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ABSTRACT 
Networks can be used to represent syntactic 

trees of the semantic relations that hold between 
words in sentences. They can be alternately 
symbolized as association l i s t s or conjoined sets 
of t r i p les . A semantic net represents a sentence 
as a conjoined set of binary predicates. An algor­
ithm is presented that converts a semantic net­
work into predicate calculus formalism. The 
simpler syntax of semantic network representa­
tions in contrast of ordinary predicate logic 
conventions is taken as an argument for their 
use in computational applications. 
Descriptive Terms: Semantic networks, Predicate 
logic, Natural language, Computational l inguis­
t i c s , Association l i s t s . 

I. INTRODUCTION 
In approaches to natural language question 

answering, it is generally agreed that question 
and text are to be transformed to some formal 
language representation. After this has been 
accomplished, answering a question phrased in a 
formal language from a data base represented in 
the same formal language is a process of theorem 
proving where the data are taken as axioms and 
the questions as theorems to be proved. 

At this point two approaches are commonly 
found in the l i te ra ture . One represents question 
and data in the syntactic conventions of the 
predicate calculus and uses standard theorem 
proving techniques such as Robinson's resolution 
algorithm supported by heuristic selection of 
relevant axioms (see Green & Raphael (4), Sande-
wall (9), Darlington (2)) . The other represents 
question and text as at t r ibute value l i s t s or 
semantic nets (which w i l l shortly be shown to be 
equivalent) and uses a matching algorithm guided 
by heuristic choices of relevant data. This 
approach is seen in Qui l l ian (6), Raphael (7), 
Colby et al (1), Schwarcz et al. (11). 

In the recent l i terature Sandewall (10) and 
Palme (5) have each presented more or less for­
mal developments of semantic network representa­
tions as predicate logics. Thompson (13) shows 
the s imi lar i ty of a l inguis t ic case-structure 
analysis to predicate calculus statements. 

From yet another point of view, this paper 
informally shows the s imi lar i ty of semantic net­
works to predicate calculus representations and 
argues that the semantic net syntax is computa­
t ional ly simpler and therefore to be preferred. 

I I . THE CORRESPONDENCE AMONG TREE, NETWORK AND 
ATTRIBUTE VALUE REPRESENTATIONS OF DISCOURSE 

Linguists are accustomed to representing the 
structure of natural language sentences as trees. 
The following sentence El could be represented as 
in Figure 1. 

El) John made chairs with tools on October 
20th in Austin. 

For computational convenience Figure 1 can be 
represented also as an attribute-value l i s t as in 
Table 1. 

Table 1. Attribute-Value Representation of 
Syntactic Structure of El 

*This research was supported by: The National 
Science Foundation, Grant GJ 509 X 

Another l inguis t ic representation for El sug­
gested by Fillmore (3) is shown in Figure 2. An 
attribute-value representation of this structure 
is also shown there. If the node values "John", 
"chairs", " too ls" , etc. are taken as symbols 
with unambiguous denotation, and AGT, OBJ, etc. 
as semantic relat ions, then Figure 2 is a seman-

*Note: 1st, 2nd, etc. is an 
arbi trary notation for 
successive branches 
from a node. 
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t i c network. The implied def in i t ion is that a 
semantic netvork is a system of unambiguous 
symbols interconnected by definable semantic 
relat ions. 

Figure 2. Case structure of El and i t s 
Attribute-Value Representation 

Looking at the attribute-value representation 
of Figure 2, we can see that it can also be 
represented as a conjoined set of t r ip les as 
follows: 

This is a simple and convenient representation 
for computational purposes. I t s logic is explained 
later . 

From this discussion it can be seen that the 
"node-arc-node" structure of networks is a syn­
tax of symbolic notation that can equally well 
represent a syntactic tree structure or the 
semantic relations among elements of a sentence.* 
In either case, the net can be symbolized as an 
attribute-value l i s t where the attr ibutes are 
relations and the values are whatever is repre­
sented on the nodes. The attribute-value l i s t , 
in turn, can be represented as a set of t r ip les 
where each value may be another set of t r i p les . 

Before proceeding into the next section con­
sidering the logical notation for this structure, 
it is worth mention that Williams (14) developed 
a network representation for predicate calculus 
statements following or iginal graphic notations 
she attr ibutes to Frege. We take this as support 
* In Simmons & Slocum (12) the representation is 
developed for multi-sentence discourse and a 
network is formally defined. 

of our eventual conclusion that semantic nets 
can be a fu l l y val id representation of the under­
lying logic of a discourse where the nodes are 
unambiguous in their denotation and the relational 
arcs are f u l l y defined. 
I I I . SOME LOGICAL ASPECTS OF SEMANTIC NETWORKS 

The principal value of using semantic nets for 
the structure underlying natural language sen­
tences is that they are closer to both the form 
and the meaning of natural language than other 
proposed structures, such as f i r s t order predi­
cate calculus. In this and the following sections 
we show that simple semantic nets can be mapped 
d i rect ly into ordinary f i r s t order predicate 
calculus, yet they have several computational 
advantages because of their proximity to natural 
language, 

One part icular ly i l luminating interpretation 
of semantic nets is that which considers each 
node as the name of a set of processes and each 
relat ional arc as a rest r ic t ion on the sets 
named by the nodes it connects. Thus the set of 
a l l "makings" includes a l l events or processes in 
which an agent A makes an object B, with an 
instrument C, on time D, at location E. A, B, C, 
D and E must satisfy certain restr ict ions based 
on their part icipat ion in deep case relat ions, to 
the verb "make". For example, A, as an agent, 
must be an animate inst igator. Similarly "make" 
i t se l f is restr icted to that subclass of a l l 
verbs which have agent, object, instrument, time 
and locative cases. 

In a specific sentence the set of "makings" 
may be restr icted further. For example in sen­
tence El we have the small subclass of "makings": 

"makings by John, of chairs, with tools, 
on Oct. 20, at Austin" 

Referring to Figure 3 we see that each node in 
the semantic network is also restr icted by i ts 
relations to other nodes. Thus C3 refers to a 
subset of processes which is contained in the 
set called "chairs" and in addition serves in 
the object relat ion to a certain semantically 
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restr icted subset of "makings" represented by 
node CI. 

In this scheme the relations AGT, OBJ, TIM 
and LOC are defined in two ways. The f i r s t is In 
terms of their logical import; i .e . (A AGT B) 
where A is a token of make and B of John, ind i ­
cates that "John" is an argument of the predicate 
"make". The second is by the restr ic t ions they 
impose on the nodes they connect. It is these 
restr ict ions as well as the interconnections of 
nodes which determines the semantically res t r ic ­
ted sets. 

A consequence of this viewpoint is that the 
statement "John made chairs with t o o l s . . . " can 
be tested for truth value with reference to a 
data base (or model) by successive intersections 
of members from the set of binary predicates that 
represent I t , with the set of binary predicates 
that make up the data base. To produce such a 
data base, every sentence describing an instance 
of a "making" is cross-referenced by i t s semantic 
relations of AGT, OBJ, INST, etc. to part icular 
specif iers, e .g . , "John", " too ls" , "chairs", etc. 
thus implying the set restr ict ions that have 
been described. And each nominal participant in 
a "making" Is cross-referenced by -AGT, -OBJ, 
etc. to i t s token of the verb. 

In the simplest case such successive Inter­
sections are performed by a simple matching a l ­
gorithm. To answer a question simply f ind the 
set of t r ip les matching each t r ip le in the ques­
t ion. Methods similar to this are used in many 
question answering programs. A more sophisticated 
algorithm could incorporate various axioms for 
set theory and heuristics based on such informa­
tion as the size of the sets being intersected 
or the l i s t of semantic relations which determine 
the sets. 

It appears that most questions can be answered 
e f f i c ien t l y by the recursive use of a simple 
matching algorithm. More complicated questions 
may require extensive use of the concept of set 
restr ic t ions and Intersections. Semantic nets 
are well suited for this kind of question answer­
ing, but they have the additional virtue of 
being easily transformed into more famil iar 
logics such as f i r s t order predicate calculus. 
Following a more formal discussion of semantic 
nets and the representation of quantif iers we 
give an algorithm for converting simple nets 
Into the predicate calculus. 

A semantic net is a set of t r i p l es , (A R B), 
where A and B are nodes and R is a semantic 
re la t ion. Nodes must be elements of a set of 
unambiguous symbols and semantic relations may 
be any of several defined or definable relations 
fa l l i ng into one of the following categories: 

1. Connectives such as OR, NOT, SINCE, etc. 
2. Deep case relations such as AGT, OBJ, 

DAT, etc. 
3. At t r ibut ive relations such as MOD, POSSES­

SIVE, HASPART, ASSOC, etc. 
"TOK" meaning " is a token of" 
"Q" meaning " is quantif ied" 

4 
5 

Some of these relations are discussed elsewhere 
(see (12)). 

Because of the special significance of the 
relat ion Q and i t s consequences for the transla­
tion algorithm, some discussion is warranted 
here. For the purposes of the algorithm which is 
to follow we give, in Table 2, a preliminary 
analysis for some of the kinds of quantif ication 
which are needed. Note that such quantif iers as 

"many", "most of the" and "almost a l l " are 
omitted from the table although they might be 
used in semantic nets. 

6. Set relations such as SUP, SUB, EQUAL, etc. 

1. In the predicate calculus formula, above, F 
represents the portion of the formula which does 
not contain x as a free variable, while P(x) is 
the portion which does. 
2. Equivalent predicate calculus expressions. 
3. Alternate logical meanings of "SOME-INDEF". 

Table 2. Examples of Quantifiers 
in Semantic Nets 

We do not need a complete logical def in i t ion for 
a concept in order to use it in the semantic 
net. As an example of the complexity which may 
be avoided, consider the phrase "some f i sh " . 
This may mean some one f i sh , several f i sh , or 
parts of one or more f i sh . In a semantic net we 
use the quantif ier "SOME-INDEF" which allows any 
of these meanings. In predicate calculus we 
would be forced to select one of the formulas 
given in Table 2 or perhaps a complicated dis­
junction of a l l the possible formulas. The con-
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sequence for question answering of such vagueness 
in the semantic net is of course a reduced pre­
cision in the correspondence between question 
and answer. Thus answering the question 

"Did John eat a f ish?" 
from 

"John ate some f i s h . " 
leads to an answer of "maybe" ref lect ing the 
imprecision of the match. 
IV. THE TRANSLATION ALGORITHM 

The algorithm given here is designed to con­
vert one representation of semantic nets to 
predicate calculus. Several restr ict ions are 
made to simplify the presentation. No higher 
order predications are handled by the algorithm 
(such as would normally be required to handle 
"he moves slowly"). It is assumed that connec­
tives can be treated l ike verbs, while, in fact , 
certain connectives may require complex transla­
t ion algorithms in themselves. Also, relat ive 
clauses are not allowed. In sum, we are dealing 
with a subset of semantic nets which could not 
serve as a semantic structure for natural lan­
guage . 

Nevertheless, the algorithm does show that 
simple semantic nets have a sound logical 
structure, i . e . , f i r s t order predicate calculus. 
An algorithm for more complex semantic nets 
appears to be dependent only upon our understand­
ing of the concepts we wish to allow. 

The algorithm handles, in turn, connectives, 
verbs, nouns, and noun modifiers. It uses push­
down stacks in the customary way. We start with 
pushdown stacks for the variables G, J, J ' , F 
and F', a l l empty. Capital le t ter variables (A) 
denote specific formulas, nodes or arcs under 
consideration, while small let ter variables (a) 
indicate any node or arc. 

Algorithm for converting semantic nets to 
predicate calculus: 

1. Start with a conjoined l i s t of t r ip les 
representing the semantic net of a d is­
course. Call this l i s t , G. Go to step 2. 

2. Set J to n i l . Go to step 3. 
3. If there are any t r ip les in G of the form 

(A TOK B) such that B is a connective, and 
such that there are no t r ip les (c r A) 
where (c TOK d) is in G and d is a connec­
t i ve , then select the f i r s t such t r i p l e , 
ca l l it H, and go to step 4. Otherwise go 
to step 12. 

4. For each connective (or verb) there is a 
prescribed ordering for i t s arguments. 
For example, the verb "give" has the order­
ing AGT, OBJ, DAT. This ordering, specified 
in the lexicon, is called the "case argu­
ment description for the connective (or 
verb)". Collect and order (by case argu­
ment description) a l l t r ip les of the form 
(A r c) such that A is the f i r s t member of 
H. Form an n-tuple (B c1 c2....cn-1 ) such 
that B is the th i rd member of H and the 
t r i p le (A ri ci is the i t h t r i p le in the 

prescribed ordering. Call this n-tuple, J. 
Set J' equal to J with the f i r s t member 
removed. Remove from G and a l l values of 
G on i t s stack a l l t r ip les whose f i r s t 
member is A. Go to step 5. 

5. If J' has no members then set G=GAJ and 
go to step 6. Otherwise go to step 7. 

6. If the pushdown stack for G is empty then 
go to step 2. Otherwise set J and J' to 
equal the top members of their respective 
stacks. Substitute G, in J, for the f i r s t 
element of J ' . Remove the f i r s t member of 
J ' . Set G to equal the top member of i t s 
pushdown stack. Remove the top member of 
the stacks G, J and J ' . Go to step 5. 

7. If there is a t r ip le in G of the form 
(a TOK b) such that a is the f i r s t element 
of J' and b is a verb then ca l l this 
t r ip le K and go to step 8. Otherwise 
select the t r ip le H-(a TOK b) such that a 
is the f i r s t element of J1 and b is a 
connective. Push G, J and J' onto their 
respective stacks. Set G to n i l and go 
to step 4. 

8. Paralleling the procedure used for connec­
tives in step 4, form an n-tuple (B c1 c2 
. . . c n - 1 ) such that B is the third member 
of K and ci is the third member of the 
i t h t r ip le in the ordering prescribed by 
the case argument description of the 
verb. Call this n-tuple, F. Set F' equal 
to F with i t s f i r s t member removed. Remove 
from G and a l l values of G on i t s stack 
every t r ip le whose f i r s t member is the 
f i r s t member of K. Go to step 9. 

9. If F' has no members then go to step 11. 
Otherwise go to step 10. 

10. Call the last element of F', D. Form a 
conjoined l i s t , ca l l i t P', o f a l l t r i ­
ples in G of the form (D r a) except the 
t r ip les for which r=TOK or r=Q. Convert 
the t r ip les in P' to prefix notation, 
(r D a). Set P=P'A(E D) where (D TOK E) 
is in G. Locate the form specified for the 
X of (D Q X) in the table of quantif iers 
(Table 2). Let the value of D be the 
bound variable in that form and substitute 
P and F as they have been constructed. 
Call the resul t , F. Remove a l l t r ip les 
whose f i r s t member is D, from G. Remove 
D from F'. Go to step 9. 

11. If J is n i l , set G=QvF and go to step 12. 
Otherwise substitute F, in J, for the 
f i r s t element of J ' . Remove the f i r s t 
member of J' and go to step 5. 

12. If there are any t r ip les in G of the form 
(A TOK b) such that b is a verb then 
select the f i r s t such t r i p l e , ca l l it K, 
and go to step 8. Otherwise, stop. 

As an example application of the algorithm 
we take the sentence: 
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"The old man give a book to John." 
The numbering below corresponds to steps in the 
algorithm. The value of each variable is wri t ten 
out when it changes. 

12. stop 
The f i na l result of the translat ion algorithm 

is given in step 11. A simple transformation of 
the given formula can be make to conform to the 
particular conventions one wishes to fol low, 
such as i n f i x vs. pref ix , the method for hand­
l ing proper names, modifications, and other 
language fea tures. 

V. DISCUSSION AND CONCLUSIONS 
We have mentioned some of the reasons for 

using semantic nets as the struction underlying 
natural language discourse. These may be summar­
ized as follows: 
1. Vague or par t ia l l y undefined concepts may be 
used in a semantic net by giving rules governing 
their operation. Many questions w i l l not require 
the f u l l specif ication of functions used in 
predicate calculus. For example, the dialogue: 

"The old man ate some f i s h . " 
"Did the old man eat some fish?" 
"Yes." 

does not presume a precise understanding of the 
meaning of "some", but we would expect a compu­
ter question answerer to be capable of i t . The 
ear l ier similar example showed that a "maybe" 
answer is the consequence of vagueness in c r i t i ­
cal aspects of the meaning represented in the 
semantic net. 
2. Simple questions w i l l be answered by a simple 
matching procedure which is easily performed in 
a semantic net. More complex questions w i l l take 
advantage of the set res t r ic t ion principles of 
semantic nets. It is also possible to convert 
some parts of the net to f i r s t order predicate 
calculus and use some form of Robinson's (8) 
resolution algorithm. 
3. A semantic net seems closer than predicate 
calculus to natural language form and meaning. 
For example the nesting of natural language 
expressions such as 

"The man who caught the f ish ate i t . " 
is easily handled in semantic nets (see (12)). 

Lest, however, we be too happy at this situa­
t ion , it must be mentioned that there are a l ter ­
nate specifications for processes, such as "the 
20th day of the 10th month" for "October 20" 
and "a lathe, a saw, a plane and a chisel" for 
" too ls" , or " furn i ture" for "chairs". Managing 
the possible log ica l , lexical and syntactic 
paraphrases of a statement in testing i t s truth 
value adds a signif icant transformational and 
implicational complexity that must be accommo­
dated if the semantic nets are to be useful in 
language processing. 

These complexities are provided for by addi­
t ional relations in a lexicon and grammar. The 
lexicon shows, for example, that the process 
named " tools" includes as subsets the processes 
named "planes", " lathes", "hammers", "saws", etc.; 
that "chairs" are a subset of " fu rn i tu re" ; and 
that there is a transformation that maps "Octo­
ber 20" into "20th day of the 10th month" and 
the converse. If this additional information is 
present, i t is possible but d i f f i c u l t , to d is­
cover the approximate paraphrastic equivalence 
of El to E3 in the following two examples: 

El) "John made chairs with tools on 
October 20." 

E3) "John made furniture with a lathe, 
a saw, a plane and a chisel on 
the 20th day of the 10th month." 
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In Figure 4, by augmenting the (part ia l ) seman­
t ic representation of El (lines 1-7), with the 
relevant lexical information of lines 8-10 and 
the inference rules of lines 11-13, it is pos­
sible to find a correspondence with the represen­
tat ion of E3. But the selection of the appropri­
ate augmentation of El with respect to E3 in t ro­
duces the need for heuristics to guide the pro­
cess, and algorithms to accomplish the indicated 
transformations as a part of the comparison 
procedure. 

In conclusion, this paper has shown that net­
work formalisms can be used to represent syntac­
t ic structures of sentences or to represent the 
semantic relations that hold between word mean­
ings in discourse. In the lat ter case the net­
work is called a semantic network. Networks can 
be wri t ten as graphs, as attribute-value l i s t s , 
or as l i s t s of t r ip les for the sake of computa­
t ional convenience. 

Semantic nets were defined formally and shown 
to have a set theoretic interpretation as a 
structure of relations that rest r ic ts the range 
of a set of events such as a l l "makings" to 
some small subset occurring at a part icular 
place and time with a particular agent, object 
and instrument. An approach for handling quanti­
f icat ion in the nets was described and shown to 
have some advantage over the predicate calculus 
for representing such vague expressions as 
"some f i sh " . An algorithm was presented for 
translating from a subset of the network formal­
ism to f i r s t order logic and there is no par­
t icular reason why algorithms for translating to 
higher order logics cannot be developed as the 
conventions are established for representing 
more complex meanings both in the networks and 
the higher order ca lcu l i . 

The several representations of structure 
that have been used widely in question answer­
ing include t r i p les , attribute-value l i s t s , 
graphs and logical predicates. We have shown the 
re lat ion of semantic networks to each of these 
formalisms to demonstrate the generality and 
logical adequacy of the semantic network approach 

to representing meanings of natural language 
discourse. These findings in conjunction with 
those of Sandewall (10) and Palme (5) support 
our bel ief that semantic network structures 
are a well-formed logic with computational 
advantages deriving from the s imi lar i ty of 
their notational conventions to those of 
natural languages. 
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