
Generalized First Order Decision Diagrams for First Order Markov Decision
Processes

Saket Joshi

Tufts University
Medford, MA, USA

sjoshi01@cs.tufts.edu

Kristian Kersting∗

Fraunhofer IAIS
Sankt Augustin, Germany

kristian.kersting@iais.fraunhofer.de

Roni Khardon

Tufts University
Medford, MA, USA
roni@cs.tufts.edu

Abstract

First order decision diagrams (FODD) were re-
cently introduced as a compact knowledge repre-
sentation expressing functions over relational struc-
tures. FODDs represent numerical functions that,
when constrained to the Boolean range, use only
existential quantification. Previous work devel-
oped a set of operations over FODDs, showed how
they can be used to solve relational Markov deci-
sion processes (RMDP) using dynamic program-
ming algorithms, and demonstrated their success
in solving stochastic planning problems from the
International Planning Competition in the system
FODD-Planner. A crucial ingredient of this scheme
is a set of operations to remove redundancy in de-
cision diagrams, thus keeping them compact. This
paper makes three contributions. First, we intro-
duce Generalized FODDs (GFODD) and combi-
nation algorithms for them, generalizing FODDs
to arbitrary quantification. Second, we show how
GFODDs can be used in principle to solve RMDPs
with arbitrary quantification, and develop a partic-
ularly promising case where an arbitrary number
of existential quantifiers is followed by an arbitrary
number of universal quantifiers. Third, we develop
a new approach to reduce FODDs and GFODDs us-
ing model checking. This yields a reduction that is
complete for FODDs and provides a sound reduc-
tion procedure for GFODDs.

1 Introduction

Recently, Boutilier et al. [2001] have shown how ideas
about relational MDPs (RMDP) can be used to solve stochas-
tic planning problems. Several authors have developed dif-
ferent representation schemes and algorithms implementing
this idea [Kersting et al., 2004; Hölldobler et al., 2006;
Sanner and Boutilier, 2009; Wang et al., 2008]. In partic-
ular, [Wang et al., 2008; Joshi and Khardon, 2008] intro-
duced the FODD representation, showed how RMDPs can
be solved using FODDs and provided a prototype implemen-
tation that performs well on problems from the International

∗Supported by the Fraunhofer ATTRACT fellowship STREAM.

Planning Competition. The use of FODDs to date has two
main limitations. The first is representation power, where
FODDs (roughly speaking) represent existential statements
but do not allow universal quantification. This excludes some
basic planning tasks. For example, a company that has to plan
a recall of faulty products requires quantifier prefix ∃∀ for the
goal: there exists a depot such that all products are in the de-
pot. The second is that manipulation algorithms for FODDs
require special reductions to ensure their size is small. Such
reductions have been introduced but they are not complete.

The paper makes three contributions. We introduce Gen-
eralized FODDs that allow for arbitrary quantification. We
show how they can be used to solve RMDPs with arbitrary
quantification. We provide a new approach to reduction based
on model checking. This provides a complete reduction for
FODDs and a sound reduction to some quantifier settings of
GFODDs. This is a significant extension of the scope of the
FODD approach to solving stochastic planning problems, and
a significant improvement of our understanding of their re-
ductions. Due to space constraints all proofs and some de-
tails are omitted from the paper; they are available in the long
version of this paper.

Relational MDPs

A Markov decision process (MDP) is a mathematical model
of the interaction between an agent and its environment [Put-
erman, 1994]. Formally a MDP is a 4-tuple <S, A, T, R>
defining a set of states S, set of actions A, a transition func-
tion T defining the probability P (s′ | s, a) of getting to state
s′ from state s on taking action a, and an immediate reward
function R(s). The objective of solving a MDP is to generate
a policy that maximizes the agent’s expected total discounted
reward. Intuitively, the expected utility or value of a state is
equal to the reward obtained in the state plus the discounted
value of the state reached by the best action.

This is captured by the Bellman equation as V (s) =
Maxa[R(s) + γΣs′P (s′|s, a)V (s′)]. The value iteration al-
gorithm is a dynamic programming algorithm that treats the
Bellman equation as an update rule and iteratively updates
the value of every state until convergence. Once the opti-
mal value function is known, a policy can be generated by
assigning to each state the action that maximizes expected
value. Hoey et al. [1999] showed that if R(s), P (s′ | s, a)
and V (s) can be represented using algebraic decision dia-

1916

Figure 1: An example FODD

grams (ADDs) [Bahar et al., 1993], then value iteration can
be performed entirely using the ADD representation thereby
avoiding the need to enumerate the state space. This pro-
vides a solution for propositionally factored MDPs but does
not handle relational structure. Later Boutilier et al. [2001]
developed the Symbolic Dynamic Programming (SDP) al-
gorithm in the context of situation calculus. This algorithm
provided a framework for dynamic programming solutions
of RMDPs that was later employed in several formalisms
and systems [Kersting et al., 2004; Hölldobler et al., 2006;
Sanner and Boutilier, 2009; Wang et al., 2008; Joshi and
Khardon, 2008]. As in the propositional case, each portion
of the Bellman equation is captured abstractly so that compu-
tation is shared by identical portions. Further details about the
algorithm are given in Section 5. Importantly, in this scheme,
we need an efficiently manipulable representation assigning
values to abstract states.

First Order Decision Diagrams

This section briefly reviews FODDs [Wang et al., 2008] us-
ing standard terminology from first order logic (e.g. [Lloyd,
1987]). A first order decision diagram is a labeled directed
acyclic graph, where each non-leaf node has exactly 2 out-
going edges labeled true and false and is labeled by
an atom generated from a predetermined signature of pred-
icates, constants and an enumerable set of variables. Leaf
nodes have non-negative numeric values. The signature also
defines a total order on atoms, and the FODD is ordered with
every parent smaller than the child according to that order.
Three examples of FODDs are given in Figure 1; in these
and all diagrams in the paper left going edges represent the
true branches and right edges are the false branches.
Thus, a FODD is similar to a formula in first order logic.
Its meaning is similarly defined relative to interpretations of
the symbols. An interpretation defines a domain of objects,
identifies each constant with an object, and specifies a truth
value of each predicate over these objects. In the context
of RMDPs, an interpretation represents a state of the world
with the objects and relations among them. The semantics
of FODDs is defined as follows [Groote and Tveretina, 2003;
Wang et al., 2008]. Given a FODD and an interpretation, a
valuation assigns each variable in the FODD to an object in
the interpretation. If B is a FODD and I is an interpretation,
a valuation ζ fixes the truth value of every node atom in B un-
der I . The FODD B can then be traversed in order to reach a
leaf. The value of the leaf is denoted MapB(I, ζ). MapB(I)
is then defined as maxζMapB(I, ζ), i.e. an aggregation of
MapB(I, ζ) over all valuations ζ. For example, consider the
FODD in Figure 1(b) and the interpretation I with objects
a, b, c and where the only true atoms are p(a), q(b). The val-

uations {x/a}, {x/b}, and {x/c} will produce the values 1,
1 and 0, respectively. By the max aggregation semantics,
MapB(I) = max{1, 1, 0} = 1. Thus, this FODD is equiva-
lent to the formula ∃x, p(x)∨q(x). In general, max aggrega-
tion yields existential quantification when leaves are binary.
When using numerical values we can similarly capture value
functions for RMDPs.

Akin to ADDs, FODDs can be combined under arith-
metic operations, and reduced in order to remove redundan-
cies. Previous work has introduced several reduction oper-
ators. Intuitively, redundancies in FODDs arise in two dif-
ferent ways. The first observes that some edges may never
be traversed by any valuation. Reduction operators for such
redundancies are called strong reduction operators and they
preserve MapB(I, ζ) for every valuation ζ (thereby preserv-
ing MapB(I)). On the other hand, weak reduction op-
erators preserve MapB(I) but not necessarily MapB(I, ζ)
for every ζ. Weak reductions allow us to prune the dia-
grams further. All weak reductions previously introduced
rely on notions of implication of reachability between dif-
ferent paths in the diagram, combined with a notion of
value domination between the same parts [Wang et al., 2008;
Joshi and Khardon, 2008].

Weak reductions offer some subtle difficulties discussed in
previous work. One of the issues is illustrated by the exam-
ple in Figure 1(c). This simple FODD contains only 2 paths
leading to non-zero leaves. Notice that whenever there is a
valuation traversing one of the paths, there is another valua-
tion traversing the other and reaching the same leaf. Thus ei-
ther path can be safely removed from the diagram, but at least
one must be kept. This suggests that we impose an ordering
among paths that will indicate which one is to be preferred in
such cases.

Definition 1 A descending path ordering (DPO) is an or-
dered list of all paths from the root to a leaf in a FODD,
sorted in descending order by the value of the leaf reached by
the path. The relative order of paths reaching the same value
can be set arbitrarily.

2 Model Checking Reduction for FODDs

In this section we introduce a new reduction operator R12
(numbered to agree with previous work). The basic intu-
ition behind R12 is to use the semantics directly. The map
of a diagram is generated by aggregation of values obtained
by running all possible valuations through the FODD. There-
fore, if we document the behavior of every possible valua-
tion under every possible interpretation, that is, which path
it traverses under which interpretation, we can identify parts
of the diagram that are never instrumental in determining the
map. Such parts can then be eliminated to reduce the dia-
gram. Crucially, with some bookkeeping, it is possible to
obtain this information without enumerating all possible in-
terpretations. For a given valuation ζ, any interpretation can
be classified into one of a set of equivalence classes based on
the path p that it forces ζ through. All such interpretations
are consistent with PF(p)(ζ), where PF(p) denotes the path
formula of path p which is the conjunction of literals on the
path. Therefore the most general interpretation that forces ζ

1917

through p can be viewed as a key or identifier for its equiva-
lence class. If we collect the abstract interpretation PF(p)(ζ)
for every path p that a valuation ζ could possibly take (i.e.
every path where PF(p)(ζ) is consistent), along with the cor-
responding path and leaf reached, we will have all informa-
tion we need to describe the behavior of ζ under all possible
interpretations. The procedure getValue does exactly that by
simulating the run of a valuation through a FODD. The input
to getValue is the FODD B to be reduced and a valuation ζ.
The output of the procedure is a set of <leaf, p, I> triplets,
where leaf is the leaf reached by ζ by traversing path p and I
= PF(p)(ζ). The output must contain one triplet correspond-
ing to every path in B such that PF(p)(ζ) is consistent. This
can be done by traversing the diagram and, when we reach a
node whose truth value has not yet been defined, recursively
collecting the paths and values for both possible truth values.

Figure 2: Example of R12

Figure 2 shows an example of the R12 reduction. The re-
duction is applied to the FODD on the left to reduce it to the
FODD on the right. The table illustrates the result of running
the getValue procedure on all possible valuations over the set
of domain objects {a, b} and the variables x and y appear-
ing in the left FODD. For example, the traversal of valuation
{x/a, y/b} through the FODD has 3 possible eventualities.
Either it reaches a 10 leaf by traversing path {1t} (which is
short for path consisting of the true edge of node 1), under ab-
stract interpretation {p(a)}, or it reaches a 10 leaf by travers-
ing path {1f2t} under abstract interpretation {¬p(a), p(b)}
or otherwise it reaches the 0 leaf via path {1f2f}.

The next step is to generate all possible ways in which an
aggregate value can be derived. Once again we avoid enu-
merating all interpretations. The table gives sufficient infor-
mation to list all possible ways to aggregate over the set of
all valuations. Just consider all combinations of behaviors
over the set of valuations. Every combination (as long as it is
consistent) can produce an aggregate value or the map. The

aggregation, however, has to be done so as to expose the val-
uations (and paths) that prove to be instrumental in determin-
ing the map. Intuitively, paths that remain unexposed in spite
of listing all possible ways to aggregate over the set of all val-
uations are not instrumental and can be removed. To this end,
we introduce variants of the max aggregation function.

Generalized Aggregation Functions: max2 and max3

max2 is defined relative to a fixed DPO, PL. The input is a
set of 3-tuples of the form <vi, pathi, Ii> each correspond-
ing to a valuation ζi so that ζi traverses path pi in the FODD
under interpretation Ii to reach leaf vi. The output is a 3-
tuple <vo, patho, Io> where vo = maxi[vi], Io =

⋃
i=1 Ii,

and patho is the path of least index, under the order imposed
by PL, with leaf value vo.

The example in Figure 2 shows the DPO and aggre-
gation results derived from the table. Each of the 3
resultant tuples is derived by collecting one tuple from
every row and applying max2 to the collection. E.g.,
aggregating over <10, {1t}, {p(a)}>, <10, {1t}, {p(a)}>,
<10, {1t}, {p(b)}>, and <10, {1t}, {p(b)}>, using max2

gives <10, {1t}, {p(a), p(b)}> indicating that there is a pos-
sible aggregation where the path consisting of the edge {1t}
is instrumental in determining the map.

max3 just runs max2 on every possible combination of
triplets over the list of valuations and returns the results of
those where Io is consistent and vo > 0. The example in Fig-
ure 2 shows the result of applying max3 to the elements in
the table. Only 3 of the 2 × 3 × 3 × 2 = 36 possible com-
binations result in a consistent combined interpretation and
positive value. Aggregations resulting in 0 value are ignored
because 0 is uninteresting under the max aggregation.

To summarize, R12 is defined as follows: we fix a DPO
PL, invent as many new objects as the number of variables
in B and generate U , the set of all possible valuations of the
variables in B over these objects. Then we run getValue on
each valuation to generate a table as in Figure 2 and run max3

on it to generate S, the set of resultant triplets. At the end we
partition the set of edges in B into 2 sets: E′, the set of edges
appearing in any path in any triplet in S, and E, the set of
edges in B that are not in E′. Intuitively, the edges in E do
not belong to any path that determines the map and they can
be removed. We say that a path is instrumental if it is the
least index path for the DPO reachable for some interpreta-
tion. The reduction satisfies the following properties:
Lemma 1 If there exists an instrumental path pi under DPO
PL that crosses edge e in B and reaches a non-zero leaf, then
∃ Io such that {leaf(pi), pi, Io} ∈ S and therefore e ∈ E′.

Theorem 1 (soundness) If FODD B′ is the output of
R12(B) for any FODD B, then ∀ interpretations I ,
MapB(I) = MapB′(I).

Theorem 2 (completeness) If no path crossing edge e and
reaching a non-zero leaf in B is instrumental under DPO PL,
then R12 removes e.

While this does not provide a normal form for FODDs, i.e.
two semantically equivalent diagrams can be reduced but
have different syntax, it provides much stronger reduction
power compared to previous work. E.g., R12 reduces the

1918

FODD in Figure 1(a) to Figure 1(b). Whenever a valuation
reaches the 0.5 leaf there is another valuation traversing one
of the two paths reaching the 1 leaf. However, neither of the
path (or edge) formulas are individually implied by the for-
mula for the path reaching the 0.5 leaf. Since all previous re-
ductions are based on some notion of single path implication
they are inapplicable. R12, on the other hand, is very flexible
since it tracks reachability by way of model checking.

3 Generalized FODDs syntax and semantics

A significant extension to expressive power of FODDs can
be obtained by changing the aggregation function. E.g., min
aggregation leads to universal quantification. Other possible
aggregation functions include

∑
, mean, etc. We define Gen-

eralized FODDs as follows:

Definition 2 A Generalized First Order Decision Diagram
(GFODD) is a 2-tuple <V, D>, where, V , the aggregation
function, is an ordered list of distinct variables each associ-
ated with its own aggregation operator. D is a FODD except
that the leaves can be labeled by a special character d (for
discard).

GFODD semantics

The semantics follow the approach of FODDs except
that the aggregation operation is now defined by V =
[(op1

v1
) · · · (opn

vn
)]. Here every vi is a variable of the GFODD

(ordered v1 to vn) and the corresponding opi is the aggrega-
tion operator associated with it. Consider the set of all pos-
sible valuations defined over the domain of interpretation I .
Each valuation ζ is associated with a value MapB(I, ζ). We
can now divide up these valuations into blocks. All valuations
in a block have the same assignment of values to variables
v1 · · · vn−1 but they differ in the value of the variable vn.
We then collapse each block to a single valuation over vari-
ables v1 · · · vn−1 by eliminating the variable vn and replacing
the set of associated values (MapB(I, ζ)) by their aggregate
value produced by applying opn to the set. Any discard val-
ues in the block are removed before applying opn. If we do
this for every block we are left with the set of all possible val-
uations defined over the variables v1 · · · vn−1 each associated
with a value. We repeat the procedure for variables vn−1 to
v1 to produce a final aggregate value, MapB(I), obtained by
nesting aggregation operators with opn being the innermost.

MapB(I) = op1
v1

· · · opn
vn

[Map(I, [v1 · · · vn])]

where [v1 · · · vn] is the corresponding valuation. We illustrate
this using the example in Figure 3 where GFODD B captures
the following statement from the logistics domain: ∃c∀b, box
b is in city c. The output of B is 10 if all boxes are in one
city and 0 otherwise. Aggregation is done from right to left,
one variable at a time. In the example, therefore, first ag-
gregate the values MapB(I, ζ) over all assignments of the
variable b, using the min operation, producing exactly one
value per binding of variable c, and then aggregating all of
the produced values over all bindings of variable c using the
max operation. In this example, to keep the GFODD diagram
simple, we assume the variables are typed and use only valu-
ations that conform to the types of the variables. Had we used

Figure 3: An Generalized FODD Example

all possible valuations over the set of objects {b1, b2, c1, c2},
the diagram would have been more complicated as it would
have had to represent ∃c,∀b, box(b) → city(c) ∧ bin(b, c).

Combining GFODDs

Our Value Iteration algorithm requires operations max, +
and × over functions defined by GFODDs. We perform these
by GFODD combination.
Definition 3 GFODD B is a combination of GFODDs B1

and B2 under combination operator opc iff ∀ interpretations
I , MapB(I) = MapB1(I) opc MapB2(I).

Definition 4 Combination operator opc and aggregation op-
erator opa are a safe pair iff for any non-negative values
x1, · · · , xk and non-negative constant b, opa(x1, · · · , xk)
opc b = opa(x1 opc b, · · · , xk opc b).

E.g., aggregation operator max and combination operator +
are a safe pair because for any set S = {c1 · · · cm} and con-
stant b, max{c1 · · · cm} + b = max{c1 + b, · · · cm + b}.
Aggregation operator mean and combination operator max
are not a safe pair.

FODDs can be combined with the apply operation [Wang
et al., 2008]. Apply produces a combination of 2 FODDs un-
der combination operator opc by choosing the smaller root
(according to the FODD predicate order) to be the root of
the resultant FODD and then recursing on the subdiagrams.
When the computation reaches the leaves, the result is opc ap-
plied to the leaf values. for GFODDs, if either leaf value is d,
so is the result. The following Theorem shows that GFODDs
can be combined leaving some freedom in the order of aggre-
gation. We call the resulting procedure Ex-apply.
Theorem 3 Given GFODDs B1 = <V1, D1> and B2 =
<V2, D2>, V1 ∩ V2 = φ, and combination operator opc,
if all operators in V1 ∪ V2, form a safe pair with opc, D =
apply(D1, D2, opc) and V is obtained by combining V1 and
V2 in a way that preserves the order of variables within V1

and within V2, then B = <V, D> is a combination of B1

and B2.

4 R12 for Max*Min* Aggregation

The R12 reduction can be extended to GFODDs with min ag-
gregation by defining generalized aggregation function min3.
min3 is just a dual of max3 except that no special treatment

1919

is given to paths reaching the 0 leaf and in the reduction pro-
cedure, targets of edges in E are replaced by d instead of
0. Since these edges are not instrumental in determining the
map and d values are just discarded during aggregation, cor-
rectness is preserved.

We next extend R12 to GFODDs with max∗min∗ aggre-
gation. In this case the aggregation function V consists of a
series of zero or more max operators followed by a series of
zero or more min operators. The corresponding case in first
order logic has the quantifier prefix ∃∗∀∗ and is decidable. V
can be written as V lV r, where V l and V r contain all max
and min aggregated variables respectively. The set U of all
possible valuations of the variables in diagram B can be split
into U l and Ur, the sets of all valuations over the variables in
V l and V r. Thus, for all ζ ∈ U , ζ = ζlζr where ζl ∈ U l and
ζr ∈ Ur. By the definition of GFODD semantics, for any
interpretation I ,

MapB(I) = op1
v1

· · · opn
vn

[MapB(I, [v1 · · · vn])]

= maxζl∈U l [minζr∈Ur [MapB(I, ζlζr)]].

Consider evaluating B on some interpretation I . U can be
viewed as divided into blocks, each corresponding to one val-
uation ζl. During aggregation each block is collapsed under
the min aggregation and the aggregate values of all blocks
are collapsed under the max aggregation. Intuitively, as long
as R12 preserves all paths reaching the smallest leaf (under a
DPO) in every block under every interpretation, the map will
also be preserved. Other paths can be removed. This does
not reduce all edges possible, but it is easy to track. R12 for
max∗min∗ aggregation is identical to the R12 procedure for
min aggregation with the following exceptions.

(1) The set U of all possible valuations is generated as fol-
lows. Ol and Or are disjoint sets of respectively |V l| and |V r|
newly invented objects. U l and Ur are the sets of all possible
valuations of variables in V l and V r over Ol and Ol ∪ Or

respectively. U = {ζlζr | ζl ∈ U l and ζr ∈ Ur}.
(2) The generalized aggregation function maxmin3 re-

turns all the triplets generated by applying min3 to each
block.

Figure 4 shows an example of this reduction. Here V l =
Max(x) and V r = Min(y) making |V l| = |V r| = |Ol| =
|Or| = 1. Therefore we invent Ol = {a} and Or = {b}.
Notice that the table built by the procedure consists of a single
block (since only one variable is associated with the max and
so there is only one ζl) but in general this is repeated for every
block. The targets of all edges other than the ones present
in the paths of the resultant triplets (shown below the table)
can be replaced by the value d. This reduction satisfies the
following properties.
Lemma 2 If there exists a path pi reaching the smallest leaf
(under the DPO PL) in some block under some interpretation
and pi crosses e in B then ∃ Io such that {leaf(pi), pi, Io} ∈
S and thus e ∈ E′.
Theorem 4 (soundness) For GFODD B with the
max∗min∗ aggregation, if B′ = R12(B), then ∀ inter-
pretations I , MapB(I) = MapB′(I).

A closer examination of the discussion above shows that
we can make more precise constraints on the values of edges

Figure 4: Example of R12 for max∗min∗ aggregation

participating in the evaluation of diagram B on interpretation
I . In particular, the winning path must be preserved, the value
of edges participating in the same block (using the same ζl)
can go down but they must not be smaller than the final value,
and edges in other blocks can be reduced to zero. Thus tighter
bookkeeping may allow us to prune the diagram much more
than the version of R12 given above. We leave this to be
investigated in future work.

5 Value Iteration with GFODDs

Value Iteration with GFODDs is an instance of the SDP al-
gorithm [Boutilier et al., 2001]. We restrict attention to cases
where the reward function is represented by a GFODD with
max∗min∗ aggregation function. The following discussion
shows why our algorithm VI-GFODD produces the correct
result for each of the following 4 steps of SDP.

Regression: The n − 1 step-to-go value function V n−1 is
regressed over every deterministic variant aj

i of every action
ai to produce RegV j

i by replacing each node in V n−1 by its
corresponding Truth Value Diagram (TVD) without changing
the aggregation function. A TVD for a predicate under deter-
ministic action aj

i describes conditions under which the pred-
icate becomes true after aj

i is executed. Wang et al. [2008]
impose the constraint that TVDs cannot include free variables
and therefore regression is correct regardless of the aggrega-
tion function.

Add Action Variants: The Q-function QRega
i =

ΣjPr(aj
i)RegV j

i for each action ai is generated by combin-
ing regressed diagrams using Ex-apply. Since all argument
GFODDs to Ex-apply have max∗min∗ aggregation, by The-
orem 3 all max operators can be pushed to the head of the
aggregation function, and the result also has max∗min∗ ag-
gregation. Correctness is guaranteed because both max and
min form a safe pair with all combination operators required
for Value Iteration (+, ×, and max).

Object Maximization: This involves converting action
parameters in QRega

i to max aggregated variables and ap-

1920

pending these to the head of the aggregation function to pro-
duce Qai . Aggregation in Qai chooses a single binding
for the new variables that provides the best value in QRega

i
over all action variants, thereby ensuring correctness. Again
max∗min∗ aggregation is preserved in Qai .

Maximize over Actions: The n step-to-go value function
V n = Maxi[R(S) + γQai], is generated by combining dia-
grams using Ex-apply. As above, by Theorem 3 the result can
be written using max∗min∗ aggregation.

Figure 5: Example of GFODD Regression and Object Maxi-
mization

Figure 5 shows an example of the algorithm using
GFODDs for a simple domain with one deterministic action
A(x∗, y∗). Notice that the 2nd and 4th steps in the algorithm
are not required in this case. The reward is 1 if ∃x, ∀y, p(x, y)
and 0 otherwise. The action A(x∗, y∗), is defined such that
p(x, y) is true after the action if either p(x, y) was true be-
fore or q(x, y) was true and A(x, y) was performed. Since
the action can make at most one p(x, y) true at a time, in-
tuitively, the regressed diagram should capture the following
conditions for returning a value of 1. Either ∃x, ∀y, p(x, y)
or ∃x, such that for all but one y, p(x, y) is true and for that y,
q(x, y) is true. It is easily verified that the resultant diagram
captures these cases. The next theorem shows that the result
is correct; using R12 we can also keep the diagrams compact.
Theorem 5 For any First Order MDP with a reward func-
tion of the form <max∗min∗, D>, algorithm VI-GFODD
produces the correct value function at every iteration.

6 Conclusions and Future Work

This paper significantly extends the representation power of
first order decision diagrams and our algorithmic understand-
ing of their reduction. Generalized FODDs allow for arbitrary
aggregation functions and basic operations on them can be
done just as in the existential case. In particular we can natu-
rally capture and manipulate logical formulas with existential
and universal quantifiers using max and min aggregation. In
addition we show that first order Value Iteration can be sup-
ported in the more expressive setting. Previous implemen-

tations of first order Value Iteration [Sanner and Boutilier,
2009; Joshi and Khardon, 2008] have resorted to heuristic
treatment of universal goals. Using the new formulation, this
can be captured and handled naturally. The other main con-
tribution in the paper is the idea and analysis of model check-
ing reductions. The completeness result for the FODD case
falls short of being a normal form, but is much stronger than
previous reductions. Examples by Wang et al. [2008] using
a simple decidable fragment show that for normal form we
may need some syntactic manipulation of diagrams so going
beyond completeness may be hard or expensive to compute.

This work suggests several questions for future. The model
checking reduction can probably be improved by further anal-
ysis, as discussed in Section 4. The model checking re-
ductions currently require enumeration of substitutions. A
promising idea is to use a sample of interpretations, judicially
chosen, and reduce the diagrams relative to these interpreta-
tions.

References
[Bahar et al., 1993] R. Bahar, E. Frohm, C. Gaona, G. Hachtel,

E. Macii, A. Pardo, and F. Somenzi. Algebraic decision diagrams
and their applications. In IEEE /ACM International Conference
on Computer Aided Design, 1993.

[Boutilier et al., 2001] C. Boutilier, R. Reiter, and B. Price. Sym-
bolic dynamic programming for first-order mdps. In Proceedings
of IJCAI, pages 690–700, 2001.

[Groote and Tveretina, 2003] J. Groote and O. Tveretina. Binary
decision diagrams for first order predicate logic. Journal of Logic
and Algebraic Programming, 57:1–22, 2003.

[Hoey et al., 1999] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
Spudd: Stochastic planning using decision diagrams. In Proceed-
ings of UAI, pages 279–288, 1999.

[Hölldobler et al., 2006] S. Hölldobler, E. Karabaev, and
O. Skvortsova. FluCaP: a heuristic search planner for first-
order MDPs. Journal of Artificial Intelligence Research,
27:419–439, 2006.

[Joshi and Khardon, 2008] S. Joshi and R. Khardon. Stochastic
planning with first order decision diagrams. In Proceedings of the
International Conference on Automated Planning and Schedul-
ing, 2008.

[Kersting et al., 2004] K. Kersting, M. Van Otterlo, and L. De
Raedt. Bellman goes relational. In Proceedings of ICML, 2004.

[Lloyd, 1987] J.W. Lloyd. Foundations of Logic Programming.
Springer Verlag, 1987. Second Edition.

[Puterman, 1994] M. L. Puterman. Markov decision processes:
Discrete stochastic dynamic programming. Wiley, 1994.

[Sanner and Boutilier, 2009] Scott Sanner and Craig Boutilier.
Practical solution techniques for first-order mdps. Artif. Intell.,
173:748–488, 2009.

[Wang et al., 2008] C. Wang, S. Joshi, and R. Khardon. First order
decision diagrams for relational mdps. JAIR, 31:431–472, 2008.

1921

