
Session No. 2 Applications

CHALLENGE TO ARTIFICIAL INTELLIGENCE:
PROGRAMMING PROBLEMS TO BE SOLVED

J. E. Sammet

IBM Corporation
Cambridge, Mass.
U. S. A.

Abstract

This paper is in the nature of a challenge
to a r t i f i c ia l intelligence experts. It suggests
that the techniques of a r t i f i c ia l intelligence
should be applied to some real ist ic problems
which exist in the programming and data pro­
cessing f ields. After a br ief review of the l i t ­
tle related existing work which has been done,
the character ist ics of programming problems
which make them suitable for the application of
a r t i f i c ia l intelligence techniques are given. Spe­
cif ic i l lustrat ions of problems are provided un­
der the broad categories of data structure and
organization, program structure and organiza­
t ion, improvements and corrections of pro­
grams, and language.

Descriptors

a r t i f i c ia l intell igence
applications
programming
heurist ic techniques

I. INTRODUCTION

It has been over 15 years since computers
were f i r s t used for anything resembling " a r t i ­
f ic ia l intel l igence". The pioneering work of
Newell, Shaw, and Simon on proving theorems
in the proposit ional calculus is so wel l known as
not to need discussion for the people knowledge­
able in the f ield of a r t i f i c ia l intell igence. S imi ­
la r ly , the early work of Samuel in checker play­
ing is also wel l known. The total amount of
work which has been done in the field of a r t i f i ­
cial intel l igence, as represented by bibl iogra­
phies, papers, conferences, etc. , is quite
large, even if a narrow definit ion of a r t i f i c ia l
intell igence is used. However, there is a ma­
jor anachronism and irony in al l of this, which
is the subject of this paper.

The techniques of a r t i f i c ia l intelligence
have seldom been used to improve the use of
computers, i .e., the programming process, even
though p r im i t i ve attempts were made as early
as 1958. Even worse, there are vast numbers
of problems, even f rom the l imi ted view of
systems programming, which could benefit

59

f rom the application of a r t i f i c ia l intell igence
techniques. Put another way, it seems about
t ime that the workers in this f ield begin to
choose as vehicles for the exploration of a r t i f i ­
c ia l intell igence techniques some problems
whose solution might real ly be of use - at least
to other computer scientists and to the data pro­
cessing f ie ld. Playing checkers or chess on a
computer is an interesting tour de force, and
when such programs win f rom their developers
then the event is even more significant. Some
of the early motivations (e. g., wel l structured
problem, attention getting) which led to the
choice of these and other problems are s t i l l ex­
istent but can now also be applied to some rea l ­
ist ic programming problems.

This should not be interpreted as saying
that no useful problems have been attacked in
the name of, or in the sp i r i t of, using a r t i f i c ia l
intell igence tools. On the contrary, the assem­
bly line balancing program of Tonge (22), the
formal integrat ion systems of Slagle (18) and
Moses (16), the chemistry work in Heurist ic
DENDRAL (3), project scheduling (10), and even
the solution of algebra word problems in
STUDENT (2) al l represent d i rect or sl ightly
indirect real ist ic pract ical problems which
have been or are being addressed. However,
the thrust of this paper is to concentrate on
problems which arise in, or f rom the program­
ming and data processing f ields, and the related
issue of communication between the human and
the computer.

It is also important to recognize that there
real ly are areas in which programming technol­
ogy and problems have grown so complex that
straightforward techniques and algori thms are
inadequate to deal wi th them. As one i l lus t ra ­
t ion, the di f f icul ty in planning a combined soft­
ware-hardware configuration for a new instal la­
t ion, or even for a specific application, has a l ­
most gotten out of hand. The pro l i ferat ion of
central processor numbers and speeds, memory
sizes, per ipheral and storage devices, com­
bined wi th the var iab i l i ty inherent f rom oper­
ating systems which allow mul t i -processors ,
mul t iprogramming, on-l ine systems and real
t ime systems al l simultaneously, make it d i f f i ­
cult to determine adequate (let alone the best)
configurations and methods of scheduling. Even
the measurement of throughput and other c r i ­
ter ia for performance is extremely di f f icul t .
While this whole problem area is probably not
yet amenable to aid f rom the a r t i f i c ia l in te l l i ­
gence f ie ld, it is at least a specific indication
of the complexity of the programming f ield today
and the type of problem which can eventually

60

benefit f rom heurist ic techniques.

I I . RELATED EXISTING WORK

The ear l iest work dealing wi th a real is t ic
programming problem seems to be that of
Fr iedberg (7, 8) in 1958. He assumed the exis­
tence of a computer, and t r ied to develop a
" learning machine" which would program the
computer to yield an acceptable output for each
input, e. g., complement the input bi t . The ap­
proach was by t r i a l and e r ro r , wi th feedback
given on the correctness of the resul t in each
case. Other attempts to develop " learning
programs" were made by Campaigne (4) and
Arnold (1). The lat ter dealt speci f ical ly w i th
finding a program for a new computer which is
equivalent (with respect to input and output) to a
program on another computer; he used a "mod i ­
fied B r i t i sh Museum" approach. K i lburn ,
Grimsdale and Sumner (11) developed a program
which could produce programs for a computer
wi th 4 ar i thmet ic and 2 copy instruct ions; the
program was considered acceptable if i t p ro ­
duced a sequence of numbers satisfying some
predefined c r i t e r i a (e. g., weak convergence).

In 1963, Simon (17) used an approach s im­
i lar to the techniques of GPS to develop a heu­
r is t ic compiler which constructed an I P L - V
program f rom stated input and output requ i re­
ments. While some success was achieved in
simple cases, this work has apparently not
been developed fur ther.

The DEDUCOM system (19) was p r i m a r i l y
concerned wi th question answering, but did con­
sider the problem of wr i t ing simple programs,
and solved a smal l port ion of a problem dealt
wi th by Simon's heurist ic compi ler .

The problem of wr i t i ng programs f rom
stated inputs and outputs has been considered
more recently. Green (9) and Waldinger (23,
24) deal wi th this problem, and provide simple
but pract ica l i l lust rat ions of their techniques,
which are closely related to theorem proving
and fo rma l logic. In a fur ther development,
(14) describes a theorem-proving approach to
automatic program synthesis.

The problem of wr i t ing programs f rom
stated inputs and outputs is of course closely
related to the concept of proving the val id i ty of
existing programs; much work has been done in
this area lately, as shown by London's b ib­
l iography (12).

A conceptually different approach is used
by Fikes in his REF-ARF system (6). His con­
cern is wi th the development of an input Ian-

Session No. 2 Applications

guage which can be used for stating a wide
variety of problems to be solved, and then with
the effectiveness of methods for solving those
problems. Although most of the problems he
solves are unrelated to programming, one ex­
ample is shown of changing the values of com­
puter registers given their existing contents
and certain machine instructions.

The PILOT system of Teitelman (20)
makes automatic corrections to certain errors
in LISP programs, while still allowing the user
to override the automatic facility.

Although the use of a computer to do
formal integration is somewhat different from
the types of problems with which this paper
deals, the development of SAINT by Slagle (18)
deserves mention. What makes this particu­
larly interesting, and relevant for the future,
is the later development of SIN by Moses (16) in
which he was able to replace some of the heu­
ristic work done by SAINT with algorithms
which provided great improvements in speed.
This implies that in at least some problems, if
appropriate heuristic techniques can be devel­
oped, then perhaps after further study they can
be (partially) replaced by algorithms which are
actually more efficient.

III. PROGRAMMING PROBLEMS NEEDING
SOLVING

This section discusses a number of
programming problems which need solution and
which seem amenable to solution, or at least
improvement, by various techniques common
in artificial intelligence. It should not be as­
sumed that all programming problems fall in
this category. Section III. 1 indicates the char­
acteristics which programming problems should
(and should not) have to make them suitable for
attack by artificial intelligence techniques. Sec­
tion III. 2 then discusses some specific prob­
lems, divided into four main areas.

III. 1 Characteristics of Programming Prob-
lems Which Make Them Suitable for AI
Techniques

Although the phrase "artificial intelli­
gence techniques" appears frequently in this
paper, a definition of this phrase is deliberately
being omitted. The reason is to avoid an argu­
ment on the definition or scope of artificial
intelligence and its techniques. Intuitively what
is being postulated is the situation in which a
number of possible solutions for a problem
(which itself may be large or small) are avail­
able, and at least one of these solutions is
desired. In most cases, the "solution" is

Session No. 2 Applications

required to be optimal according to some cri­
teria. The facet of AI techniques which involve
"self-improving" facilities in the programs is
also needed. It is immaterial whether the AI
approach is via "generality" (e.g., GPS) or
"expertise" (e. g., SIN). It is inherent in this
formulation that for some problems the solu­
tions cannot be found at all, or cannot be found
in a "reasonable" length of time. This has an
effect in terms of limiting the class of prob­
lems which should be attacked.

The two basic characteristics which pro­
gramming problems should have to make them
suitable for the application of artificial intelli­
gence techniques are as follows:

(1) The problem must be structured wel l
enough so that a method for obtaining one or
more basic solutions is known or can be devel­
oped by people knowledgeable about the problem
(e. g., design of large data f i les).

(2) The problem should have a very
large number of potential or feasible solutions
(which may vary with time), but without a clear
or easy or practical way of determining the best
one (e. g., file layouts, scanning algorithms in
compilers).

In addition to having these required
characteristics, problems with one or more of
the following elements are suitable:

(1) Individual cases or users should have
individual treatment to achieve the best results
(e. g., e r ro r checking of programs or data).

(2) Reorganization of the program or the
system can improve efficiency or reduce errors,
but this can't be determined until the program
is developed and then it is too late to rewrite
(e. g., any case where sequencing of computa­
tions has been specified but is not necessarily
the most efficient).

(3) Individual modules or algorithms
needed in the overall program are available but
proper selection of the right one(s) is time-con­
suming and laborious and not obvious (e. g. ,
routines to access data, modules in a self-
adjusting compiler).

It might be assumed that all programming
problems fall into one or more of the above cat­
egories. This is not true, and there are cer­
tain characteristics which make a problem
unsuitable for the application of current artifi­
cial intelligence techniques:

(1) Very broad problems which require
intuition or vast experience to solve (e. g. ,
overall systems design for any very large

61

program or application).
(2) Problems where the interaction of

factors is not well defined (e. g. , language
design).

(3) Problems where timing is critical
and solutions must be reached in minutes or
seconds (e. g., process control, traffic control).

(4) Problems where lives are at stake
(e. g. , manned space flights, air traffic con­
trol).

III. 2 Specific Problems Suitable for Applica­
tion of AI Techniques

This section describes some specific
programming problems which are amenable to
solution or improvement through the use of AI
techniques. This is a representative - but by
no means an exhaustive - list of such problems.

The problems have been divided into
four main areas: (1) data structure and organi­
zation, (2) program structure and organization,
(3) improvement and correction of programs,
and (4) language. It will be noted that in one
guise or another the issue of language keeps
cropping up. This is not merely because of
personal predilections of the author, but be­
cause language is the means by which people
communicate with each other and with the com­
puter. If an idea is in the mind of a person, he
needs a language (however feeble or inarticu­
late either the language or the idea is) to com­
municate it.

III. 2.1 Data Structure and Organization

One of the major practical problems
facing any organization is the handling of large
quantities of data, commonly referred to as
"data bases". This data can range from highly
structured information such as personnel infor­
mation such as personnel information (e. g. ,
name, address, social security number, job
identification, salary, education, etc.) to more
amorphous or frequently changing information
(e. g. , the location of parts, finished goods, or
delivery trucks, and the financial status of each
of these). Furthermore, in todays environment
where teleprocessing equipment and terminals
are common, people in one part of a large com-
pary want immediate - or at least rapid -
access to this information. In the cases of the
structured data this is not too difficult to do ef­
ficiently, but in the less well, or non-structured
data, it is virtually impossible.

62

The problem involved is not how to find a_
way to structure the data. This is done in each
case by the systems analysts, data base man­
agers, programmers, and anyone else involved.
However, the techniques they use are generally
ad hoc and based on experience, intui t ion, or
often just doing what seems easiest, even
though analytic techniques are becoming ava i l ­
able. The large numbers of access methods for
data make it clear that the way in which data is
prepared logical ly and then stored physically in
a computer is not a stereotyped act iv i ty and re ­
quires careful consideration. The complexity
of the problem is par t ia l ly i l lustrated by the
need for using a Fi le Organization Evaluation
Model (FOREM) to do a simulat ion of a para­
metr ic study of f i le design (see (13)). Thus, the
number of possibi l i t ies for a f i le design is so
large that even though the analytic techniques
for doing a thorough study are available, the
people and machine t ime required may be p ro ­
hibi t ive. This is a case in which heurist ic
techniques might f ru i t fu l l y be used to reduce
the solution space so as to permi t existing ana­
lyt ic techniques to be applied to a smal ler (and
hence more pract ical) number of cases.

In addition to the above problem, the
a r t i f i c ia l intell igence f ield should find ways of
developing a system (i . e. , program) which
i tself w i l l determine the "best" way to store the
data, depending upon its potential usage. The
real key to this is the phrase "depending upon
its potential usage". Information which in
practise is used only in a batch environment, or
by a very l im i ted number of people at t e r m i ­
nals, can be handled today. It is when the com­
binations of possibi l i t ies get very large that the
di f f icul t ies set in. The problem has to be bro­
ken down into (a) specifying the ways in which
the data is to be used, (b) describing the data,
(c) specifying the constraints (which often means
the objectives), and then allowing a program to
produce the optimum data layout for the objec­
tives specified. Fur thermore, this program
should include " learn ing" faci l i t ies so that the
data can be automatically reorganized, based on
pract ica l experience by the users, or changes
in the constraints or objectives. For example,
a large company might set up a data manage­
ment system based on the assumption that on­
line access to the data would be equally required
f rom many places in the country. Actual expe­
rience might show that only a few locations
used the on-l ine fac i l i ty , and a program wi th
bu i l t - i n learning faci l i t ies could monitor the
usage and automatical ly readjust the physical
data organization to produce greater eff iciency.

Session No. 2 Applications

S imi la r ly , the logical data structure could be
changed based on usage.

A second major problem is so old it is a
shame that it has not been attacked before. This
involves the classical decision as to when to
store informat ion, and when to compute i t . In
the early days of computing, it was thought that
tables for t r igonometr ic routines should be
stored. It was rapidly ascertained that com­
puters had insuff icient storage for a l l those
numbers and the program as we l l , so the value
of a par t icu lar t r ig function had to be calculated
as needed. Now, wi th modern day computers
whose storage capacities are orders of magni­
tude greater, it may be t ime to reevaluate this
c lassical problem and solution. Again, this
decision could be made by a program f rom
specif ication of the given problem and the
available equipment, and adjusted as necessary
based on experience.

I I I . 2. 2 Program Structure and Organization

A l l programming languages in use today
te l l the computer what to do and in what se­
quence to do i t . They vary considerably in the
amount of informat ion supplied to the computer,
and the level of detail in that sequencing. This
is represented by the conclusion reached by
thiB author that the defini t ion of a "nonproce­
dural language" is relat ive to the state of the
art of languages and compi lers. The problem
to be dealt with here is to allow both major and
minor decisions of program organization to be
made by an " in te l l igent" system. In the case
of higher level languages and their compi lers,
many decisions are already made by the lat ter .
For example, detailed code sequences, al loca­
tion of memory, and manipulation of registers
are al l decided by the compi lers, but in a
fa i r l y r ig id way. Several things need to be done
by the compi lers.

The compilers should be able to accept
a much higher level of language and decide how
to structure the program. For example, in the
problem "CALCULATE THE SQUARE ROOT
OF THE PRIME NUMBERS FROM 3 TO 99 AND
PRINT IN TWO COLUMNS", there are essen­
t ia l ly two main organizational approaches. One
is to take each odd number in turn f rom 3 to 99,
immediately test it for pr imeness, and then
immediately calculate and pr in t the square root
for each pr ime number. The other major orga­
nization is to f i r s t test a l l the odd numbers and
create a l is t of pr ime numbers, then take each
pr ime number and produce the l i s t of numbers
to be pr inted, and f inal ly to do the pr int ing. It
is not the least bit obvious which is the more

Session No. 2 Applications

efficient organization since it depends entirely
on the computer configuration. (This is a
greatly s impl i f ied version of a very pract ical
problem encountered by this author in which the
f i r s t program structure was used whereas the
second would have reduced the running t ime by
a factor of 100.) In cases l ike these the pro­
grammer should not have to (or be allowed to)
specify the sequencing except where needed log­
ical ly. Even when - or if - we get compilers
which are capable of accepting the sentence
cited above, it is unlikely that the compiler w i l l
do anything other than use one or the other of
these organizational approaches, i. e. , the com­
pi ler w i l l almost surely have a single bu i l t - in
method whereas it should have heurist ics to
determine the best.

Two major programming efforts for
systems programmers are compilers and oper­
ating systems. In both cases, a major design
objective is modular i ty, i, e. , the program
should be designed in small units each of which
can be replaced without affecting others. Com­
pi lers are generally designed to achieve one
major objective, e. g. , speed of compilat ion,
speed of object code, min imum storage for ob­
ject code, maximum er ro r checking, etc. Sel­
dom does the user have a choice. What needs
to be tackled f rom the ar t i f i c ia l intelligence
view is to create a self-organizing compiler,
i. e. , provide many modules in a compiler to do
the same task with each using different tech­
niques, and bring them together in an " i n te l l i ­
gent" fashion, depending on the needs of the par­
t icular user and program to be compiled. Prob­
ably no two compilations would be done the
same way, if this capabil i ty were available.
The heurist ic techniques can be applied in two
ways. One is to select, as indicated above, the
"best set" of modules for a part icular compila­
t ion. The informat ion needed for this selection
would include constraints and pr ior i t ies f rom
the user, the compi ler 's knowledge of the cur­
rent operating environment, history about that
par t icu lar user, etc. An alternate use of heu­
r is t ics would involve a "quick and d i r t y " scan
of the source code combined with whatever i n ­
format ion of the type above was available, and
then production of the most effective compiler.
This represents a compiler generator of a new
type.

(The use of a r t i f i c ia l intelligence to
select the r ight modules f rom compilers should
not be confused wi th the classical programming
problem of developing module l ib ra r ies , which
has not yet been solved and for which AI is un­
l ike ly to be of much assistance. The problems

63

in developing module l ib rar ies l ie p r ima r i l y in
finding methods of describing the module so
anyone can know which to select, and specify­
ing interfaces which would allow modules devel­
oped by different people for different purposes
to be pulled together in one program.)

In considering an operating system,
the use of AI techniques would enable automatic
reassignment of data in an instal lat ion to dif­
fer ing storage devices, wi th sel f- improvement
of the system based on continuous changes in
the individual programs, and experience f rom
the general job stream. Fur thermore, heu­
r is t ic analysis of the job mix would enable f r e ­
quent reorganization of the operating system to
achieve the best performance for the individual
instal lat ion.

Of the two major systems program­
ming activit ies cited above, the application of
AI techniques to compilers w i l l be far easier
in i t ia l ly because the compilers - although
large - are an order of magnitude smaller than
the operating systems, and are much better
understood at this point in t ime. However, as
an i l lus t rat ion of one smal l example of improve­
ment in an operating system, the MULTICS
system at Project MAC (5) is experimenting
with inclusion of an algor i thm for doing pre­
dictive paging, i. e. , guess which pages w i l l be
needed next based on the history of the par t ic ­
ular program, and br ing them in; their exper i ­
ence shows a slight gain in performance f rom
doing this.

In a general sense, an "understanding"
of any program would permi t its reorganization
in a manner most effective for the equipment
(hardware and software) available. In a con­
crete situation involving paral le l processors,
rearrangement of the program by heurist ic
techniques would el iminate the need for special
language features to denote para l le l i sm.
(Numerous proposals have been made for the
lat ter; sre for example (21) and its bibliography)

I I I . 2. 3 Improvement and Correct ion of P ro ­
grams

For any program which solves a spe­
cif ic problem, it should be possible for another
program to improve the f i r s t one, i . e . , it
should be possible to have the system rewr i te
the problem program for better efficiency. As
an example of this, consider the ear l ier state­
ment "CALCULATE THE SQUARE ROOT OF
THE PRIME NUMBERS FROM 3 TO 99 AND
PRINT IN TWO COLUMNS". If this is coded
(in a current language) in either way indicated

64 Session No. 2 Applications

ear l ie r , then the system should be able to ex­
t ract the meaning and intent and determine
whether the alternative method of coding is bet­
ter. As indicated ear l ie r , opt imizat ion of p ro ­
grams for a paral le l processor could be
achieved this way. (A discussion of this issue,
together wi th an i l lust rat ion involving algo­
r i thms for Fibonacci numbers, is given by
Minsky in his Tur ing lecture (15).)

The problem of finding and correct ing
e r ro rs in a program is in its infancy, although
the finding of e r ro rs is orders of magnitude
ahead of the correct ing process. A r t i f i c i a l
intell igence techniques need to be applied to the
problem of finding what the e r ro r rea l ly is
because then more can be done about f ixing i t .
There are too many cases in which a person
gets a compi ler diagnostic that says "the
parentheses are mismatched" when what real ly
happened was that an i l legal data name was
used several lines ear l ie r and that e r r o r cas­
caded into the symptom described to the user.
It is probably true that the system has to real ly
understand what the programmer had in mind
before it can start t ru ly identifying the e r r o r s ,
let alone f ixing them. It is regrettable that the
human can look at very many spelling e r r o r r s
and each them withoot any di f icul tu [sic]
whereas the compi ler gets confused by AD
instead of ADD. Correct ing these obvious
(to the human) e r ro rs certainly requires a r t i ­
f i c ia l intell igence techniques of the highest
order. The work of Teitelman (20) shows that
much can be done, but it would be useful to
many more people if this were done in a
COBOL compi ler .

Another problem which is considered
here (although it also belongs under the heading
of program structure and organization) is the
one of program translat ion. For many years
we have had systems that translate a program
in one language (regardless of whether higher
level or assembly) to another language, but
only par t ia l ly . That is , the translat ion can
take place, and even wi th reasonable eff iciency,
up to some point (which di f fers in every case)
which real ly depends upon knowing what the
program is intended to do. A r t i f i c i a l i n te l l i ­
gence techniques could be used here to great
advantage by developing se l f - improv ing fac i l ­
i t ies based on intent of the program or program­
mer. In a pract ica l situation the need is to
translate a set of programs in a specific ins ta l ­
lat ion or wr i t ten by a par t icu lar person. Since
there are programming styles, a t ranslator
wi th se l f - improv ing faci l i t ies could " l ea rn " or

"be taught" which styles were being used and
apply that knowledge to providing more eff icient
or more complete translat ions.

I I I . 2. 4 Language

In some sense it iB the area of lan­
guage in which the most work has been done, at
least by the c r i t e r i a which includes the develop­
ment of question answering systems as part of
a r t i f i c ia l intel l igence. If we consider this
author's long range goal of having each person
able to communicate with a computer in the
same way that he communicates wi th another
person (1. e. , by natural language), then c lear ly
this problem cannot be achieved without signif­
icant application of, and even advances in, a r t i ­
f ic ia l intell igence techniques. There is a fun­
damental difference between question answering
systems wi th a l im i ted discourse and true con­
versat ion, even though the conversation may be
s im i la r l y l im i ted in subject matter . A question
answering system is easier to prepare because
the structure of a question on a specific subject
is somewhat l im i ted , whereas ordinary con­
versation (even on a specific subject) is not.
For example, if the subject is "Transportat ion
by Plane", the question "WHAT PLANES
LEAVE FROM BOSTON TO LONDON AFTER
5 P M ? " is rea l is t ic whereas the question
"DOES THE PLANE GO FASTER THAN A
SHIP?" is unreal is t ic . However, the sentence
"THE ADVANTAGE OF TRAVELING BY PLANE
IS THAT IT IS MUCH FASTER THAN A SHIP"
is reasonable in a conversation about t ranspor­
tation by plane. Thus, to enable real is t ic con­
versation with a computer w i l l require greater
depth and complexity of l inguist ic, heurist ic
and sel f - improving techniques.

IV. SUMMARY AND CONCLUSIONS

This paper has attempted to present a
challenge to the workers in the f ield of a r t i f i ­
c ial intel l igence to apply their techniques to
real is t ic problems in the programming f ie ld ,
since v i r tua l ly nothing pract ica l has been done
in this area to date. Character ist ics for the
types of programming problems which seem
amenable to this approach were given. Some
specific i l lustrat ions were provided under the
broad headings of data structure and organiza­
t ion, program structure and organizat ion,
improvements and correct ions of programs,
and language.

Session No. 2 Applications 65

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

References

Arno ld , R. F. "A Compiler Capable of
Learn ing" , Proc. Western Joint Comp.
Conf. , San Francisco, March, 1959.

Bobrow, D. G. "A Question-Answering
System for High School Algebra Word
Prob lems" , Proc. FJCC, Vol. 26,
Part 1, 1964.

Buchanan, B. G. , Sutherland, G. L. , and
Feigenbaum, E. A. "Rediscovering
Some Problems of A r t i f i c ia l In te l l i ­
gence in the Context of Organic Chem­
i s t r y " , in Machine Intelligence 5,
Amer ican Elsevier Publ. Co. , 1970.

Campaigne, H. "Some Experiments in
Machine Learning" , Proc. Western
Joint Comp. Conf. , San Francisco,
March, 1959.

Corbato, F. J. et al . Six papers in session
"A New Remote Accessed Man-Machine
System", Proc. FJCC. , 1965.

Fikes, R. E. "REF-ARF: A System for
Solving Problems Stated as Procedures
A r t i f i c i a l Intelligence Journal, Vol. 1,
Nos. 1/2, Spring 1970.

it Fr iedberg, R. M. "A Learning Machine,
Part I " , IBM J. Research & Develop­
ment Vol . 2, Jan . , 1958.

Fr iedberg, R. M. , Dunham, B. , and North,
H.J. "A Learning Machine, Part I I " ,
IBM J. Research & Development,
Vol . 3, July, 1959.

(9) Green, C. "Appl icat ion of Theorem
Proving to Problem Solving", in (2 5).

(10) Huesmann, L .R. "A Study of Heuristic
Learning Methods for Optimization
Tasks Requiring a Sequence of Deci­
s ions", Proc. SJCC, 1970.

(11) K i lbu rn , T. , Gr imsdale, R. L. , and Sumner,
F. H. (1959). "Experiments in Machine
Learning and Thinking" Proc. Inter­
national Conf. on Information Proces­
sing, UNESCO, Par is , Butterworths,
London.

(12) London, R. L. "Bibl iography on Proving
the Correctness of Computer P ro ­
g rams" , in Machine Intelligence 5,
Edinburgh Universi ty Press, 1970.

(13) Lum, V. Y. , L ing, H. , and Senko, M. E.
"Analysis of a Complex Data Manage­
ment Access Method by Simulation
Model ing", Proc. SJCC, 1970.

(14) Manna, Z. , and Waldinger, R .J . "Toward
Automatic Program Synthesis", CACM,
Vol . 14, No. 3, March, 1971

(15) Minsky, M. " F o r m and Content in Com­
puter Science", JACM, Vol. 17, No. 2,
A p r i l , 1970.

(16) Moses, J. "Symbolic Integrat ion", MIT,
Project MAC, Cambridge, Mass. ,
MAC-TR-36 (Ph. D. Thesis), 1967.

(17) Simon, H. "Experiments wi th a Heurist ic
Compi ler" , JACM, Vol. 10, No. 4,
October, 1963.

(18) Slagle, J. R. "A Heurist ic Program that
Solves Symbolic Integration Problems
in Freshman Calculus", JACM, Vol.
10, No. 4, October, 1963.

(19) Slagle, J. R. "Experiments wi th a Deduc­
tive Question-Answering P rog ram" ,
CACM, Vol . 8, No. 12, December,
1965.

(20) Tei telman, W. "Toward a Programming
Laboratory" , in (25).

(21) Tesler, L. G. , and Enea, H. J. "A Lan­
guage Design for Concurrent P ro ­
cesses", Proc. SJCC , 1968.

(22) Tonge, F. M. "Summary of a Heurist ic
Line Balancing Procedure", in
Computers and Thought, McGraw-
H i l l , 1963.

(23) Waldinger, R.J . "Construct ing Programs
Automatical ly Using Theorem
Prov ing" , Ph .D. Thesis, Carnegie-
Mellon Univers i ty , 1969.

(24) Waldinger, R. J. , and Lee, R. C. T.
"PROW: A Step Toward Automatic
Program Wr i t i ng" , _ijn (25).

(25) Walker, D. E. , and Norton, L. M. (Eds).
Proc. International Joint Conf. on
A r t i f i c i a l Intell igence , Washington,
D. C. , 1969.

