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U. S. A
Abstract.

Systems theory deals with classes of identi-
flable parts each interacting in such a way that
a given class exists together to satisfy certain
specific requirements; these parts can be thought
of an components of the system, some of which are
permanent and some not. In analyzing a given
system (see (13)) one usually offers up an m-
tuple consisting of devices to be analyzed, pri-
mitives to represent any device, allowable com-
positions, concepts of simulation, and theorems
that tell how the devices are to be analyzed.

Category theory serves as an organizational
tool for larqe systems.

L ¢ Q e a category withJ the category
of sets.J: Is the category of functors E—b

J whose morphisms are natural transformations

between functors. We call a universe whose ob-

jects are node labels and whose morphisms are

edge labels. Functor theory, having now reached

a level of variety and depth in descriptive pow-
er, stands ready to help the systems theorist
characterize those states which are important in
the study of a particular system.

A computer with a TV camera is a tissue
scanner whose job is to verify homogeneity.
That is, it detects flaws or holes in a tissue.
It is well know that when two topological spaces
are homeomorphic, then their fundamental groups
are isomorphic. The job of the functorqT is to
"record holes" in spaces.

Zeeman'8 (38) concept of a tolerance space

is useful when dealing with visual acuity, while

Wallace's (35) concept of a separation space is

helpful in recording the position of patterns.

Let (SO, EISO ) be a retina, f a lens and

(x,‘J:I) an observed object. Then, (So,f) T0 -
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recognizes X when p (SO) = -7 (X).

S —\X
( Scanner \
retino + /

—

e

The algebraic “I| -structure of certain
spaces has already been characterized; take, for
example, compact connected 2-manifolds.

A large system 18 determined by a subcate-

gory ofJfand is denoted A = <0bJ/i>,

MorphJﬁA,TA> where 0b EAare states of
A, Morph f are inputs of A, and [ , is the
/A A

transition defined by ’[:A(F, "Y\ ) =

_

‘Y\(F) when F = domain Yl

F otherwise.

— 6
For example, ObJ/,4 could be just those

functors mapping into vector spaces (See Kelly

and MaclLane (17)) (groups) and Horphj/?q just

those natural transformations between iinear-~

functors (group functors).

If G, FEJ Q , then C-le is called an

expression. An expression '\f\ is a category-

regular expression if the following hold:

(1) 3 large system A =

(2) 3 ﬂA SObJ;A subcollection of func-

tors,

(3) 3 S0 E Ob E , 80 that [SO,O 1 € ObJ/:A;
(4) 3 F €& cﬂAao that [S,,* ]..?_l...F is a

natural equivalence.
It is natural to define what one means by

acceptance. An acceptor is denoted by A =

<[so,. ],Obj/rA,MorphJ/BA ,"EA cﬁA> where




Session No. 11 Theoretical Foundations

[SO,-] is called the initial state and 3Ag

ObJ/fAthe final states. We assume [SO,-]t ﬂA
Thus, 'Y'li_[[SO.-].-] 1mplies'BA([50,-], 'yl ) =

[SO,o], and L(A'g,A) -i."\\' £ Moth/z{[SO'.]

.:n_;F natural equivalence and F E ﬂA

An example of an acceptor appears within the
structure of Give'on's (11) study of transition
systems. Leﬁjf be the category of semimodules
with fixed input monoid W. Also, let S:J-L
J be the forgetful functor with Mw the semi-
module whose states are W and whose transition is
determined by multiplication of W. Then, there

-1
is a natural equivalence [uw,-].___.s; hence, we

have an important acceptor of the form A =

Y, w
<[MH . ],ObJ%,Morphj%,fA,pq >where S £
A e La, &a-

The following theorem of Mitchell (23) is

going to see more use in systems theory.

Theorem (M). Lep;{% be a cocomplete abelian
category and let R be any ring (commutative with
unity). Then, we have an additive, colimit pre-

serving, covariant bifunctor

®R:Q7Q>< o > A

and a natural equivalence of trifunctors

R ~
M, [C,A), 1~ = [M & C,A]
A H
with MEQR, C£54,, and AEA— .

Moreover, Rine(30) has coined the concept

of an R-linear separated system, having some
non-linear characteristics, and proved, using
Mitchell's theorem, this theorem.

Theorem. Let (Ol = <U, X, S> be an R-linear

separated transition system. Let W _(Y)—>»V

R
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be a linear interpretation with compiler WR(Y)-—

-

— S (Y | {R,-l-_? )" 1ny€ Let vR—"‘-.[x,

XIS v 1) £0.13 v §0,13 ] be an arbi-
A

trary loading morphism. -Assume that S He he

and (R will not execute & . Then, there exists a

corrected R-linear separated transition system

<u,x, 5&> that will execute ot .

In automata theory the weakest algebraic

structure permitted is usually the semigroup, and
when B £ Ob C one has no reason to believe that

[S B] is a semigroup.

0!
I1f E: is a category and [A,B]é? 1s a semi-
group, the semigroup structure may arise in sev-

eral somewhat unnatural ways. This must first be

clarified in the following proposition.

Proposition. Let S0 £ Obg projective generator

for E and VA , B £ 0ob C [A,B] a semigroup; then
[SO,'] is an embedding into the category of semi-
groups, preserving and reflecting monics and
epics.

Hence, we shall assume the hypothesis of

this proposition and call such a Qadmiasible"

for semigroup (category)-regularity.

Hence, we call ‘Ylg Morphegg regular 1f

(1) ”Yl is category-regular with respect to some

acceptor A = <[SO.'],ObJ)/§\. Morphj/rA,
Tody):
(2) £; is admissible;

¥ F

(3) V So-—-bB in C isomorphism, then F(So)—-
®)

F(B) is a variables-isomorphism, where vari-

ables depends upon those things A is obser-

ing (vector spaces, top. spaces).

Proposition. [SO,OI-’!]-?-»F £ L(A, ﬂA )
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Fl L IF2 natural equivalences so that F = Fl and

F, £ 4 tnplies W, W € LA, &)
Moreover, for arbitrary ¥ ,, Y Tp([S5.« 1,
Mo MN ) = TRITAUSE 1. Mp) M ) s
defined.
Let § =1 be a small category. Then, we
will call nodes (states)D:I ———sJ diagrams.

’Y\ £ MorphJB is small category-regular if

(1) "Y\ 18 category-regular with respect to Q .

and (2) E is a small category.

The corresponding A = <[So,- ], ObJ/fq,

Morpheg})q, TA ,£A> is called a small system.

Proposition. 'Y\ small category-regular implies

that the coordinates class of ’Y\ has cardinality.

'y-\ is small regular if (1) ¥\ is small
category~regular, (2) I is admissible, and (3)
V So—f—-)vB in I isomorphism, then F(SO)E(_'F.),F(B)

is a variables-isomorphism.

Proposition. Y/ f £ 1[S,, B] bijection J semi-

5

@
group isomorphism [S., S.]—»(S.,B] , where
0 0%o 0 )O_F,|

"o" is8 composition and (fe )(x o y) = (f =) (x) .?_'

(f-)(y).
In the following diagram ’Yls ,’Y]Bneed not
o

be semigroup isomorphisms, so that variables-

isomorphism may only be bijective.

[.—So’so] l:(So)
F(f)

F(B)

Let [ = I be a finite category where I =

§138 HERTS . Then, we will call

LeOb I mEMerphl]
gstate (nodes) D:1 f:}_rﬁlt:e *)J graphs and S0 - 10

N3 - N3
(9 v/ 0

F 0bI a point (points are not identically the
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same as nodes or states). Gl..""_‘-.‘,G2 EJI‘Finitc

is finite category-regular if (1) v is small

category-regular with respect to I, and (2) I {is

a finite category.

I
The corresponding A = <[i°,- ], ObJ/A’
Horphj}A ,’[A ,ﬂA> is called a graph system.

’YL is finite regular if (1) ’Y\ is finite cate-
finite

gory-regular, (2) I is admissible, and (3)
V 10-f—rb in 1 isomorphism, then F(iO)E-G—u)F(b)

is a variables-isomorphism.

Remark. In applications to programming D(io) can

be thought of as a subroutine reached from [10,

10].

Remark. Ore might try to think of the automor-

phism functors as something that changes proper-
ties being considered. Can one think of it as
being a rearrangement of subroutines, a switch
in control, a new sorting level, sorting level,
sorting routine, scanning, searching!

Shaw (34) has considered the parsing of
graph-representable pictures and gives a picture
parsing algorithm that is an n-dimensional analog
of a classical top-down string parser, and an ap-
plication of an implemented system to the analysis
of spark chamber film.

Remark. Ore can show how the abstract notion of
category theory, in particular taking limits of
diagrams in complete (colimits in cocomplete) ca-

tegories (Mitchell, 23), attacks these problems.

ACCEPTANCE

In the last section we introduced
the notion of ACCEPTORS, we now consider
acceptance.
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As was mentioned previously, one of the important
natural phenomena that cocomplete (complete) cat-
egory studies handle is the notion of sorting.
With this in mind, let us turn to Berthiaume's

(A) definition of cofinal functor.

Letfq' , @ be small categories with
g }4 ,@ -cocomplete; then, there 1s

I :
a natural transformation (CB._’_:__.. C’*fi‘l.’:‘g )

)

M(Eac"l""‘ > 6 ) between functors with

FI(D) = Do F for any D £ g@ DoF is a ''sub-

functor' of D.

Let ng ”XI'XZ'.."X" be a sequence

of small categories, and let 5152"'5 be a com-

n
X and S, 3

position of n functors where S, d

'X_XT k = 2,...,n.

K-

Sn S S
2N, .. .xz_z_.xl_ﬁj_*;

"
Let C be X seo oy XI"% -cocomplete;
n

then, there exist natural transformations
191 I
..... S,) ~—~»colim, colim(S......
, 1 g 1 3
e v @ t t - i . . ’
rm.—-w:ol:l.m(s1 Sj-l) 80 a 1 SL-’ el.—l

where { = 1,...,nand i = 2,...,n+l. If each Sk

is cofinal (If slsz...sng'lj nis cofinal),
then, by Berthiaume's (4) proposition,each
Slr: ( Sn ) 18 a natural equivalence.

Let us define S, = colim(Sl...Sn)I so that

0

SO(D) = colim(D o Sl...Sn) E Ob Q One can

now give another definition of acceptance and

(colimit) category-regular expression. Let
Sn(n) = Sy arise from a sequence S4,...,S of
functors as before, and let E satisfy the ne

cessary cocompleteness properties. We admit a
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At this

X
ﬂA(n> where O-aA(n) -ﬁA < Ob Q/A

point one should substitute for ﬁ the category

of sets J o

functors of length m, a natural question to ask

Then, looking at some sequence of

iIs whether or not Sy(m)(D) is a semigroup, group,

or whatever. Thus, the notion of variables men-

tioned earlier becomes a search for properties
after a certain level: semigroups, groups,...
There are two ways to approach a problem
(analysis and synthesis). Ore notion, like
"sorting", is given F - colim, then find Sg; this
seems to be what category theory is all about at
this point, i.e. that of synthesis or putting
things together. The other notion, like "list-
ing", is given Sg, then find F « colim; this is
more the notion of analysis or seeing how things
are put together; for example, what pictures are

described by a given picture description grammar

or what languages can be written dowmn by a given
finite state acceptor (automaton, directed graph
with entry point) ; language theorists call an
analysis a parse. We include one more theorem

about these very general acceptors.

b
Theorem, System B = <[j0,- ],QV/B”:@B <

Ob ego'r . ’CB> can simulate system A =

<[10, . ],J/IAMSIAQ Obefl,’EA> 1f and

only if 3, functor to functor correspondence

by natural transformations between ﬂA andﬂB .
The study of systems with foundations in

category theory is not entirely new (see 10, 11,

12, 33); but, a general theory of abstract sys-

tems using simulation as a category morphism in
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order to better understand coordination problems

is rew (27, 28, 29).

SYSTEMS  THEORY

If;A, is a category, then one can construct

the Kan subdivision category, 54_ ’ ofﬂ— (17,

4). Also, from}A’, one can construct the cat-
P W

egory;A. of "twisted morphism" of94f (17, 4).
Let (A' ) stand for the dual of94. : then,

there is a functor T /4__——-5(}4_ ) descri-

bed as follows.

1 ] a
J AA 2 LA
fé’ ‘L 1 —> L’

We refer the reader to (4) for definitions

of connected category and cofinal functor.

Berthiaume (4) proves the following proposition.

If F:fq———-‘b@ is cofinal,

D: 6———5@ and colim D exists in E’

Proposition (B).

then 8 (D) is an isomorphism. If § is @ -Co-
complete, then 5 18 a natural equivalence.

Moreover, the following theorem is due to

TO:;%.\———)(A\'

We now extend the Kan category to a more

general form; 1etﬁ4 < 74. be a subcategory

of 54' Then, let (;4_ ,A,) be the category
/

of abstract systems with inputs fromAand

MacLane (17).

*
Theorem (M). ) 18 confinal.

state-outputs fromAf. We define the general-

/
1zed Kan category over the pair;4- ,;4r by con-

sidering pairs as follows.
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*_—-
Y—— 9>X—> 1)

>

N
A3 3 A/
Next, we introduce a functor BO': }14- X

A
A- ————>(54-/ ,A—- ) described below, where

it is assumed }:\hat every [A', A] is non-empty.

Az A, A2z - Ag
4 1 , ’T . ] L
/\) X a i}p?‘r-ﬂ ﬂf“z

Q. ot C§ ' :
oyt /7 Qo
A:"l — Aq,

It is obvious that the first property (4)
of cofinality 1s satisfied, but it is not ap-

parent that for every a £ [A' , A] ! a/B, =
(A, A) °

is connected. The same difficulty is encounter-

ed in the more restricted "classical"” definition
of cofinality mentioned in (17,4). Moreover,
MaclLane's proof for Ty cofinal does not work
when trying to show By cofinal.

A good discussion of classical input-
output systems motivated from differential e-
quations can be found in references (36, 3, 22),

especially where Zadeh and Polak discuss con-

sistent abstract objects (36). We are making

much use of the following notion. Let us con-
sider the binary form of a general system (21);

this is a relation S< U x Y. The u's are in

Us and the y's in Ys. Let Z be a set and S a

function mapping any subset of Z x U into Y
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(not nec. U YS), denoted (Z x U)_'ig_,Y.

SI
Z represents the initial global state objec

for 5 1f S,(z, u) = y&D> (u,y) £S. V z &2
S
3 function (U) = U—E)Y. S = lé'J SB' U'e

U acceptable by Sz if and only 1if 3 Lt EZ D

! = ”
U Z.
Consider the following two explicit repre-

sentations of circuits.

y,(t) =olp € m(t- “+Se (t- t’u ($)d*t

thoe?t

= oo E(t) = E *ul(t). where is convo-

lution, and

y, () = 3,717 "53+Se“c t) (’c)d't

ﬁoE(t) + E * uz(t). Let %(o : Sﬁo

represent these two devices. We will

say that SZBo simulates S‘];‘o 1f there is an en-
coder H and a decoder h so that the following

diagram is commutative.
® ; -» o

f Sda 1

H h
v S’.

L= - @

- ®
) a(oE+E u,

andyz-ﬁ°E+E*H(ul)-B°E+E*u2.

This means that h(yz) =y

S = L_JS (S 18 a relation and S, a func-
z & &

tion) forms the class of objects of a category,

where S, 1s mapped to S, 1f there exists a
Z, 82

pair (H, h) such that the following diagram com-

mutes. X'Zl Sz‘ ﬁ'YA-z|
H ' h

Sz,
Xz.z = ~>Y.27_

Now |___|1li;£ = (X) -AS and LJY = (Y) =

Z:S‘ ,'moreover, (X) 1s just a set, whereas it
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may turn out that the xg have more structure.
i

For example, each XE might be a monoid with left

cancellation; these monoids are important to au-
tomata theory (10, 11). All told, we have a
classj = UxY j LJS (usually finite),
and categories (general aystem) S = U-.S

Proposition. Let be a category with products

and finite intersections, and let D be a diagram

1n*over a scheme (I, m, d). Then, a limit

for D is given by the family of compositions

m Ecb_u.- (ﬂ( )D(W‘)P} ) CkﬁD ﬁDl'.

where d(m) = (j, k), and p, represents the ith

projection from the product.

Let W £ 7’(\. (monoids) and S & J .

function s £ (W, S]J is called an abstract ma-+

chine. A simulation relation can be established

between two abstract machines s by the fol-

1* 92

lowing commutative diagram where H is a monoid

morphism and h 18 a function.

)rfS:L
A

" . h

v
W — = 52
It is obvious that two such relations (H',
h'), (H, h) can be composed in a natrual way;
but, it is also obvious that a single relation
can have many domains and codomains. Hence, the

usual procedure is to replace each (H, h) by a

triple (s, (H, h),t) to establish a morphism

from s to t; we therefore can extend the class of

machines and relations to a category of machines

and morphisms that we denote by ('ry'\ ,J ).
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Proposition. m has (equalizers, finite pro-

ducts, pullbacks),J has (co-equalizers, finite

co-products, pushouts), and (W]. . J ) has

(equalizers, pullbacks).

Moreover, sincem has limits andJ has
colimits every connected diagram of abstract ma-
chines has a best possible representation in
™M . of -

Lawvere and Berthiaume (16,4) have used the
F .rls

is a pair of functors, then an object in the com-

notion of comma category: if’@S

ma category (F,G) is a triple (B,c,D), where

C
F(B) —>G(D), and a morphism (B,c,D) ————>

(B',c',D') in (F, G) is a pair (B-jlﬂbB', [)—be

D') such that G(d)c = dF(b), i.e. (c,b,d,c').

F(B)q c + G(D)

F(b) G (d)
‘ ¢ )
F(B’) — G(D)

Replacing G by G° gives us a (covariant,

contravariant) pair of functors Hence, assume

the pair 8 F a5 g ‘____ ﬂwhere_ﬂ- has

limits andA- has colimits. Moreover, let F be

limit preserving and G° colimit preserving where

(B,C,D)(F(b)’Go(d?’)‘(B' ’cl ,D').

Thus, we have a

twisted comma category', denoted (F, c°); and,
we have the following theorem.

Theorem.

/
Hypothesis: (1) Let A’ — }4‘ be a subcategory
of ;7 and let B ,ﬁ be

connected, small categories with

infinite products;

(2) (F, Go) is a twisted comma

"category:
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(3) F: @__;;4: has a left

root lim F;
e

(4) Go:ﬂ——b#- has a right

root lim Go.
el

Conclusion: (1') (F, Go) can be extended to a

category;

ey (@ ,P )(FG');4—
.qu, ) has a left root lim

a
(F, G%); ’
/, B ag
) 1lim F &
—

>1im G°
ey,

(3') 1in (;14-

(F,G")

Assertion. Let I be a small category with in-

finite products (a scheme). Let 1° be the dual

0

of I; I x I~ is the scheme whose objects are

1€ I; if i.::L’j is a morphiam, then a morphism

(m mP®) o
in I x 1I° is denoted {_" o). Hence, 1 = m jm

and T is equivalent to I x I = (I, Io)

Corollary. Let (’Y\'/ s', T'; )4— @

an adjoint situation and let co—(‘Tq_ S, T;

/94- B ) be a co-adjoint situation where

;4— B'< @,s'-S/jzsf_,and
T' = T/B’ , into @ and}#— respectively.

Then, there exists (( 'Y'L 'Yl ) ; E E (}:4, ,

54' ), ( B 6 )) adjoint situation

Freyd (9) has showh that 54-5 A’sub—

category 1is coreflective (relfective) if and
only if its inclusion functor has a left-adjoint

(right-adjoint).

/
Proposition, Let;ﬁl— _C_A'i _C_fA’ . Assume
o
that I:A’o—-—*A’ inclusion functor has a
left-adjoint R: A’—-—-’-A’ and J-Af.___—)

‘}31— inclusion functor has a right-adjoint R:

;43—3:4-0

Then, R (‘fﬁ$- 5;5}‘)-'—"“3'
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( 4 - ;4— ) 1s a reflector if and only if T =

(J,

I): (94— A— )——#(54, }4,) inclu-

sion functor has a right- adjoint

1.

10.

11.

12.

13.

14.

15.

16.

17.

17!
18.

. P. Berthiaume,

. T. G. Evans,

~
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