
524 Session No. 13 Computer Understanding II (Representation)

SOME RELATIONS BETWEEN PREDICATE CALCULUS*
AND SEMANTIC NET REPRESENTATIONS OF DISCOURSE

Robert F. Simmons and
Bertram C. Bruce

Department of Computer Sciences
The University of Texas

Austin, Texas
U.S.A.

ABSTRACT
Networks can be used to represent syntactic

trees of the semantic relations that hold between
words in sentences. They can be alternately
symbolized as association l i s t s or conjoined sets
of t r i p les . A semantic net represents a sentence
as a conjoined set of binary predicates. An algor­
ithm is presented that converts a semantic net­
work into predicate calculus formalism. The
simpler syntax of semantic network representa­
tions in contrast of ordinary predicate logic
conventions is taken as an argument for their
use in computational applications.
Descriptive Terms: Semantic networks, Predicate
logic, Natural language, Computational l inguis­
t i c s , Association l i s t s .

I. INTRODUCTION
In approaches to natural language question

answering, it is generally agreed that question
and text are to be transformed to some formal
language representation. After this has been
accomplished, answering a question phrased in a
formal language from a data base represented in
the same formal language is a process of theorem
proving where the data are taken as axioms and
the questions as theorems to be proved.

At this point two approaches are commonly
found in the l i te ra ture . One represents question
and data in the syntactic conventions of the
predicate calculus and uses standard theorem
proving techniques such as Robinson's resolution
algorithm supported by heuristic selection of
relevant axioms (see Green & Raphael (4), Sande-
wall (9), Darlington (2)) . The other represents
question and text as at t r ibute value l i s t s or
semantic nets (which w i l l shortly be shown to be
equivalent) and uses a matching algorithm guided
by heuristic choices of relevant data. This
approach is seen in Qui l l ian (6), Raphael (7),
Colby et al (1), Schwarcz et al. (11).

In the recent l i terature Sandewall (10) and
Palme (5) have each presented more or less for­
mal developments of semantic network representa­
tions as predicate logics. Thompson (13) shows
the s imi lar i ty of a l inguis t ic case-structure
analysis to predicate calculus statements.

From yet another point of view, this paper
informally shows the s imi lar i ty of semantic net­
works to predicate calculus representations and
argues that the semantic net syntax is computa­
t ional ly simpler and therefore to be preferred.

I I . THE CORRESPONDENCE AMONG TREE, NETWORK AND
ATTRIBUTE VALUE REPRESENTATIONS OF DISCOURSE

Linguists are accustomed to representing the
structure of natural language sentences as trees.
The following sentence El could be represented as
in Figure 1.

El) John made chairs with tools on October
20th in Austin.

For computational convenience Figure 1 can be
represented also as an attribute-value l i s t as in
Table 1.

Table 1. Attribute-Value Representation of
Syntactic Structure of El

*This research was supported by: The National
Science Foundation, Grant GJ 509 X

Another l inguis t ic representation for El sug­
gested by Fillmore (3) is shown in Figure 2. An
attribute-value representation of this structure
is also shown there. If the node values "John",
"chairs", " too ls" , etc. are taken as symbols
with unambiguous denotation, and AGT, OBJ, etc.
as semantic relat ions, then Figure 2 is a seman-

*Note: 1st, 2nd, etc. is an
arbi trary notation for
successive branches
from a node.

Session No. 13 Computer Understanding II (Representation) 525

t i c network. The implied def in i t ion is that a
semantic netvork is a system of unambiguous
symbols interconnected by definable semantic
relat ions.

Figure 2. Case structure of El and i t s
Attribute-Value Representation

Looking at the attribute-value representation
of Figure 2, we can see that it can also be
represented as a conjoined set of t r ip les as
follows:

This is a simple and convenient representation
for computational purposes. I t s logic is explained
later .

From this discussion it can be seen that the
"node-arc-node" structure of networks is a syn­
tax of symbolic notation that can equally well
represent a syntactic tree structure or the
semantic relations among elements of a sentence.*
In either case, the net can be symbolized as an
attribute-value l i s t where the attr ibutes are
relations and the values are whatever is repre­
sented on the nodes. The attribute-value l i s t ,
in turn, can be represented as a set of t r ip les
where each value may be another set of t r i p les .

Before proceeding into the next section con­
sidering the logical notation for this structure,
it is worth mention that Williams (14) developed
a network representation for predicate calculus
statements following or iginal graphic notations
she attr ibutes to Frege. We take this as support
* In Simmons & Slocum (12) the representation is
developed for multi-sentence discourse and a
network is formally defined.

of our eventual conclusion that semantic nets
can be a fu l l y val id representation of the under­
lying logic of a discourse where the nodes are
unambiguous in their denotation and the relational
arcs are f u l l y defined.
I I I . SOME LOGICAL ASPECTS OF SEMANTIC NETWORKS

The principal value of using semantic nets for
the structure underlying natural language sen­
tences is that they are closer to both the form
and the meaning of natural language than other
proposed structures, such as f i r s t order predi­
cate calculus. In this and the following sections
we show that simple semantic nets can be mapped
d i rect ly into ordinary f i r s t order predicate
calculus, yet they have several computational
advantages because of their proximity to natural
language,

One part icular ly i l luminating interpretation
of semantic nets is that which considers each
node as the name of a set of processes and each
relat ional arc as a rest r ic t ion on the sets
named by the nodes it connects. Thus the set of
a l l "makings" includes a l l events or processes in
which an agent A makes an object B, with an
instrument C, on time D, at location E. A, B, C,
D and E must satisfy certain restr ict ions based
on their part icipat ion in deep case relat ions, to
the verb "make". For example, A, as an agent,
must be an animate inst igator. Similarly "make"
i t se l f is restr icted to that subclass of a l l
verbs which have agent, object, instrument, time
and locative cases.

In a specific sentence the set of "makings"
may be restr icted further. For example in sen­
tence El we have the small subclass of "makings":

"makings by John, of chairs, with tools,
on Oct. 20, at Austin"

Referring to Figure 3 we see that each node in
the semantic network is also restr icted by i ts
relations to other nodes. Thus C3 refers to a
subset of processes which is contained in the
set called "chairs" and in addition serves in
the object relat ion to a certain semantically

526 Session No. 13 Computer Understanding II (Representation)

restr icted subset of "makings" represented by
node CI.

In this scheme the relations AGT, OBJ, TIM
and LOC are defined in two ways. The f i r s t is In
terms of their logical import; i .e . (A AGT B)
where A is a token of make and B of John, ind i ­
cates that "John" is an argument of the predicate
"make". The second is by the restr ic t ions they
impose on the nodes they connect. It is these
restr ict ions as well as the interconnections of
nodes which determines the semantically res t r ic ­
ted sets.

A consequence of this viewpoint is that the
statement "John made chairs with t o o l s . . . " can
be tested for truth value with reference to a
data base (or model) by successive intersections
of members from the set of binary predicates that
represent I t , with the set of binary predicates
that make up the data base. To produce such a
data base, every sentence describing an instance
of a "making" is cross-referenced by i t s semantic
relations of AGT, OBJ, INST, etc. to part icular
specif iers, e .g . , "John", " too ls" , "chairs", etc.
thus implying the set restr ict ions that have
been described. And each nominal participant in
a "making" Is cross-referenced by -AGT, -OBJ,
etc. to i t s token of the verb.

In the simplest case such successive Inter­
sections are performed by a simple matching a l ­
gorithm. To answer a question simply f ind the
set of t r ip les matching each t r ip le in the ques­
t ion. Methods similar to this are used in many
question answering programs. A more sophisticated
algorithm could incorporate various axioms for
set theory and heuristics based on such informa­
tion as the size of the sets being intersected
or the l i s t of semantic relations which determine
the sets.

It appears that most questions can be answered
e f f i c ien t l y by the recursive use of a simple
matching algorithm. More complicated questions
may require extensive use of the concept of set
restr ic t ions and Intersections. Semantic nets
are well suited for this kind of question answer­
ing, but they have the additional virtue of
being easily transformed into more famil iar
logics such as f i r s t order predicate calculus.
Following a more formal discussion of semantic
nets and the representation of quantif iers we
give an algorithm for converting simple nets
Into the predicate calculus.

A semantic net is a set of t r i p l es , (A R B),
where A and B are nodes and R is a semantic
re la t ion. Nodes must be elements of a set of
unambiguous symbols and semantic relations may
be any of several defined or definable relations
fa l l i ng into one of the following categories:

1. Connectives such as OR, NOT, SINCE, etc.
2. Deep case relations such as AGT, OBJ,

DAT, etc.
3. At t r ibut ive relations such as MOD, POSSES­

SIVE, HASPART, ASSOC, etc.
"TOK" meaning " is a token of"
"Q" meaning " is quantif ied"

4
5

Some of these relations are discussed elsewhere
(see (12)).

Because of the special significance of the
relat ion Q and i t s consequences for the transla­
tion algorithm, some discussion is warranted
here. For the purposes of the algorithm which is
to follow we give, in Table 2, a preliminary
analysis for some of the kinds of quantif ication
which are needed. Note that such quantif iers as

"many", "most of the" and "almost a l l " are
omitted from the table although they might be
used in semantic nets.

6. Set relations such as SUP, SUB, EQUAL, etc.

1. In the predicate calculus formula, above, F
represents the portion of the formula which does
not contain x as a free variable, while P(x) is
the portion which does.
2. Equivalent predicate calculus expressions.
3. Alternate logical meanings of "SOME-INDEF".

Table 2. Examples of Quantifiers
in Semantic Nets

We do not need a complete logical def in i t ion for
a concept in order to use it in the semantic
net. As an example of the complexity which may
be avoided, consider the phrase "some f i sh " .
This may mean some one f i sh , several f i sh , or
parts of one or more f i sh . In a semantic net we
use the quantif ier "SOME-INDEF" which allows any
of these meanings. In predicate calculus we
would be forced to select one of the formulas
given in Table 2 or perhaps a complicated dis­
junction of a l l the possible formulas. The con-

Session No. 13 Computer Understanding II (Representation) 527

sequence for question answering of such vagueness
in the semantic net is of course a reduced pre­
cision in the correspondence between question
and answer. Thus answering the question

"Did John eat a f ish?"
from

"John ate some f i s h . "
leads to an answer of "maybe" ref lect ing the
imprecision of the match.
IV. THE TRANSLATION ALGORITHM

The algorithm given here is designed to con­
vert one representation of semantic nets to
predicate calculus. Several restr ict ions are
made to simplify the presentation. No higher
order predications are handled by the algorithm
(such as would normally be required to handle
"he moves slowly"). It is assumed that connec­
tives can be treated l ike verbs, while, in fact ,
certain connectives may require complex transla­
t ion algorithms in themselves. Also, relat ive
clauses are not allowed. In sum, we are dealing
with a subset of semantic nets which could not
serve as a semantic structure for natural lan­
guage .

Nevertheless, the algorithm does show that
simple semantic nets have a sound logical
structure, i . e . , f i r s t order predicate calculus.
An algorithm for more complex semantic nets
appears to be dependent only upon our understand­
ing of the concepts we wish to allow.

The algorithm handles, in turn, connectives,
verbs, nouns, and noun modifiers. It uses push­
down stacks in the customary way. We start with
pushdown stacks for the variables G, J, J ' , F
and F', a l l empty. Capital le t ter variables (A)
denote specific formulas, nodes or arcs under
consideration, while small let ter variables (a)
indicate any node or arc.

Algorithm for converting semantic nets to
predicate calculus:

1. Start with a conjoined l i s t of t r ip les
representing the semantic net of a d is­
course. Call this l i s t , G. Go to step 2.

2. Set J to n i l . Go to step 3.
3. If there are any t r ip les in G of the form

(A TOK B) such that B is a connective, and
such that there are no t r ip les (c r A)
where (c TOK d) is in G and d is a connec­
t i ve , then select the f i r s t such t r i p l e ,
ca l l it H, and go to step 4. Otherwise go
to step 12.

4. For each connective (or verb) there is a
prescribed ordering for i t s arguments.
For example, the verb "give" has the order­
ing AGT, OBJ, DAT. This ordering, specified
in the lexicon, is called the "case argu­
ment description for the connective (or
verb)". Collect and order (by case argu­
ment description) a l l t r ip les of the form
(A r c) such that A is the f i r s t member of
H. Form an n-tuple (B c1 c2....cn-1) such
that B is the th i rd member of H and the
t r i p le (A ri ci is the i t h t r i p le in the

prescribed ordering. Call this n-tuple, J.
Set J' equal to J with the f i r s t member
removed. Remove from G and a l l values of
G on i t s stack a l l t r ip les whose f i r s t
member is A. Go to step 5.

5. If J' has no members then set G=GAJ and
go to step 6. Otherwise go to step 7.

6. If the pushdown stack for G is empty then
go to step 2. Otherwise set J and J' to
equal the top members of their respective
stacks. Substitute G, in J, for the f i r s t
element of J ' . Remove the f i r s t member of
J ' . Set G to equal the top member of i t s
pushdown stack. Remove the top member of
the stacks G, J and J ' . Go to step 5.

7. If there is a t r ip le in G of the form
(a TOK b) such that a is the f i r s t element
of J' and b is a verb then ca l l this
t r ip le K and go to step 8. Otherwise
select the t r ip le H-(a TOK b) such that a
is the f i r s t element of J1 and b is a
connective. Push G, J and J' onto their
respective stacks. Set G to n i l and go
to step 4.

8. Paralleling the procedure used for connec­
tives in step 4, form an n-tuple (B c1 c2
. . . c n - 1) such that B is the third member
of K and ci is the third member of the
i t h t r ip le in the ordering prescribed by
the case argument description of the
verb. Call this n-tuple, F. Set F' equal
to F with i t s f i r s t member removed. Remove
from G and a l l values of G on i t s stack
every t r ip le whose f i r s t member is the
f i r s t member of K. Go to step 9.

9. If F' has no members then go to step 11.
Otherwise go to step 10.

10. Call the last element of F', D. Form a
conjoined l i s t , ca l l i t P', o f a l l t r i ­
ples in G of the form (D r a) except the
t r ip les for which r=TOK or r=Q. Convert
the t r ip les in P' to prefix notation,
(r D a). Set P=P'A(E D) where (D TOK E)
is in G. Locate the form specified for the
X of (D Q X) in the table of quantif iers
(Table 2). Let the value of D be the
bound variable in that form and substitute
P and F as they have been constructed.
Call the resul t , F. Remove a l l t r ip les
whose f i r s t member is D, from G. Remove
D from F'. Go to step 9.

11. If J is n i l , set G=QvF and go to step 12.
Otherwise substitute F, in J, for the
f i r s t element of J ' . Remove the f i r s t
member of J' and go to step 5.

12. If there are any t r ip les in G of the form
(A TOK b) such that b is a verb then
select the f i r s t such t r i p l e , ca l l it K,
and go to step 8. Otherwise, stop.

As an example application of the algorithm
we take the sentence:

528 Session No. 13 Computer Understanding II (Representation)

"The old man give a book to John."
The numbering below corresponds to steps in the
algorithm. The value of each variable is wri t ten
out when it changes.

12. stop
The f i na l result of the translat ion algorithm

is given in step 11. A simple transformation of
the given formula can be make to conform to the
particular conventions one wishes to fol low,
such as i n f i x vs. pref ix , the method for hand­
l ing proper names, modifications, and other
language fea tures.

V. DISCUSSION AND CONCLUSIONS
We have mentioned some of the reasons for

using semantic nets as the struction underlying
natural language discourse. These may be summar­
ized as follows:
1. Vague or par t ia l l y undefined concepts may be
used in a semantic net by giving rules governing
their operation. Many questions w i l l not require
the f u l l specif ication of functions used in
predicate calculus. For example, the dialogue:

"The old man ate some f i s h . "
"Did the old man eat some fish?"
"Yes."

does not presume a precise understanding of the
meaning of "some", but we would expect a compu­
ter question answerer to be capable of i t . The
ear l ier similar example showed that a "maybe"
answer is the consequence of vagueness in c r i t i ­
cal aspects of the meaning represented in the
semantic net.
2. Simple questions w i l l be answered by a simple
matching procedure which is easily performed in
a semantic net. More complex questions w i l l take
advantage of the set res t r ic t ion principles of
semantic nets. It is also possible to convert
some parts of the net to f i r s t order predicate
calculus and use some form of Robinson's (8)
resolution algorithm.
3. A semantic net seems closer than predicate
calculus to natural language form and meaning.
For example the nesting of natural language
expressions such as

"The man who caught the f ish ate i t . "
is easily handled in semantic nets (see (12)).

Lest, however, we be too happy at this situa­
t ion , it must be mentioned that there are a l ter ­
nate specifications for processes, such as "the
20th day of the 10th month" for "October 20"
and "a lathe, a saw, a plane and a chisel" for
" too ls" , or " furn i ture" for "chairs". Managing
the possible log ica l , lexical and syntactic
paraphrases of a statement in testing i t s truth
value adds a signif icant transformational and
implicational complexity that must be accommo­
dated if the semantic nets are to be useful in
language processing.

These complexities are provided for by addi­
t ional relations in a lexicon and grammar. The
lexicon shows, for example, that the process
named " tools" includes as subsets the processes
named "planes", " lathes", "hammers", "saws", etc.;
that "chairs" are a subset of " fu rn i tu re" ; and
that there is a transformation that maps "Octo­
ber 20" into "20th day of the 10th month" and
the converse. If this additional information is
present, i t is possible but d i f f i c u l t , to d is­
cover the approximate paraphrastic equivalence
of El to E3 in the following two examples:

El) "John made chairs with tools on
October 20."

E3) "John made furniture with a lathe,
a saw, a plane and a chisel on
the 20th day of the 10th month."

Session No. 13 Computer Understanding II (Representation) 529

In Figure 4, by augmenting the (part ia l) seman­
t ic representation of El (lines 1-7), with the
relevant lexical information of lines 8-10 and
the inference rules of lines 11-13, it is pos­
sible to find a correspondence with the represen­
tat ion of E3. But the selection of the appropri­
ate augmentation of El with respect to E3 in t ro­
duces the need for heuristics to guide the pro­
cess, and algorithms to accomplish the indicated
transformations as a part of the comparison
procedure.

In conclusion, this paper has shown that net­
work formalisms can be used to represent syntac­
t ic structures of sentences or to represent the
semantic relations that hold between word mean­
ings in discourse. In the lat ter case the net­
work is called a semantic network. Networks can
be wri t ten as graphs, as attribute-value l i s t s ,
or as l i s t s of t r ip les for the sake of computa­
t ional convenience.

Semantic nets were defined formally and shown
to have a set theoretic interpretation as a
structure of relations that rest r ic ts the range
of a set of events such as a l l "makings" to
some small subset occurring at a part icular
place and time with a particular agent, object
and instrument. An approach for handling quanti­
f icat ion in the nets was described and shown to
have some advantage over the predicate calculus
for representing such vague expressions as
"some f i sh " . An algorithm was presented for
translating from a subset of the network formal­
ism to f i r s t order logic and there is no par­
t icular reason why algorithms for translating to
higher order logics cannot be developed as the
conventions are established for representing
more complex meanings both in the networks and
the higher order ca lcu l i .

The several representations of structure
that have been used widely in question answer­
ing include t r i p les , attribute-value l i s t s ,
graphs and logical predicates. We have shown the
re lat ion of semantic networks to each of these
formalisms to demonstrate the generality and
logical adequacy of the semantic network approach

to representing meanings of natural language
discourse. These findings in conjunction with
those of Sandewall (10) and Palme (5) support
our bel ief that semantic network structures
are a well-formed logic with computational
advantages deriving from the s imi lar i ty of
their notational conventions to those of
natural languages.

REFERENCES
1.

4.

5.

8

COLBY, K.M., TESLER, L. and ENEA, H. "Experi­
ments with a search algorithm for the data
base of a human bel ief structure." Proc.
I n t . J t . Conf. Art . I n t e l . . Washington,
D.C., 1969, pp. 649-654.

DARLINGTON, J. L. "Theorem proving and infor­
mation re t r i eva l . " Machine Intell igence 4,
Meltzer and Michie (eds.) Edinburgh U.
Press, Edinburgh, 1969, Ch. 11.

FILLMORE, C.J. "The Case for Case." Tn Bach,
E. and Harms, R.T., Universals in
Linguistic Theory. Holt, Rinehart and
Winston, Inc. Chicago, 1968.

GREEN, C.C. and RAPHAEL, B. "Research on
In te l l igent Question-Answering Systems."
Proc. ACM 23rd Nat. Conf., 1968, Brandon
Systems Press, Princeton, N.J., pp. 169-181.

PALME, JACOB. "Making Computer Understand
Natural Language." Research Inst , of Nat ' l
Def., Op. Res. Ctr. A-10450. Stockholm 80,
Sweden.

QUILLIAN, M.R. "The Teachable Language Com-
prehender." Comm. ACM 12, August 1969,
pp. 459-475.

RAPHAEL, B. "SIR: A Computer Program for
Semantic Information Retr ieval ." Ph.D. Th.,
Math. Dept., MIT, Cambridge, Mass., June
1964. In Proc. AF1PS 1964 Fal l Joint Ccmput
Conf., Vol. 26, Pt. 1, Spartan Books, New
York, pp. 577-589.

ROBINSON, J.A. "A Machine Oriented Logic
based on the Resolution Pr incip le." JACM 12
January 1965, pp. 23-41.

SANDEWALL, E.J. "Concepts and Methods for
Heuristic Search." Proc. In t . J t . Conf.
Art . I n t e l . . Washington, D.C., 1969.

SANDEWALL, E.J. "Representing Natural-
Language Information in Predicate Calcu­
lus . " Stanford Univer. Comp. Sci. Dept.
Report #166, Palo Al to , July, 1970.

SCHWARCZ, R.M. , BURGER, J.F. and SIMMONS, R.F.
"A Deductive Logic for Answering English
Questions." Comm. ACM 13, March 1970,
pp. 167-183.

SIMMONS, R.F. and SLOCUM, J. "Generating
English Discourse From Semantic Networks."

6.

7.

2.

3.

9.

10.

11.

12.

530

Natural Language Research for Computer-
Assisted Instruct ion, Tech. Report NL-3.
University of Texas, Austin, November, 1970

13. THOMPSON, SANDRA A. "On Relative Clause Struc­
ture in Relation to the Nature of Sentence
Complexity." Mss. from the author, UCLA
Linguistics Dept., Fal l 1969.

14. WILLIAMS, THYLLIS. "Case Variables and Case
Description in a Reticular Logic Grammar."
Preprint, Graduate Library School, Univer.
of Chicago, Chicago, 111., September, 1966.

Session No. 13 Computer UnderstaDding II (Representatloi

