting up of subgoals. No matter what
the number of subgoals, whether these are
added to during search, whether they are in
some sense parallel or sequential (i.e.
whether they are alternatives, or whether
the solution path is thought likely to pass
through them both), the algorithm will be
the same. Further, the search can be
heuristically guided or not, using the
functions g and g as previously given.

649

Session No. 15 Heuristic Problem Solving

sTeodqns TBUOTIV9ITIPIq JO Jaqumu

i I SR N

4

IS -

= Uu

3SBY 18J0OM

ZBO[

O
Vo

(suoiyBaajy Jjo Jaqumu)

*00L JO Xapul aduswJojlad svYy YoOJBIE TBUOI}OAITPTU(
*JoJBas TBUOTLO3JFpTq 9Tdwls susam Q=U .mcv §1B03qNS TBUCT303JTDPIQ
)

Jo Jaqumu qsuyede pajjo1d ‘(suU0T}vIL]}T JO Jaqunu

do1 f‘edouswiojiad Jo xepuy

*sTe03qns Julsn 29al} AJBUIQ B JO YOJIBa8 3Y4 UT S3ufawg ¢ TNDI J

9 y3duel ‘yyed 3ee3doys (3098) fuojjEUWIL]

—v T !
]
4

o5 ¢ 6* 30q)
4 2 L4 (ous) |9¢ (ous)
(10qs) G .wuq PﬂH.Aonv ¢ ¢ (om) A. | T
Gas) | o1 | € Z|8¢ (3a)|2¢ @33) (€4 4o) |7¢ (3P)
1 T .1 ‘ ‘
< L L [2¢{qsB) L ¢ (es)
| 1o 0¢ (o) o# 0¢ <) +o 0¢(s) 11815
- 1 —— SR
“u °\ Ws ARY Wh ®\
" MIW | D (TeT3a8d) SNOILILYVd FOVLS

spIeryoRq ‘S WOJJ SpJEAIOJ BUTHJIOM

‘gz aandty up 8% ydedn

*0 WOJJ SpJIrAXNOBq pPUB ‘4 wOJ]
*gTe0o8qns Y3Tm YyoIees uydedn

°t TUNoOHId

650

The algorithm will be the full
multiple branch-and-bound version of the
previous bidirectional graph search, but
with one generalisation. All except
one of the partitions will be permitted
to be partial, by which we shall
understand that while the sets of the
iIndividual partitions must still be
disjoint, they need not necessarily unite
to the complete set; the appropriate
generalisation of the product partition
will be

=OA1A1€ TT]’ OI‘Ai'_'X
if TT. is partial }.
Note that Il is not necessarily a

partition since its component subsets are
not necessarily disjoint. But this does
not matter, and using this n at Step 3.4
gives the required algorithm.

To illustrate this algorithm,
Figure 3 displays the search of the graph
of Figure 2(a) working forwards from s,
backwards from t, and backwards from a
single subgoal c. Note that the subgoal
only helped here because it was on the
solution path: the saving is small,
because the problem is small. The
advantages of the extension to subgoals
will only be apparent on large problems,
and especially where looking for any path,
when the fortuitous choice of the subgoal
on the minimal path is not necessary.

To obtain some insight into the
savings possible with subgoals, let us
analyse a special class of graphs. Let
us define a binary tree as a graph in
which all nodes have exactly two edges
entering them and two edges leaving them,;
all edges have unit weight and there are
no loops. Trees must hence have
infinitely many nodes. Two examples are
shown in Figure 4. (Note that we are not
intending rooted trees here.)

In a binary tree, startlng at a
point s there are exactly 2 paths of
length k. There may be 2 or less nodes
at distance k, depending on whether paths
converge or not. Suppose that we are
required to search a binary tree for a route
between two nodes, s and t, of minimal
distance K apart (there may well be routes
of length greater than K as well). We
shall consider only non-heuristic searches
with each partition taken in turn, and no
coarsening to remove redundant paths.

Then a unldlrectlonal search will undergo
between 2" and 2° iterations.

Session No. 15 Heuristic Problem Solving

Simple bidirectional search will

undergo between 2.2 agnd 2. 20K/@*T
iterations, where [K/2] means the integral
part of K/2.

If we have a bidirectional subgoal
(i.e. a subgoal searched in both directions,
thus defining a pair of partitions) situated
halfway along a minimal path, the number of
iterations will be between 4.2 gnd
4 241 In general with n-1
bidirectional subgoals at equal distances
along the same minimal Eath the search will
involve between 2n.21*"" gnd 2n.2Mk/2ni*?
iterations. An arbitrary set of n-1
bidirectional subgoals cannot be better than
this last case, but cannot be worse than for
n times the figure for simple bidirectional
search. A graphical comparison is given
in Figure S, for the case K = 100.

The use of subgoals in problem
solving is a gamble, for you may take
longer to solve the problem, but you may
well save dramatically: however, you
cannot as a result fail completely if the
subgoals are used within the framework of
a multiple branch-and-bound algorithm,
for if all else fails, the search must
succeed as a unidirectional search.

0 References

1. Barrow,H.C. and Popplestone,P.J ., "Relational
Descriptions in Picture Processing”, Dept. of
Machine Intelligence and Perception, Univ. of
Edinburgh. July 1970.

2. Purstal],P.M.,"Tree searching methods with an
application to a network design problem”,
Machine Intelligence 1, pp65-87. Oliver & Boyd,
Edinburgh. 1967

3. Doran,J.,"An approach to automatic problem-
solving”, Opus sit. pp1C5-123. 1967

4. Dijkstra,E.,"A note on two problems in connec-
tion with graphs", Numerische Mathematik. 1,
pp269-271. 19509.

5. Hart,P.,Nilsson,N.J. and Raphael,B.,"A formal
basis for the heuristic determination of
minimum cost paths", |[EEE. SSC-I pp1CO-1C7,
July 1968.

6. Lawler,E.L. and Wood D.E. "Branch and-bound
methods: a survey", Operatlons Research.14.
pp099-719. 1966. =

/. Montanari,Ugo,"Heuristically guided search and
chromosome matching”, Artificial Intelligence -
1, pp227-245. 1970.

8."Morris,R."Scatter Storage Techniques”,
ACM,11,1,pp38-44,Jan.3968.

9. Pohl7lra,"Bi-directional and Heuristic Search
in Path Problems", Stanford Linear Accelerator
Centre Report 104, May 1969.

10. Tewarson,R.P. "Computation with Sparse
Matrices", SIAM Review. 12.4.PP 527-544. 1970.

Comm.

