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Abstract 

The branch-and-bound algorithm is stated 
in general i ty, and i l l us t ra ted by two 
applications, unidirect ional graph search, 
and reducing a sparse matrix to i t s 
minimal band form. The algorithm is then 
generalised to mult iple par t i t ions , 
applied to bid i rect ional graph searching 
for both heurist ic and non-heuristic 
searches, and further extended to graph 
searches and problem solving with subgoals. 
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1.0 Introduction and Summary 

The branch-and-bound algorithm is a 
simple technique for the optimisation 
search for the minimum (or maximum) of 
a funct ion. It is very basic to 
a r t i f i c i a l intel l igence and operations 
research, and has been repeatedly 
rediscovered and used in the solution of 
hard problems. (1,2,6,9) In th is paper 
I shal l give a general statement of the 
algorithm, and then consider the 
application to reducing a sparse matrix 
to the band matrix of minimal band-width. 
After th is I shall show that the well 
known graph searching methods (4,5,9) are 
somewhat disguised examples of branch-
and-bound. 

This simple branch-and-bound idea 
w i l l then bp extended to a more complex 
optimisation search with multiple star t ing 
points, in which form it w i l l be used to 
solve the bid i rect ional graph-search 
problem, giving a new unif ied view of 
exist ing solutions, both heurist ic and 
non-heuristic. F inal ly the application 
of multiple branch-and-bound is further 
extended to cover the use of subgoals in 
graph search and problem solving. 

Graph searching as a problem area 
in a r t i f i c i a l intel l igence is important 
because many problems can be represented 
as a graph which requires a path to be 
found between two given nodes (3,5,9) . 
Any path between the start and termination 
nodes would constitute a solut ion, 
but a path of minimal length (= number of 
steps) can be thought of as the most 

'elegant' solut ion, and is often aimed fo r . 
Hence icneral Problem Solving becomes 
f inding the shortest path in a graph, which 
in turn i s , as we shal l see, a special 
application of the branch-and-bound 
al Torithm. 

However, not. a l l problems are most 
natural ly formulated as graph searches; 
for example the t rave l l ing salesman problem 
is expressible as a shortest path problem, 
but occurs more natural ly as a branch-and-
bound application (6). Another example is 
a matching problem in chromosome analysis 
considered by Montonari (7); the natural 
way to tackle this problem is d i rect ly 
using branch-and-bound, but the author 
laboriously converts the problem to a 
graph search and then applies the algorithm 
of Hart, Nilson and Raphael (5). 
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The actual lower bounding function g 
depends upon the part icular problem and In 
that sense is a 'heurist ic funcztion'. The 
more information about the problem that is 
used, the closer g approaches the 
greatest lower bound g*, the more e f f ic ient 
is the algorithm as outlined above. One 
could even contemplate using any estimate of 
the greatest lower bound, recognising that 
if the bounding condition is v io lated, a 
non-optimal solution may be returned, but 
the error could be no more than the error 
in the estimator. 

In the form given, the algorithm 
may only f ind a candidate solution point 
after considerable searching and branching: 
in practice this is undesirable since it may 
be necessary to terminate search early with 
a suboptimal solut ion, because of exceeding 
either storage or time l im i t s . This requires 
a modification to the basic algorithm to 
force the search to refine part i t ions un t i l 
a possible solution point has been found -
and then to continue searching un t i l the 
minimal point is found; one way to do this 
would be to subtract a depth factor from the 
bounds to bias the search towards depth. An 
additional advantage to locating a potential 
solution point early in the search is that 
pruning of the search tree is possible, 
while we acquire the disadvantage of 
(possibly) more i tera t ions. Note however 
that we are s t i l l guaranteed f inding the 
optimum providing that early termination is 
not forced upon us. 

2.1 Application to Band Matrix Reduction 

A sparse matrix is one in which the 
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majority of the elements are zero: these 
arise in many problems such as engineering 
structural analysis.(10) Storing sparse 
matrices in the usual way is wasteful; one 
solution is to store only the non-zero 
elements, for example by using hashing 
methods.(6) This leads to special numerical 
techniques.(10) A preferred solution would 
be to reduce the matrix by row and column 
permutations to a band matrix ( i . e . a matrix 
in which a l l non-zero elements l i e in some 
band close to the diagonal), for which only 
the band elements need be stored: the 
advantage is then that standard and ef f ic ient 
numerical techniques are applicable. The 
reduction to a band matrix is normally 
carried out by ad hoc methods, by sk i l led 
humans pr ior to computer runs: what is 
desired is a guaranteeable method for 
performing this reduction. The branch-
and-bound algorithm proved ideal . 

For an n by n matrix, there are 
(n!)2 possible configurations, and 
exhaustive searches are untenable. The 
technique used was to par t i t ion by row or 
column selection. Assuming for the moment 
that the lower bound function g is 
available (this w i l l be outlined la te r ) , 
then the f i r s t par t i t ion of the t o t a l i t y of 
possible configurations is to consider the 
n possible selections of part icular columns 
of the or ig inal matrix for the f i r s t 
posit ion in the reduced matrix. Among 
these n subsets, the one with smallest 
lower bound is selected, and the n possible 
selections of rows for the f i r s t posit ion 
of the reduced matrix considered. Among 
the result ing 2n-l subsets that with minimal 
lower bound is selected for row or column 
par t i t ion as appropriate, and so on, for a 
minimum of 2n par t i t ions . 

The lower bound function computes a 
best possible bandwidth for a par t ia l l y 
determined matrix (with the f i r s t m columns 
fixed and the f i r s t m or m-1 rows fixed) 
as the maximum of the following-
( i ) for the fixed portion at top l e f t ; 
count from the diagonal of the fixed 
portion along the rows and columns to 
locate the last non-zero.element; within 
the fixed portion (m by m or m by m-1) the 
elements are f ixed, while beyond the fixed 
portion it is assumed that the non-zero 
elements could be positioned immediately 
following the fixed columns or rows. Repeat 
this for each row and column within the 
fixed port ion, taking the maximum count 
found. 
( i i ) for the unfixed portion at bottom 
r igh t ; count the number of elements in each 
row and column and assume that these could 
be placed symmetrically about the diagonal -
hence bound to bandwidth here is maximum of 

[(count + 1)/2] where [I] means the integ 
part of I . 

er 

Figure 1 i l l us t ra tes the method for a 
4 by 4 matrix of bandwidth 2. Figure 1(a) 
shows the or ig inal matrix and Figure 1(b) 
i l l us t ra tes in tree form the complete search. 
Each node is labelled with the value of the 
lower bound function g, and the matrix to data; 
the elements whose positions are f ixed appear 
in the upper left-hand submatrix marked with 
thick l i nes . The search for the next node 
to develop selects, when more than one node 
has the minimal value, that node nearest the 
bottom of the t ree. Each level of the tree is 
labelled to show what development is being 
made, which row or column is being f i xed : 
each branch of the tree is labelled to 
indicate which row or column in the or ig ina l 
matrix is the one that is being f ixed in the 
posit ion indicate for the whole l eve l . 

FIGURE 1. The application of Branch-and-bound 
to reducing a sparse matrix to i t s minimal band 
matrix form. 

(a) the or ig inal matrix 
(b) the search t ree: branches are label led 

with the row or column of the or ig inal being 
f ixed in the posit ion shown at the l e f t ; nodes 
are labelled with the bound, and the f ixed 
port ion in the upper l e f t marked o f f . 
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The algorithm as actually implemented 
( in Algol) uses a depth forcing i n i t i a l 
search (as discussed previously) so that 
suboptimal results could be returned on 
exceeding storage bounds. Search length 
has been found to be very dependent upon 
the part icular matrix, varying from searches 
direct to goal (as in the example) to 
searches where only suboptimal (but acceptable) 
solutions could be found. 

3.0 Graph Searching as Branch-and-bound 

We shall now examine graph searching 
and apply the preceding algorithm to i t s 
solut ion. We wish to f ind the shortest 
route between two nodes s and t in a graph, 
such as that i l lus t ra ted in Figure 1. 

We shall define a weighted directed 
graph as an ordered set (N,F,w) where N is 
the set of nodes of the graph; E is a set 
of ordered pairs of nodes which we cal l the 
edges of the graph, saying that an edge 
(a,b) goes from node a to node b; and w is 
the weight or length function, mapping 
E to the non-negative real numbers, saying 
that w(a,b) is the length of edge (a,b). 

The set X to be searched is the set of 
a l l possible loop-free routes from s to t, 
and the subsets of routes which w i l l be used 
in par t i t ions of X w i l l be those which start 
at s and have an i n i t i a l part in common. 
The function g w i l l give the length of the 
path in common - a l l routes in the set must 
obviously be at least that long. 
Part i t ioning w i l l be by extending the i n i t i a l 
path by one edge for a l l possible edges 
eliminating those which introduce loops: 
each of these extended i n i t i a l paths defines 
a subset of the refined pa r t i t i on . A 
subset of the par t i t i on comprises a single 
point when the defining i n i t i a l path extends 
from s a l l the way to t. 

With these de f in i t ions , the graph 
search becomes a branch-and-bound problem, 
and the search of a simple graph is 
i l l us t ra ted in Figure 2. In part (a) 
the graph is shown, a directed graph with 
edge weights as label led. The search 
process is shown in part (b)t subsets of 
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the par t i t ion are named by the path that is 
common (thus <sac> is the set of a l l paths 
star t ing at s going through a and then c 
and f ina l l y ending at t ) . The search 
starts with the par t i t ion consisting of 
the single set <s> of a l l possible routes 
from s to t. This is then part i t ioned into 
two subsets, <sa> a l l those routes from s 
through a to t and <sb> a l l those routes 
from s through b to t. These have bounds 
1 and 2 respectively. The minimum of these 
is selected for further refinement, and thus 
<sa> is refined to <sac> and <sad> with 
bounds 6 and 7 respectively. And so on un t i l 
stage 8 where the search for pa r t i t i on -
subset of minimum bound g finds <sbct> which 
contains a single point which is therefore 
the minimum. Part (c) of Figure 2 shows 
the search process displayed as a tree with 
nodes labelled inside by subset and outside 
by bound. The sequence in which the tree 
nodes are developed ( i . e . subsets 
part i t ioned) is in ascending order of bound, 
with development from le f t to r ight where 
nodes have equal bound. 

This search procedure is almost the 
D i j ks t ra (4) graph search method, excepting 
that some redundant routes are eliminated 
in the Di jkstra method - for example, having 
two sets of routes with i n i t i a l parts ending 
in c ( i . e . <sac> and <sbc>) is wasteful 
and only that of small bound <sbc> need be 
retained after stage 4: ef fect ively one is 
coarsening the par t i t ion by forming the 
union of the two sets, and computing the union 
bound from g(A U B) = min(g(A),g(B)). Note 
that this pruning is also retroactive in the 
sense that some unions would occur between a 
new subset and one that was previously 
part i t ioned (for example between 
<sacd> and <shcd>), but in th is case cannot 
change the ear l ier bound (of <sbca>) since 
g has the monotonic property g(A) > g(B) 
i f A C B. 

The branch-and-bound algorithm can 
further be extended to heur ist ic graph search 
in a way comparable to the extension of the 
Di jkstra Algorithm.(6,9) Suppose that we 
possess a heur ist ic function h(x,y) which 
estimates the distance through the graph 
from node x to node y. If h(x,y) < d(x,y) 
where d(x,y) is the ' t rue ' minimal distance 
through the graph from x to y, then using 
the bounding function 

•g(<s...x>) = w(<s...x>) + h(x,y) 

(formed from the length of the part in common 
plus the estimate of the distance l e f t to go) 
gives a lower bound for the set of a l l paths 
i n i t i a l l y along <s...x> and thence to t. 
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Using th is g in the branch-and-bound 
algorithm applied to graph search leads to a 
guided search, guaranteed to return the 
minimum. Again irrelevant repetit ions 
can be eliminated - if two par t ia l paths 
have a common end point, one can coarsen 
the par t i t i on as in the non-heuristic case, 
but there is a note of caution: retroactive 
coarsening could prune a branch of the tree 

and not the new leaf, unless the monotonacity 
property holds for g. This is the 
"consistency condition" of Hart et al , (6) 
and allows a ' t i d y ' algorithm, but in no way 
affects the correctness of the solution 
obtained. 

A note on difference of emphasis 
between the approach here, and the more 
standard approach (6,9) to graph search, must 
be made to avoid confusion. We have seen 
above that in par t i t ions , sets defined by 
par t ia l paths with common end points should 
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in the interests of eff iciency be united: 
the important parameter of the subset is 
the terminal node of the common i n i t i a l 
path. In the standard approach the 
emphasis is upon the nodes, with the common 
paths defined imp l i c i t l y by some form of 
chaining. The search for the minimum for 
next branching is over the node set, 
res t r ic t ing the search to a subset of 
nodes which are "open" or "v i s i ted" with 
the consistency condition ensuring that 
previously "closed" or "developed" nodes 
do not need to be re-opened. Relating 
this terminology to our viewpoint, the 
open nodes are those at the end of a 
common path for some set in the pa r t i t i on , 
and these become closed when the corres­
ponding subset is selected for subdivision. 

The approach to graph search given 
here, and the standard approach, lead to 
the same algorithms: the approach via 
branch-and-bound serves to add fresh 
insight into the workings of unidirect ional 
graph searches. Later, in more complex 
searches, the branch-and-bound approach 
w i l l f u l l y j us t i f y i t s e l f with the 
generation of powerful new algorithms. 

4.0 Multiple Branch-and-Bound 

The natural extension of the branch-
and-bound algorithms discussed in section 
2 is to use more than one pa r t i t i on , 
ref in ing each par t i t ion in turn (or in some 
arbitrary order). At each stage of the 
search we would have an effect ive 
par t i t ion on the set of the product of the 
separate par t i t ions : 

The algorithm fol lows, again minimising 
a function f on a set X, using as an aid a 
lower bound function g and a new function q. 
The minimum w i l l be located in a subset of 
the product pa r t i t i on , and since this grows 
much more rapidly than the individual 
component par t i t ions , the actual search 
would be expected to be considerably more 
e f f i cient. 
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using the multiple branch-and-bound 
algorithm. Two part i t ions would be used, 
generated from par t ia l paths anchored at 
either end: thus one par t i t i on is determined 
by subsets defined by common i n i t i a l paths, 
(as in the Di jkstra search) while the other 
par t i t ion is determined by subsets defined 
by common f ina l paths. Two subsets (one 
from each par t i t ion) intersect in a point 
when they both have the same extreme point 
on their defining par t ia l paths. Heuristic 
and non-heuristic searches d i f fe r both in 
the lower bound function used (the function 
g) and in the way these combine on in ter ­
section (the function q). This double 
d is t inct ion is important. The general 
b id i rect ional graph-search w i l l be detailed 
below, before proceeding further: ref ine­
ments of eff iciency w i l l be overlooked in 
the interests of c l a r i t y , and as in the 
unidirectional form, unnecessary par t ia l 
paths w i l l be retained. 

The problem is to f ind the shortest 
path through a graph from node s to node t. 
The set to be searched is a l l possible 
loop-free paths start ing at s and terminating 
at t. We shall ca l l the two par t i t ions 
7T and TT and label the elemental subsets s t 
of the part i t ions by the par t ia l paths 
defining them (as we did previously in 
section 2.1). X w i l l have two representa­
tions as <s- and <t>. 



3.3. 

3.4. The previous step w i l l have 
produced a lot of new single 
point sets in the product 
par t i t i on Search a l l 
additions to ( i . e . search 
the set for a l l 

to 
see whether these are single 
points (the matching of the 
last symbol in the label of 
the set of with the f i r s t 
symbol of the label for the 
set of determines th is) 

3.5. 

TERMINATION 

STEP 4. 

STEP 5. 

Update to the minimum of 
g(Y) for Y 

is path of minimal length M1N. 

Heuristic and non-heuristic search 
have the following part icular bounding 
functions g and 

(1) Non-heuristic 

The bounding function g is the 
length of the common path 

The combination function q is given by 

The intersection of two sets implies having 
two par t ia l paths (one from each set) which 
must be common to a l l paths in the 
intersection set (note that our sets arc 
such that one path cannot be included in 
the other): hence one can compute a 
bound for the intersection simply as 
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the to ta l length of path common to a l l paths 
in the set. 

Heuristic 

The bounding function g is given by 

where h(a,b) is the heur ist ic estimator of the 
minimal path length from a to b, and must 
underestimate. For the one par t i t i on 

and for the other par t i t i on 
The combination function is given by 

The usual form of these algorithms 
includes an extra coarsening of the par t i t ion 
at Step 3.3, removing redundant sets as in 
the unidirect ional case. Two dif ferent 
sets with labels matching at beginning and 
end need not both be retained, only that 
with shorter defining path being needed. 
The result ing algorithms for b id i rect ional 
graph searching are similar to exist ing ones. 
(9), The heurist ic form is almost ident ical 
to the general algorithm VGHA of I ra Pohl 
(9), but our non-heuristic form is neither a 
simple special isation of VGHA with h(x,y) = 0 
nor a restatement of Pohl's VGA, but is 
something of a marriage of the two. The 
heur ist ic and non-heuristic cases have in the 
past been tackled separately: here they are 
united in a single general algorithm. 

That our algorithms work follows from 
the fact that they are part icular cases of 
the multiple branch-and-bound algorithm: 
there is no need to worry about the subtle 
termination conditions that have proved 
troublesome in the more conventional 
approaches.(9) 

4.2 Graph searches with subgoals 

In graph searching, why should we stop 
at a mere two par t i t ions? We can introduce 
further par t i t ions by choosing a point as a 
possible intermediate node, and then in 
addition conduct further explorations from 
there. This in problem solving is the 
sett ing up of subgoals. No matter what 
the number of subgoals, whether these are 
added to during search, whether they are in 
some sense paral le l or sequential ( i . e . 
whether they are al ternat ives, or whether 
the solution path is thought l i ke ly to pass 
through them both), the algorithm w i l l be 
the same. Further, the search can be 
heur is t ica l ly guided or not, using the 
functions g and q as previously given. 

(2) 
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if TT . is par t ia l }. 

Note that II is not necessarily a 
par t i t i on since i t s component subsets are 
not necessarily d i s jo in t . But this does 
not matter, and using this n at Step 3.4 
gives the required algorithm. 

To i l l u s t r a te this algorithm, 
Figure 3 displays the search of the graph 
of Figure 2(a) working forwards from s, 
backwards from t, and backwards from a 
single subgoal c. Note that the subgoal 
only helped here because it was on the 
solution path: the saving is small, 
because the problem is small. The 
advantages of the extension to subgoals 
w i l l only be apparent on large problems, 
and especially where looking for any path, 
when the fortuitous choice of the subgoal 
on the minimal path is not necessary. 

To obtain some insight into the 
savings possible with subgoals, let us 
analyse a special class of graphs. Let 
us define a binary tree as a graph in 
which a l l nodes have exactly two edges 
entering them and two edges leaving them; 
a l l edges have unit weight and there are 
no loops. Trees must hence have 
i n f i n i t e l y many nodes. Two examples are 
shown in Figure 4. (Note that we are not 
intending rooted trees here.) 

In a binary t ree, s tar t ing at a 
point s there are exactly 2K paths of 
length k. There may be 2k or less nodes 
at distance k, depending on whether paths 
converge or not. Suppose that we are 
required to search a binary tree for a route 
between two nodes, s and t, of minimal 
distance K apart (there may well be routes 
of length greater than K as we l l ) . We 
shal l consider only non-heuristic searches 
with each par t i t i on taken in tu rn , and no 
coarsening to remove redundant paths. 
Then a unidirectional search w i l l undergo 
between 2K-1 and 2K i terat ions. 

Simple b id i rect ional search w i l l 
undergo between 2.2[K/2]-1 and 2.2 [K /2 ]+1 

i te ra t ions , where [K/2] means the integral 
part of K/2. 

If we have a bid i rect ional subgoal 
( i . e . a subgoal searched in both direct ions, 
thus defining a pair of par t i t ions) situated 
halfway along a minimal path, the number of 
i terat ions w i l l be between 4.2[K/4]-1 and 
4.2[K/4]+1 . In general with n-1 
bid i rect ional subgoals at equal distances 
along the same minimal path the search w i l l 
involve between 2n.2[K/2n]-1 and 2 n . 2 [ K / 2 n ] + 1 

i te rat ions. An arbi trary set of n-1 
b id i rect ional subgoals cannot be better than 
this last case, but cannot be worse than for 
n times the figure for simple bidirect ional 

search. A graphical comparison is given 
in Figure S, for the case K = 100. 

The use of subgoals in problem 
solving is a gamble, for you may take 
longer to solve the problem, but you may 
well save dramatically: however, you 
cannot as a result f a i l completely if the 
subgoals are used within the framework of 
a multiple branch-and-bound algorithm, 
for if a l l else f a i l s , the search must 
succeed as a unidirect ional search. 
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The algorithm w i l l be the f u l l 
multiple branch-and-bound version of the 
previous bid i rect ional graph search, but 
with one generalisation. A l l except 
one of the part i t ions w i l l be permitted 
to be p a r t i a l , by which we shall 
understand that while the sets of the 
individual part i t ions must s t i l l be 
d i s jo in t , they need not necessarily unite 
to the complete set; the appropriate 
generalisation of the product par t i t ion 
w i l l be 


