Session No. 10 Computer Understanding | (Communication)

AUGMENTED TRANSITION NETWORKS AS
PSYCHOLOGICAL MODELS OF
SENTENCE COMPREHENSION

Ronald M. Kaplan
Language Research Foundation
and
Harvard University
Cambridge, Massachusetts U.S.A.

Abstract: This paper describes the
operation of an augmented recursive
transition network parser and demon-
strates the natural way in which percep-
tual strategies, based on the results of
psycholinguistic experimentation, can be
represented in the transition network
grammatical notation. Several illus-
trative networks are given, and it is
argued that such grammars are empirically
justified and conceptually productive
models of the psychological processes of
sentence comprehension.

| . Introduction

During the past year a major
research effort has been conducted to
explore and refine the properties of an
augmented recursive transition network
parser (26, 27) and to develop a large-
scale English grammar for the system.'
Although our primary goal has been to
construct a powerful and practical
natural language processor for artificial
intelligence and information retrieval
applications,” we have also investigated
the correspondence between the sentence
processing characteristics of the parser
and those of human speakers, as revealed
by psychological experimentation, obser-
vation, and intuition. We have found
that the grammatical formalism of the
transition network is a convenient and
natural notational system for fabricating
psychological models of syntactic
analysis. In the present paper we des-
cribe some of the psychologically
appealing properties of the parser and
illustrate how psycholinguistic experi-
mental results can be mapped into simple
transition network models. We suggest
that building and testing such models
can lead to a better understanding of
linguistic performance.

It should be clear from the outset
that we are not proposing a transition
network model as a complete and
sufficient representation of all aspects
of language behavior. Rather, transi-
tion network models aim only at simula-
ting the syntactic analysis component of
performance: given an input string
written in standard orthography, they

429

attempt to discover the syntactic rela-
tionships holding between constituents.
We ignore the myriad problems of phonetic
decoding and segmentation and semantic
and cognitive interpretation, as well as
all the psycholinguistic and motivational
complexities of speech production. It iIs
in this |limited sense that we refer to
transition network grammars as sentence
comprehension or perceptual models. Of
course, we expect that more complete for-
malizations of language behavior will
incorporate such independently developed
syntactic analysis models.

In section |l of this paper we sketch
the linguistic and psycholinguistic back-
ground of our research. Section |11
describes the organization and operation
of the transition network parser and
depicts the grammatical notation, and
section IV shows the representation in
this notation of perceptual strategies
induced from psycholinguistic data. In
section V we discuss the fruitfulness of
this modeling approach, Indicating some
conceptual Issues that are clarified and
some empirical predictions that arise
from transition network formulations.

|l. Transformational Grammar and
Psyvcholinquistics

The process by which a native speaker
comprehends and produces meaningful sen-
tences in his language is extremely com-
plex and, with our present body of psy-
cholinguistic theory and data, is under-
stood only slightly. This shortcoming of
psycholinguistics exists despite the fact
that advances in linguistic theory over
the last decade have provided a number of
crucial Insights into the formal struc-
ture of language and linguistic perfor-
mance. To place augmented recursive
transition network grammars in the con-
text of previous research, we briefly
survey some relevant results of linguis-
tics and psycholinguistics.

A transformational grammar for a
given language L formally defines the
notion sentence of L by describing a
mechanical procedure for enumerating all
and only the well-formed sentences of L.
With each sentence it also associates a
structural description which provides a
formal account of the native speaker's
competence, the linguistic knowledge
which underlies his ability to make
Judgments about the basic grammatical
relations (e.g., subject, predicate,
object) and about such sentential
properties as relative grammaticality,
ambiguity, and synonymy. At present
there is no clear agreement among lin-

430

gulsts about the detailed features re-
quired for an adequate grammar, but cer-
tain principles of grammar organization
are almost universally accepted: the
structural description furnished for a
sentence by the grammar must consist of
(at least) two levels of syntactic repre-
sentation (P-markers) — a deep structure
and a surface structure — together with
a specification of an ordered sequence of
transformations which maps the deep
structure of a sentence into appropriate
surface structures.

Transformational theorists maintain
that their formal model is not intended
to give an accurate account of the psycho-
logical processes involved when a human
being uses language, either speaking or
comprehending. Any correlations observed
between actual behavior characteristics
and transformational grammars are acci-
dental, signifying merely the fact that
psychological and linguistic data are
both obtained from the same class of na-
tive speakers (but Chomsky (6) weakens
this assertion somewhat when he argues
that acquisition data might have a bear-
ing on the evaluation metric selected for
grammars). Linguists have been very care-
ful to distinguish the speaker's compe-
tence, which transformational grammars
attempt to model, from his performance,
the manner in which he utilizes his know-
ledge in processing sentences (6, 10, 19).
Thus a transformational grammar might be
allowed to generate sentences which are
virtually impossible for a speaker to
deal with. Most current grammars will
generate [5a], assigning it the same sub-
ject-verb-object relations as are appar-
entin[5Db]:

[5] a. The man the girl the cat the
dog bit scratched loved ate
ice cream.

b. The dog bit the cat that
scratched the girl who loved
the man who ate ice cream.

Very few native speakers would intuit
that [5a] Is grammatical, yet to prevent
Its generation, either the grammar must
be greatly complicated or other sentences
which native speakers do accept must be
marked ungrammatical. Linguists resolve
this dilemma and preserve the simplicity
and generality of their gmammars by claim-
ing that native English speakers do have
the basic knowledge to process [5a],
which is therefore grammatical;, speakers
have trouble with it because their per-
ceptual mechanisms do not provide the
memory space and/or computational rou-
tines required to process it. A trans-
formational grammar is a formal specifi-

Session No. 10 Computer Understanding | (Communication)

cation of the speaker's competence and has
nothing to say about psychological func-
tioning.

Despite these disclaimers, psycho-
linguists have been intrigued by trans-
formational theory because it provides
the most intricate and compelling expli-
cation to date of a large number of basic
linguistic intuitions. Many experiments
have been conducted to test the hypothesis
that transformational operations will have
direct, observable reflexes in psycholo-
gical processing; Fodor and Garrett (8)
and Bever (1) present useful reviews of
this literature. A major concern of these
studies has been to determine whether the
perceptual complexity of sentences (the
difficulty of comprehending and respon-
ding to them) is directly correlated
with derivational complexity (e.g., the
number of transformations required to
generate them). Fodor and Garrett (8)
examine this "derivational theory of
complexity” in detail and conclude that
the available psycholinguistic data do
not offer much support for it and that
the connection, if there is one, between
transformational gammar and perception
Is not very direct at all.

Although psycholinguists have vir-
tually abandoned their attempts to find
perceptual reflexes of specific grammati-
cal features, several studies have been
successful in corroborating the psycho-
logical reality of the deep structure-
surface structure distinction. Mad<ay
and Bever (15) found that subjects respond
differently to deep structure and surface
structure ambiguities; Wanner (25) showed
that the number of deep structure S-nodes
underlying a sentence has a direct influ-
ence on the ease of prompted recall from
long-term memory; and Bever (1) has rein-
terpreted the results of the click exper-
iIments (7) as demonstrating that deep-
structure S-nodes affect the surface seg-
mentation of a stimulus sentence. These
experiments suggest that an adequate model
of sentence comprehension must incorporate
some mechanism for recovering a deep-
structure-like representation of a given
stimulus word string. This representation
should explicitly denote at least such
basic grammatical relationships as actor,
verb, and object. More extensive empiri-
cal work should indicate whether deep
structure must be even more abstract than

this.

There are several other requirements
for adequacy that we may impose on poten-
tial models of sentence comprehension,
based on some ocommon observations about

Session No. 10 Computer Understanding | (Communication)

our sentence processing abilities:

(a) A perceptual model must process
strings in essentially temporal or
linear order, for this is the order
In which sentences are encountered
In conversation and reading.

(b) It must process strings and provide
appropriate analyses in an amount of
time proportional to that required
by human speakers. For example,
since perceptual difficulty does
not rapidly increase as the length
of the sentence increases, the amount
of time required by the model should
be at most a slowly increasing
function of sentence length.

(c) The model should discover anomalies
and ambiguities where real speakers
discover them, and for ambiguous
sentences the model should return
analyses in the same order as
speakers do.

Whereas there are many well-known
recognition procedures for programming
languages and other relatively simple
artificial languages, only a few algo-
rithms have been proposed which aim at
"transformational"” recognition, that is,
which attempt to develop appropriate deep
structures from natural language surface
strings. Some of these algorithms (17,
20, 28) incorporate more or less directly
a linguistically motivated transforma-
tional grammar, in light of the empirical
shortcomings of the derivational theory
of complexity, it is not surprising that
these proposals are Iinadequate perceptual
models. A deep structure recovery
strategy suggested by Kuno (14) operates
independently of a transformational
grammar and offers more psychological
relevance, but it too has formal limita-
tions (13). A procedure and grammatical
notation recently described by Kaplan
(11), based on an algorithm by Kay (12),
appear to meet many of the formal and
practical requirements for deep structure
recovery, but at present not enough is
known about its operating characteristics
to assess its adequacy as a formalism for
perceptual models. Augmented recursive
transition network grammars, to which we
now turn, can satisfy (a) - (c), have
other desirable psychological and formal
properties, and have the additional
advantage of being practical and effi-
cient.

|11. The Augmented Recursive Transition
Network

The idea of a transition network

431

parsing procedure for natural language
was originally suggested by Thome,
Bratley, and Dewar (23) and was subse-
quently refined in an implementation by
Bobrow and Fraser (3). Woods (26, 27)
has also presented a transition network
parsing system which is more general
than either the Thorne et al. or Bobrow-
Fraser systems. The discussion below is
based on the Woods version. Since a
detailed description is already available
we present here only a brief outline of
the grammatical formalism and then focus
on the manner in which this formalism
can be used to express perceptual and
linguistic regularities.

At the heart of the augmented recur-
sive transition network is a familiar
finite-state grammar (5) consisting of
a finite set of nodes (states) connected
by labelled directed arcs. An arc
represents an allowable transition from
the state at its tail to the state at
its heau, the label indicating the input
symbol which must be found in order for
the transition to occur. An input
string is accepted by the grammar if
there is a path of transitions which
correspond to the sequence of symbols in
the string and which lead from a speci-
fied initial state to one of a set of
specified final states. Finite state
grammars are attractive from the percep-
tual point of view because they process
strings strictly from left to right, but
they have well-known inadequacies as
models for natural languages (4). For
example, they have no machinery for
expressing statements about hierarchical
structure.

This particular weakness can be
eliminated by adding a recursive control
mechanism to the basic strategy, as
follows: all states are given names
which are then allowed as l|labels on arcs
iIn addition to the normal Iinput-symbol
labels. When an arc with a state-name
IS encountered, the name of the state at
the head of the arc is pushed (saved on
the top of a push-down store), and
analysis of the remainder of the input
string continues at the state named on
the arc. When a final state is reached
In this new part of the grammar, a pop
occurs (control is returned to the state
removed from the top of the push-down
store). A sentence is said to be
accepted when a final state, the end of
the string, and an empty push-down store
are all reached at the same time. Note
that with this elaboration of the basic
finite-state mechanism, we have produced
a formalism that can easily describe
context-free languages as well as regular

432

languages with unbounded coordinate
structures. The structural description
provided for a sentence by this procedure
Is simply the history of transitions,
pushes, and pops required to get through
the string.

However, the finite-state transition
network with recursion cannot describe
cross-serial dependencies, so it is still
inadequate for natural languages (21).
The necessary additional power is obtained
by permitting a sequence of actions and a
condition to be specified on each arc.
The actions provide a facility for expli-
citly building and naming tree structures.
The names, called regqgisters, function
much |like symbolic variables in program-
ming languages: they can be used in
later actions, perhaps on subsequent arcs,
to refer to their associated structures.
A register is said to contain the struc-
ture it names, and the actions determine
additions and changes to the contents of
registers in terms of the current input
symbol, the previous contents of regis-
ters, and the results of lower-level
computations (pushes). This means that
as constituents of a sentence are iden-
tified, they can be held in registers
until they are combined into larger con-
stituents in other registers. In this
way deep structural descriptions can be
fashioned in registers essentially inde-
pendently of the analysis paths through
the transition network.

Conditions furnish more sensitive
controls on the admissibility of transi-
tions. A condition is a Boolean combi-
nation of predicates Involving the cur-
rent Input symbol and register contents.
An arc cannot be taken if its condition
evaluates to false (symbolized by NIL),
even though the current input symbol
satisfies the arc label. This means
first, that more elaborate restrictions
can be imposed on the current symbol
than those conveyed by the arc label,
and second, that information about
previous states and structures can be
passed along in the network to determine
future transitions. This makes it pos-
sible for similar sections of separate
analysis paths to be merged for awhile
and then separated again — a powerful
technique for eliminating redundancies
and simplifying grammars. The condition
predicates and the arc actions can be
arbitrary functions in LISP notation,
although we have developed a small set
of primitive operations, described below
and in (26, 27), which seem adequate
for most situations. In these primitive
actions and predicates, atomic arguments
denote registers; parenthetic expressions

Session No. 10 Computer Understanding | (Communication)

are forms to be evaluated.

In order to be able to refer to the
current input symbol in conditions or
actions, a special register, named ~,
has been provided. More properly, this
register always contains the constituent
that enabled the transition; usually
this is the input symbol, but for
actions on a push arc (which are usually
executed after the return from the lower
level), * contains the structural des-
cription of the phrase identified In the
lower computation. This phrase iIs de-
termined when a special type of arc, a
pop arc, is taken from a final state at
the lower level (final states are dis-

tinguished by the existence of pop arcs).

The recursive transition network,
with all of these additions, Is called
an augmented recursive transition net-
work; it Is easy to show that it has
the generative power of a Turing machine.
To demonstrate more concretely how the
transition network works, we give a sim-
ple example. Figure 1 shows a transition
network grammar that will recover deep
structures for simple transitive and in-
transitive sentences, such as [6] and

[7]:
6] The man kicked the ball.

71 The ball fell.

The top of the figure shows the organi-
zation of paths in the network. States
are represented by circles with the

state mame inside. The state-names are
purely mnemonic, serving to Iindicate the
constituent being analyzed (to the left
of the slash) and how much of that con-
stituent has been identified so far.

Each arc specifies what will allow the
transition and has a number denoting

the condition and actions In the table
below. We mentioned above three kinds

of arcs: ordinary input symbol arcs,
push arcs, and pop arcs. To distinguish
these arcs from each other and from
other arc types, each arc has an explicit
type-indicator. Thus, RUSH1 NP/ specifies
that arc 1 iIs a push arc and that control
Is to pass to state NP/. RXP (SBUILD)
Indicates that arc 5 Is a pop arc, and
the structure to be popped (that is,
placed in * at the next higher level)

Is the value of the function SBUILD.
Figure 1 includes two rew types: a CAT
arc (arc 2) does not require a specific
input symbol, but requires that the word
be marked In the dictionary as belonging
to the specified lexical category. A
JUIP arc (arc 4) is a very special arc
that allows a transition Iin the grammar,

Session No. 10 Computer Understanding | (Communication)

433

Figure 1. A Simple Transition Network Grammar

-~] N\

PLSH NP/ CAT V
) 2
CAT DT CAT N
!]
Arc Concition Actions
1 T (SETR SUBJ %)
2 (AND (GETF TNS) (SETR TNS

(SVAGR SUBJ)
(GETF PNCODE)))
(SETR OBJ *)

(GETF TNS))

3 (TRANS V)

PUSH NP/

POP (SAUILD)

JUMP v >
4

D

POP (BUILDQ (NP (DET 4) (N +)) DI'T N)

8
Arc Condition Actions
4 (INTRANS V)
5 T
6 T (SETR DET *)
7 T (SETR N *)
8 T

Figure 2: Arcs Required for Passives

5/ PUSH NP/ .FAT)
2
CAT DET NP/DET CAT N
6 7
Arc Condition Actions

4 (OR (INTRANS V)
(FULLR OBJ))
5 (FULLR SUBJ)
9 (AND (GETF PASTPART) (SETR OBJ SUBJ)
(PASSIVE *) (SETR SUBJ NIL)
(WRD BE V)) (SETR V *)

POr (SBUILD)

W'D BY

PUSH NP/
11

POP (NPBUILD)

: D

Arc Condition Actions

10 (NULLR SUBJ)
11 T
12 (NULLR SUBJ) (SETR SUBJ
(BUILDQ
(NP (PRO SOMEONE))))

434

with possible actions, without advancing
the input string — it is useful for by-
passing optional grammar elements.

Let us trace the analysis of sentence
[6] using this gammar (Figure 3 shows
the trace as it is printed out by the
program). The starting state is, by
convention, the state labelled S/. The
only arc leaving S/ is a push for a
noun-phrase, so without advancing the
iInput string, we switch to NP/. Since
the, the current input symbol, is In
the category DEI and since the condition
for arc 6 is trivially true, we can take
arc 6, executing the action GETR DET *).
SEIR is a primitive action that places
the structure specified by its second
argument (in this case, the current input
word, denoted by *) in the register named
by its first argument (DET). Thus after
following arc 6, the register DEI contains
the, and we continue processing at state
NP/DET, looking at the word man. We are
permitted to take arc 7, saving man In
the register N, and arrive at the final
state NP/N. We take the RCOP arc, which
defines the phrase to be returned.
BULDQ Is a primitive action that takes
as its first argument a tree fragment
with some nodes denoted by the symbol +.
These nodes are replaced by the contents
of the registers specified as the remain-
ing arguments, in left-to-right order.
Thus the value returned by arc 8 will be
the structure (NP OET the)(N man)),
which is a labelled bracketing corres-
ponding to the tree (8):

(8) NP

DET N

the man

This structure is returned in the regis
ter * on arc 1, where the action (SETR
SUBJ *) places it in the register SUBJ.
We move on to state S/SUBJ, looking at
the word Kkick.

Kick satisfies the label on arc 2,
so the condition is evaluated, checking
the inflectional features in the dic-
tionary entry for Kkick. The predicate
(GETF TNS) verifies that the verb is a
tensed form (as opposed to a participle),
and SVAGR ascertains that the person-
number code of the verb agrees with the
noun-phrase stored in the register SUBJ.
Since the condition is true, the transi-
tion iIs permitted and the action is
executed, setting the register TNS to
the value of the feature TNS (in this
case It would be PAST) and saving the
verb in V. At state VP/V, we have a

Session No. 10 Computer Understanding | (Communication)

Figure 3: Trace of an Analysis

Sentence: The man kicked the ball.

STRING = (THE MAN KICKED ThE BALL)
ENTERING STATE S/

ABOUT TO PUSH

ENTERING STATE NP/

TAKING CAT DET ARC

STRING = (MAN KICKED THE BALL)
ENTERING STATE NP/DET
TAKING CAT N ARC

STRING = (KICKED THE BALL)
ENTERING STATE NP/N
ABOUT TO POP

ENTERING STATE S/SUBJ
TAKING CAT V ARC

STRING - (THE BALL)
ENTERING STATE VP/V

STORING ALTARC ALTERNATIVE 768692
ABOUT TO PUSH

ENTERING STATE NP/

TAKING CAT DET ARC

STRING = (BALL)
ENTERING STATE NP/DET
TAKING CAT N ARC

STRING - NIL
ENTERING STATE NP/N
ABOUT TO POP
ENTERING STATE S/VP
ABOUT TO POP

SUCCESS

10 ARCS ATTEMPTED
195 CONSESD

1.8869999 SECONDS’
PARSINGS:®
S NP DET THE

N MAN
AUX TNS PAST
VP V KICK

NP DET THE

N BALL

a. The alternative analysis path
starting with arc 4 Is saved.

b. Number of memory words used.
c. Processing time required.

d. The recovered deep structure.

Session No. 10 Computer Understanding | (Communication)

choice of two arcs. Are | is a push for
an object noun-phrase, which we can take
since (TRANS V) is true, that is, since
the verb in V (kills) is marked transi-
tive in the dictionary. We execute the
push, identify the noun-phrase the ball,
and save it in the register 0BJ. At S/VP
we pop the value of SBU1LD, a function
which applies a complicated BUILDQ to the
registers SUBJ, TNS, V, OBJ, building
the tree [9]. Notice that at this point
we have exhausted the input string,
achieved a final state, and emptied the
push-down stack. Thus the sentence [6J
IS accepted by the grammar, and its deep

structure is the structure returned by
the final POP.
NP Ailx /VI\
DI'./T\N\ TI\IJS Vv NP
I
tk!e man PAST kick DIIL:J'I‘\II\J
the ball
Sentence [7] is processed in the same
way, except that arc 4 is taken instead
of arc 3, since fell is marked intransi-
tive. Hence, the resulting structure

does not have the object NP node.

For these two examples and, indeed,
for all sentences in the language of
this grammar, the structure returned by
the final POP directly reflects the
history of the analysis -- the surface
structure — but this need not be the
case. As a second illustration, we
extend the grammar to deal with passive
sentences, such as [10J:

[10] The ball was kicked by the man.

We must add one new state, S/BY, a new
arc to state VP/V and two new arcs to
state S/VP. In addition, we must change
the conditions on arcs 4 and 5. Figure
2 shows the new grammar, with new arcs

in boldface and with only new and changed
conditions and actions. For sentence
[10] the new grammar works as follows:
the ball Is recognized as a noun-phrase
and placed in SUBJ. Was passes the
condition on arc 2, so PAST Is stored in
TNS and be is placed in V (as part of the
category checking operation, the inflected
form was is replaced in * by its root).
At this point In the sentence, we do not
know if be is a passive marker or a main
verb as |E [11].

[11] The ball was a sphere.

435

We make the assumption that it is a main
verb, with the understanding that later
Information might cause us to change our
minds and possibly rearrange the struc-
ture we have built. At state VP/V we
find that we have indeed made a mistake.
We first attempt the arc 9 transition.
We are looking at kicked, the past par-
ticiple of a passivizable verb, and be
IS iIn V, so we can make the transition:
the contents of SUBJ (the ball) are
moved to OBJ and SUBJ is emptied (a
register containing NIL is considered

void). Then kick replaces be in V, and
we re-enter state VP/V, looking at the
word by.

By is not a verb, so arc 9 is dis-
allowed. Kick is transitive, so we try
pushing for a noun-phrase, but since by
Is not a determiner, the push is unsuc-
cessful. Arc 4 has been modified so
that It can be taken if the verb Is
transitive but the object register has
already been filled (the predicate FULLR
s true Just in case the indicated regis-
ter is non-empty), and we can therefore
JUMP to S/VP.

At S/VP we cannot take arc 5 because
we have no subject, so we try arc 10, a
WRD arc. This arc type corresponds to
the original finite-state grammar arc-
label, a symbol which must literally
match an input word. Arc 10 specifies
WRD BY and matches the current word, so
the transition is allowed (NULLR is true
when FULLR is NIL). At this point in
the sentence, the only way we could not
have a subject is if we had followed the
passive loop. We therefore look for the
deep subject of the sentence in a by-

phrase: we take arc 11, put the man
in SUBJ, and return to S/VP, from which
we pop. The resulting structure is

Identical to [9] -- we have undone the
passive transformation. If the agent
phrase had been omitted in L10], we
would have taken arc 12 instead of the
path through S/BY. Arc 12 is a JUMP
that inserts the pronoun someone in SUBJ
just In case there is no other way to
get a subject.

These simple examples have illus-
trated the notation and underlying
organization of the augmented recursive
transition network. They have also
demonstrated that transition network
grammars can perform such transforma-
tional operations as movement, deletion,
and insertion in a straightforward manner.
We are now ready to examine the way in
which transition network grammars can
model performance data.

436

V. The Formalization of Perceptual
Strateqgies

Bever (1) has surveyed the results
of many psycholinguistic experiments and
has inferred from the data that human
beings use a small number of perceptual
strategies In processing sentences. Some
of these are corollaries of more general
cognitive strategies and have observable
reflexes in other areas of perception,
while others are peculiar to language
performance. As a set, these strategies
account in part for the relative percep-
tual complexity of sentences and for some
of the patterns of observed perceptual
errors. In this section, we show how
these strategies can be naturally repre-
sented in transition network grammars.

The dependent variable Iin a majority
of psycholinguistic studies has been the
difficulty subjects experience in proces-
sing sentences, as indicated for example
by response latencies, recall errors,
and the impact of various disturbances on
comprehensibility. Thus the ultimate
validation of transition network models
will depend to a large extent on the
correlation between experimentally obser-
ved complexity and complexity as measured
iIn the transition network. There are
several ways of defining a complexity
metric on the network. We could count
the total number of transitions taken
in analyzing a sentence, the total num-
ber of structure building actions exe-
cuted or even the total number of tree-
nodes built by these actions. We could
also use the amount of memory space or
computing time required for a sentence in
a particular implementation of the tran-
sition network parser (e.g., the number
of conses (memory cells) or seconds in-
dicated in Figure 3). Of coarse, most
intuitive measures of complexity are
highly intercorrelated and lead to the
same predictions, so our choice can be
somewhat arbitrary. We will say that
the complexity of a sentence is directly
proportional to the number of transitions
made or attempted during the course of
iIts analysis.

With this definition the complexity
of a sentence depends crucially on the
order in which the network Is searched
for a successful path, although its
acceptability by the grammar is indepen-
dent of the search-order. Unless spe-
cial mechanisms are invoked, the arcs
leaving a state-circle are tried in
clockwise order, starting from the top.
Thus in Figure 2, arc 5 is attempted be-
fore arcs 10 and 12. If an attempted

Session No. 10 Computer Understanding | (Communication)

arc turns out to be permitted, then the
remaining, untried arcs leaving the
state are held in abeyance on a list of
alternatives, and the legal transition
Is made. If the path taken is subse-
quently blocked, alternatives are re-
moved from the front of the list and
tried until another legal path is found.
As a result of this depth-first search,
an ambiguous sentence will initially
provide only one analysis; the other
analyses are obtained by simulating
blocked paths after successes.

A. The Relations Between Clauses

Since sentences are frequently com-
posed of more than one clause, the native
speaker must have a strategy for deci-
ding how the component clauses of a sen-
tence are related to each other (e.g.,
which is the main clause, which are re-
lative clauses, and which are subordi-
nate). Bever propounds that "the first
N..V..(N) clause... is the main clause,
unless the verb is marked as subordinate”
(1, Strategy B, p. 294), and points out
that a sentence is perceptually more
complicated whenever the first verb is
not the main verb, even if it is marked
as subordinate.3 Thus, sentences with
preposed subordinate clauses [12b] are,
according to this hypothesis, relatively
more difficult than their normally or-
dered counterparts [12a]:

[12] a. The dog bit the cat because
the food was gone.

b. Because the food was gone,
the dog bit the cat.
(=Dever's [2%a-b]).

And In cases where the verb is sub-
ordinate but not marked as such, this
strategy can lead to serious perceptual
errors. Bever reports that subjects had
much more difficulty understanding sen-
tences like [13a], where there is an

il lusory main verb and sentence (under-
lined), than [13b], even though both
sentences, being center-embedded, are

exceedingly difficult:

[13] a. The editor authors the
newspaper hired liked
laughed.

b. The editor the authors the
newspaper hired liked
laughed. (=Bever's [27a-b])

The modifications to our transition
network shown in Figure 4 can account
for these facts. We have added two arcs

Session No. 10 Computer Understanding | (Communication)

437
Figure A: Clausal Relationships
Wikl L)
9 PUSH SUBORD/
14
PUSH NP/
PUSH NP/ 3
POP (SBUILD)
5 >
JUMP
4 b WRD BY
0
<
PUSH SULORL/
13
Jggp T"USH NP/
11
- POP (NPBUILD
(.ATﬁrDET N[xr ok CA'_l,‘ N (L) >
JUMP
17 PUSH R/
15
PUSH R/NIL
16
Arc Condi&ion Actions Arc Condition Actions
13 (NULLR SUBORD) (SETR SUBORD *) 16 T (SENDR WH (NPBUILD))
14 (NULLR SUBORD) (SETR SUBORD *) (ADDR REL *)
15 (CAT RELPRO) (SENDR WH (NPBUILD)) 17 T
(ADDR REL *)
Figure 5: Progressives and Prenominal Modifiers
CAT V
9 CAT ¥ PUSH SUBORD/
18 14
<4WAY, PI'SH NP/
~— 1
I'USH NP/ CAT V
S/ S/ SUR. ;
1 Jirp
4
PUSH SUBORD/
13 AT Ny Jggp PUSH NP/
20 \ 11
|
I /
/
CAT DET CAT N POP (NPBUILD) r
6 7 8
JiMp
17 PU?? R/
CAT V
19
PUSH R/NIL
16
Arc Condition Actions Arc Condition Actlions
18 (AND (GETF PRESPART) (SETR V *) 19 (GETF PRESPART) (ADDR NMODS *)
(WRD BE V)) (ADDR TNS 20 (GE (NLIKE %) (ADDR NMODS N)

(QUOTE PROG)) (NLIKE N)) (SETR N *)

438

at the S level to look for subordinate
clauses, a simple transition sequence
(not shown) analyzes and builds the
appropriate structure for them. Also, we
have expanded states NP/ to allow null
determiners, and NP/N to look for rela-
tive clauses. With this grammar, four
more arcs, 1, 6, 17, and 7, must be
attempted for [12b] than for [12a]. For
[12b], first arc 1 is tried, causing a
push to NP/ where arcs 6, 17, and 7 are
tried and fail. We back up to state S/
and take arc 13, eventually ending up
with the appropriate structure (the com-
plete sequence of attempted arcs is 1, 0,
17, 7, 13, SUBORD/ arcs (not shown), 1,
6, 7, 8, 2, 9, 3, 6, 7, 8, 14, 5). Note

that we must still attempt arc 14, even
though we know the condition will fail,
because it Is ordered before the pop arc,
arc 95. For [12a], our first try at arc 1

takes us straight through to arc 14,
where we pick up the subordinate clause,
consider arc 14 again, and then pop at
arc 5 (sequence =1, 6, 7, 8, 2, 9, 3, 0,
/7, 8, 14, SUBORD/arcs, 14, 5)

The difference between [13a] and
[13b] is equally well accounted for. Arc
15 looks for a relative clause on the
noun-phrase, given that there is a rela-
tive pronoun following the noun. The
arc has two new actions, SENDR and ADDR.
Registers are subject to the control of
the push-down recursion mechanism, so
that when a push iIs executed, the regis-
ters' contents at the upper level are
saved on the stack along with the actions
to be executed upon return, and at entry
to the lower-level, the registers are all
empty. Upon popping, the upper level
registers are restored. SENDR is a very
special action: it can only appear on a
PUSH arc, and it is the only action
executed before pushing. It causes
structures computed at the upper level to

be placed in registers at the lower level.

Thus the action (SENDR WH (NPBUILD))
causes the noun-phrase so far identified
to be placed in the WH register at state
R/, the beginning of the relative clause
network (not shown). Based on the inter-
nal structure of the relative clause,
the R/ network decides whether the
relativized noun-phrase in WH is to be
interpreted as the subject or object,
analyzes the clause using parts of the
S/ and NP/ networks, and returns the
appropriate structure. (ADDR REL *)
causes this structure to be added on
the right of the previous contents of
REL, so that a sequence of relative
clauses can be processed by looping
through arc 15.

In [13a-b], however, there is no

Session No. 10 Computer Understanding | (Communication)

relative pronoun, so we cannot take arc
15. For both sentences, a successful an-
alysis requires that we push to state
R/NIL (arc 16), the section of the rela-
tive clause grammar designed to analyze
relatives with missing relative pronouns.
But before we get to arc 16, we pop via
arc 8 to state S/SUBJ. In [13a], the In-
put word at this point is authors, a pos-
sible verb, so we can take arc 2 to state
VP/V. We continue on until we try to pop
at arc 5 without having consumed the in-
put string (the current word is hired),
and by the time we have backed up all the
way to the appropriate arc 16, we have
attempted seventeen arcs erroneously (se-
quence=1, o6, 7, 8, 2, 9, 3, 6, /7, 8, 14,
5, 10, 12, 15, 16, blocked R/NIL arcs,
17, 7, 4, 15, 16, R/NIL arcs, 8, 2, 9, 3,
6, 17, 7, 4, 14, 5). For [13b], since the
IS not a verb, we are blocked at state
S/SUBJ, and we arrive at arc 16 having
only attempted three wrong arcs (sequence
-1, 6, 7, 8, 2, 15, 16, R/NIL arcs, 8, 2,
9, 3, 6, 17, 7, 4, 14, 5). Inside the
relative clause grammar, the noun phrase
authors in [13a] requires an extra transi-
tion at arc 17, so the net difference be-
tween the two sentences is fifteen arcs,
not counting the Dblocked R/NIL arcs in
[13a], a difference clearly in line with
empirical perceptual complexity.

We have thus expanded our simple gram-
mar to accept and provide deep structures
for a variety of constructions. Our gram-
mar has the same formal power to describe
these structures as a transformational
grammar, but we have been able to arrange
the analysis path so that complexity In
our model corresponds to perceptual com-
plexity, as stated by Bever's Strategy B.
We have taken advantage of the fact that,
unlike the ordering of transformations,
the order of arcs can be freely changed,
radically altering the amount of computa-
tion required for particular sentences,
without affecting the class of acceptable
sentences.

B. Functional Labels

A major task in sentence comprehen-
sion is the determination of the function-
al relationships of constituents within
a single clause, of deciding who the sub-
ject is, what the action Is, etc. Bever
suggests a simple strategy for assigning
functional labels based on the left-to-
right surface order of constituents: "Any
Noun-Verb-Noun (NVN) sequence within a po-
tential internal [deep structure] unit In
the surface structure corresponds to ‘'ac-
tor-action-object'" (1, Strategy D, p.298).
Bever cites several perceptual studies
involving sentences for which this stra-
tegy Is misleading, and in all cases,

Session No. 10 Computer Understanding | (Communication)

these sentences were more difficult to re-
spond to than control sentences for which
strategy D was appropriate.

There is very good evidence that pas-
sive sentences are more difficult to pro-
cess than corresponding actives, in the
absence of strong semantic constraints.
Given strategy D, this follows from the
fact that the surface order of passives is
object-action-actor. Similarly, progres-
sives [14a] have been found to be signifi-
cantly easier to comprehend than superfi-

cially identical participial constructions
[14b] (18).
[14] a. They are fixing benches.

b. They are performing monkeys.
(=Bever's [31 a-b])

According to strategy D, performing is
initially accepted as the main verb, un-
til the spurious direct object monkeys is
encountered,®* at this point the labels
must be switched around.

Bever explaine these processing dif-
ficulties in terms of the amount of re-
labeling that is required, given that stra-
tegy D can lead to errors. This translates
iInto the proposition that relative com-
plexity Is measured by the degree to which
constituents are shifted in registers,
since assigning a constituent to a regis-
ter is the transition network analog of
functional labeling. Indeed, Figure 2
shows that SUBJ is reset twice more for
passives than for actives, while in Fig-
ure 5 participial sentences require one
extra register assignment (NMODS). How-
ever, we have defined complexity in terms
of the number of arcs attempted, and we
now show that this measure can also account
for the experimental results.

Figure 2 contains the arcs necessary
for passive sentences. Simple active [6]
and passive [10] sentences are treated
identically until state VP/V is reached.
Arc 9 is attempted for both of them and is
taken for the passive, returning to VP/V.
9 is attempted again but fails, and then
twelve additional arcs are tried before
the successful final pop is executed.
Since only six additional arcs are attemp-
ted for the active, the difference in fa-
vor of the relative complexity of the pas-
sive IS SiX. (The difference is seven for
the more complicated grammar in Figure 5.)

Figure 5 gives the necessary modifica-
tions for the progressive and participial
constructions (in bold face). Arc 18 can
be taken only if the current word is a
present participle and the previously

439

identified main verb is be. The actions
put the new verb in V and mark TNS as pro-
gressive. Arc 19 simply adds an identi-
filed participle to NMODS, where the func-
tion NPBUILD will find it. The analysis
of [14a] is simple: at state VP/V, the
current word will be fixing and be will
be in V, so that arc /b can be taken.
Since fix is transitive, benches will be
identified as the direct object, and the
pop at arc 5 will be successful. [14Db]
involves considerably more effort. At

VP/V, arc 18 will also be taken but arc
3 is ruled out with perform in V (see foot
note 1). Before returning to arc 3 with
be in V, arcs 1, 11, 5> 10, and 12 will
be tried, and additional arcs will be at-
tempted in deriving the correct partici-
pial analysis (we assume that be is marked

transitive).

Thus the functional-relabelling and
the attempted-transitions explanations ac-
count equally well for the experimental
observations. At present we have no firm
empirical basis for choosing one complex-
Ity measure over the other; we must find
crucial sentences where the measures make
opposing predictions and let the data de-
cide for us. So far, we have been unable
to discover such sentences.

C. Prenominal Adjective Ordering

Another problem concerns the segmen-
tation of superficial sequences of words
into structural units. Where does a noun-
phrase begin, for example, and where does
it end? That these are not trivial ques-
tions is illustrated by [15a-b], where
the role of marks is unclear until the
whole sentence has been processed.

[15] a. The plastic pencil marks

easily.

b. The plastic pencil marks were

ugly.

(=Bever's [66a-b])
Of course, no matter what perceptual stra-
tegy i1s involved in making these decisions,

the transition network will
ing alternative paths until it arrives at
the correct segmentation, but an appropri-
ate strategy would make the analysis more
efficient. Bever suggests that in recog-
nizing the end of a noun-phrase, native
speakers use a strategy which also ac-
counts for the anomalies in such pairs as
(without contrastive stress):

continue try-

[16] a. The red plastic box...

b. *The plastic red box...

c. The large red box...

440

d. *The red large box...
(=Bever's [67a-d])

He cites the theories of Martin (17) and
Vendler (25) which essentially claim that
the more "nounlike" an adjective is”, the
closer to the noun it must be placed.Thus
the anomalies in [16] are accounted for

if we assume that plastic is more nounlike
than red and red is more nounlike than
large. Although the notion nounlike is
not made very precise, Bever gives heuris-
tic arguments that these assumptions are
correct. He then postulates that the end
of a noun phrase is signalled by a word
which is less nounlike than preceding
words (1, Strategy E, p. 323). Since
large is less nounlike than red, the ini-
tial noun phrase in [I6d] must be the red.

This constraint is difficult to ex-
press in traditional transformational for-
malisms but is quite directly represen-
table in the transition network. It not
only makes the transition network more
congruent with performance data but also
helps to rule out the anomalies Iin [106].
Assuming that nounlike is well-defined and
that all potential nouns (including adjec-
tives) are in category N and have their
nounlike-ness marked in the lexicon, the
dashed arc in Figure 5 is the necessary
addition to the network. Arc 20 is attemp-
ted before the pop from NP/N. If the noun-
like-ness of the current word is greater
than or equal to that of the word in N,
then the word in N is not the head of the
noun-phrase. We add this word to the list
of modifiers in NMODS, and place the cur-
rent word in N, as a new candidate for
head noun. We continue looping until we
find a word that is less nounlike than the
head, marking the end of the noun-phrase.
This procedure will accept [16a,c] but re-
ject [16b,d] except in constructions along
the lines of [17]. In [17] the adjectives
are accepted only because they can be ana-
lyzed in separate noun-phrases:

[17] | like the plastic red boxes
are made of.

V. The Justification of Transition Net-
work Models

In the preceding sections we illus-
trated the simple way in which transition
network grammars can express some of Be-
ver's perceptual strategies. The transi-
tion network analyzes strings in essen-
tially linear order, and the grammatical
notation is flexible enough so that gram-
mars can be devised to fit wide ranges of
performance facts. However, to Justify
the effort needed to simulate experimental
data with network models, we must show

Session No. 10 Computer Understanding | (Communication)

that the resulting grammars offer substan-
tial advantages compared to informal ver-
bal interpretations, such as Bever's. In
this section we argue that these grammars
are both conceptually and empirically pro-
ductive: they lead to new theoretical
questions, and they suggest new lines of
experimentation, predicting specific out-
comes. To the extent that the predictions
of a particular grammar are confirmed,
that grammar is validated as a model of
the psychological processes involved in
sentence comprehension.

The grammar shown in Figure 5, while
only a small fragment of a complete Eng-
lish grammar, will suffice to exemplify
the empirical implications of transition
network models. t has been designed to
account for the data underlying the per-
ceptual strategies discussed above, but
it also encompasses independent findings.
The grammar mirrors the perceptual stra-
tegies Just so long as a depth-first
search procedure Is used to discover suc-
cessful analysis paths. This search or-
der implies that for truly ambiguous sen-
tences, one interpretation will be recov-
ered before the other; if required, the
second interpretation can be recovered by
simulating a failure and continuing the
analysis. This is in line with the re-
sults of MacKay and Bever (15).and Foss
et al. (9): MacKay and Bever found sub-
jects to be aware that they arrived at
one interpretation of an ambiguous sen-
tence first and could even report what
the first interpretation was. Foss et
al. discovered that subjects tend to in-
terpret ambiguous sentences in only one
way; if the first interpretation is incom-
patible with the experimental context,
they can usually go on to find another
interpretation, although additional time
IS required. The search strategy under-
lying the Figure 5 grammar accounts for
these results even though the experiments
are not implicated in the perceptual stra-
tegies the grammar was designed to repre-
sent .

For ambiguous sentences within its
scope, the grammar clearly predicts which
interpretation should predominate. Other
things being equal, the first interpreta-
tion will have essentially the same analy-
sis as the less complex of two unambigu-
ous sentences with the same surface struc-
ture. Thus in a replication of the Foss
et al. experiment, the first analysis of
[18a] should be the progressive, resem-
bling [14a], while the participial deep
structure [14b] should come out second.
Subjects should first arrive at the in-
terpretation paraphrased in [18Db], ra-
ther than [18c]:

