
Ceteris Paribus Preference Elicitation with Predictive Guarantees

Yannis Dimopoulos and Loizos Michael and Fani Athienitou

Department of Computer Science, University of Cyprus
CY-1678 Nicosia, Cyprus

{yannis, loizosm}@cs.ucy.ac.cy and fani.athienitou@gmail.com

Abstract

CP-networks have been proposed as a simple and
intuitive graphical tool for representing conditional
ceteris paribus preference statements over the val-
ues of a set of variables. While the problem of rea-
soning with CP-networks has been receiving some
attention, there are very few works that address the
problem of learning CP-networks.
In this work we investigate the task of learning CP-
networks, given access to a set of pairwise com-
parisons. We first prove that the learning prob-
lem is intractable, even under several simplifying
assumptions. We then present an algorithm that,
under certain assumptions about the observed pair-
wise comparisons, identifies a CP-network that en-
tails these comparisons. We finally show that the
proposed algorithm is a PAC-learner, and, thus, that
the CP-networks it induces accurately predict the
user’s preferences on previously unseen situations.

1 Introduction

Preferences have been studied for a long time in different sci-
entific fields such as economics, operations research, decision
theory, and computer science. One of the central problems
there is that of automated learning and adaptation of prefer-
ences. The significance of this problem has been recognized
quite early, and there is now a considerable body of research
related to the problem of preference elicitation. Within Ar-
tificial Intelligence, some aspects of the problem of prefer-
ence elicitation have more recently received some attention in
Machine Learning. Among the different problems that have
been investigated, that of label ranking (see, e.g., [Brinker
et al., 2006; Cohen et al., 1999]) has some similarities with
the problem we study in this work. We direct the interested
reader to the relevant literature for more details.

CP-networks (CP-nets for short) have been proposed as a
simple and intuitive graphical tool for representing and rea-
soning with qualitative conditional preferences. CP-nets are
directed graphs whose vertices correspond to variables, each
annotated with preferences over the variable’s values. These
preferences may depend on the values of other variables,
hence the term conditional. Although CP-nets, being a com-
pact, intuitive language for representing preferences, alleviate

the problem of preference elicitation, they do not completely
eliminate it. Indeed, deriving a CP-net in complex domains
can be a tedious and time-consuming task. Moreover, in some
domains, such as auctions and automated negotiation, users
may not be willing to reveal their preferences. Thus, there is
a need for deriving methods for learning CP-nets.

Despite the evident significance of the problem, there are
only a couple of studies that address the question of learning
CP-networks, namely [Athienitou and Dimopoulos, 2007]
and [Lang and Mengin, 2008]. In this work we extend and
complement these previous studies in several ways. Specifi-
cally, we study the problem of deriving a CP-net from a given
set P of pairwise comparisons oi � oj between outcomes,
meaning “outcome oi is strictly preferred over outcome oj”.
Such pairwise comparisons may be gathered, for instance, by
passively observing the choices of a user on a web page. In
the simplest case, we seek to derive a CP-net N such that P
is a subset of the relation induced by N . We show that the
problem is intractable even in the case where the input com-
parisons are on outcomes that differ on at most two variables,
and the in-degree of the nodes of the simplest CP-net that im-
plies the comparisons (if one exists) is upper-bounded by 2.

Although CP-net learning is hard in the general case, we
present an algorithm that solves this problem in polynomial
time, provided that some restrictions on the input pairwise
comparison and the CP-net to be learned are satisfied. More-
over, we show the the proposed algorithm is a PAC-learner,
i.e., the CP-networks it induces accurately predict the user’s
preferences on future and possibly previously unseen variable
assignments. A reduction suggests the hardness of improv-
ing our algorithm’s running time, and establishes the fixed-
parameter intractability of the learning problem.

2 CP-networks

We start by briefly reviewing the basics of CP-nets, follow-
ing [Boutilier et al., 2003]. Let V = {X1, · · · , Xn} be a set
of variables over which a user has preferences. Each vari-
able Xi is associated with a domain of values Dom(Xi) =
{xi

1, · · · , xi
ni
}. An assignment x of values to a set X ⊆ V

of variables maps each variable of X to an element of its
domain; if X = V , x is an outcome. Denote Asst(X) the
set of all assignments to X ⊆ V . For X ,Y ⊆ V such that
X ∩ Y = ∅, xy ∈ Asst(X ∪ Y) denotes the combination of
assignments x ∈ Asst(X) and y ∈ Asst(Y).

1890

A preference ranking is a total preorder � over the set of
outcomes. The notation o1 � o2 means that outcome o1 is
equally or more preferred than o2, while o1 � o2 means that
outcome o1 is strictly more preferred by the decision maker
than o2 (i.e., o1 � o2 and o2 	� o1). Finally, o1 ∼ o2 denotes
that outcomes o1 and o2 are indifferent.

A CP-net N is constructed as follows. For each variable
Xi, the user specifies a set of parent variables PaN (Xi) that
affect her preference over the values of Xi. Then, she spec-
ifies her preferences over the values of Xi for all instantia-
tions of the variable set PaN (Xi). More specifically, for each
assignment u ∈ Asst(PaN (Xi)), the user provides in a con-
ditional preference table or CPT, a total preorder �i

u over
Dom(Xi) by specifying for any two values x and x′, either
x �i

u x′, x′ �i
u x, or x ∼i

u x′. For simplicity of presentation,
we ignore indifference for the rest of this paper.
Definition 1. A CP-net N over the set V = {X1, · · · , Xn}
of variables is a directed graph G over the vertex set V , with
each Xi ∈ V annotated with a conditional preference table
CPT(Xi). Each conditional preference table CPT(Xi) as-
sociates a total order �i

u with each u ∈ Asst(PaN (Xi)).
The following notions define the semantics of a CP-net.

Definition 2 ([Boutilier et al., 2003]). Consider a CP-net N
over the set V of variables, a variable Xi ∈ V , and Y =
V \ (PaN (Xi) ∪ {Xi}). For every u ∈ Asst(PaN (Xi)),
let �i

u be the ordering over Dom(Xi) dictated by CPT(Xi).
A preference ranking � over Asst(V) satisfies (i) the total
preorder �i

u iff uxy � ux′y holds for every y ∈ Asst(Y),
and every x, x′ ∈ Dom(Xi) s.t. x �i

u x′; (ii) the conditional
preference table CPT(Xi) iff it satisfies �i

u for every u ∈
Asst(PaN (Xi)); (iii) the CP-net N iff it satisfies CPT(Xi)
for every Xi ∈ V . A CP-net N is satisfiable iff there exists a
preference ranking � that satisfies N .
Definition 3. Let N be a CP-net over a set V of variables,
and let o, o′ ∈ Asst(V) be any two outcomes. N entails
o � o′, denoted N |= o � o′, iff o � o′ holds in every
preference ranking that satisfies N .

For the remainder of this paper, we restrict our attention to
the class of acyclic CP-nets. We denote by Nk the subclass
of acyclic CP-nets with a maximum in-degree at most k.

3 Learning by Fitting the Data

One of the simplest definitions of CP-net learnability, and the
one considered here, is that of identifying a CP-net consistent
with a given set of pairwise comparisons between outcomes
that are entailed by some unknown target CP-net.
Definition 4 (CP-Net Consistent-Learnability). A class N
of CP-nets over a set V of variables is consistent-learnable
(by a class H of hypotheses) if there exists an algorithm L
such that for every CP-net N ∈ N , and every set P of pair-
wise comparisons between outcomes over V entailed by N ,
algorithm L has the following property: given access to V
and P , algorithm L runs in time polynomial in |V |, |P|, and
size(N), and returns a hypothesis h (in H) that entails every
comparison in P .

The constraint of Definition 4 that only polynomial time is
allowed, makes learnability impossible in the general case.

Theorem 1. Fix a constant integer k ≥ 2. Deciding whether
there exists a CP-net in Nk that entails all pairwise compar-
isons in a set P is NP-hard, even if for every o1 � o2 ∈ P ,
o1, o2 differ on at most two variables, and even if when some
CP-net entails all comparisons in P , then there also exists a
CP-net N ∈ N2 that entails all comparisons in P .

Proof (sketch). By reduction from read-3 3-SAT. Given a for-
mula ϕ =

∧m
j=1 �j,1 ∨ �j,2 ∨ �j,3 over variables {v1, . . . , vn},

define the set V to contain one variable for each variable vi

and clause cj of ϕ, and their negations vi, cj . Without loss
of generality, assume that every variable of ϕ that appears in
some clause appears negated in some other clause (thus each
literal appears at most twice), and not in the same clause.

Let the domain of x ∈ V be
{
x0, x1

}
, and a 0 in outcomes

mean that all unspecified variables are false. For each cj ,
P[ϕ] includes c1

jcj
00 � c0

jcj
10; roughly, this preference cor-

responds to asking that the clause cj of ϕ should be satisfied.
We associate a set PP(x) of possible parents with each x ∈

V . For each clause cj , PP(cj) = {�j,1, �j,2, �j,3}, PP(cj) =
{}. For each literal �, PP(�) =

{
�
} ∪ {

cr | cr contains �
}

.
We constrain CP-nets N ∈ Nk so that PaN (x)∩PP(x) 	= ∅.
We do so by excluding the possibility that any set S ⊆ V of k
variables such that S ∩ PP(x) = ∅ is the parent set PaN (x)
of x. This is achieved if P[ϕ] includes x0s0 � x1s0 for every
assignment s ∈ {0, 1}k of values to S. The construction can
be done in time polynomial in the size of ϕ since k is constant.

It can be shown that the preferences in P[ϕ] are entailed by
some CP-net N in Nk if and only if for each j, there exists
t such that �j,t is a parent of cj and a child of �j,t in N . For
the “only if” direction, the CPT of x ∈ V includes x0 � x1

when all its parents are false, and x1 � x0 otherwise. Thus,
the parent relations in N induce satisfying assignments for ϕ,
and vice versa, which suffices to establish the reduction. �

The following result is an immediate conclusion:

Corollary 1. Fix a constant integer k ≥ 2. The class N2 of
CP-nets is not consistent-learnable by Nk, unless P = NP.

Thus, consistent-learnability is intractable given the stan-
dard complexity assumption P 	= NP, even if the target CP-
net is in N2, with binary variables, even if more expressive
CP-nets may be returned (i.e., in Nk), and even if outcomes
in pairwise comparisons differ on at most two variables.

We present next an algorithm that tackles the problem of
learning, as in Definition 4, from restricted sets P . (The al-
gorithm assumes binary variables, but the same basic idea,
applies for non-binary variables.) The algorithm takes as in-
put a set V of variables, and a set P of pairwise comparisons
between outcomes over V . It generates an acyclic CP-net that
satisfies the given input, by creating the CPT of each variable.

The main procedure learn(V,P) is shown in pseudocode
in Algorithm 1. The algorithm maintains a CP-net h that is
initially empty, and attempts to extend it with the addition
of the CPT of one of the remaining variables X , by call-
ing the procedure extendNetwork(X ,V \ X ,P, k, h). If
a CPT for each variable in V can be added, the constructed
CP-net h is returned. Otherwise, the value of k is increased
and the process loops, until either a CP-net is constructed,

1891

or failure is detected. For each invocation of the procedure
extendNetwork(X ,V \ X ,P, k, h), all variables in X are
tested until one is identified whose CPT can be constructed (if
possible). For each candidate variable X ∈ X , the procedure
getNextSubset(V ′, k,U) is invoked to return the possible
subsets U of V ′ of size at most k. Each such subset U ⊆ V ′ is
provisionally assumed to be the parent set of X . The proce-
dure createCPT (X,U ,P, h) is then invoked, which checks
the set of pairwise comparisons P to determine if Pah(X)
can be set to U in the CP-net h being constructed. If so, the
constructed CPT(X) is added in h, and the procedure returns
the variable X . Otherwise, the next provisional parent set is
considered. If Pah(X) cannot be set to any of the provisional
parent sets U , the next candidate variable is considered. If
the CPT of no variable X can be added to the CP-net h, the
empty set is returned.

Algorithm 1 learn (variable set V , comparison set P)
1: h := the empty CP-net /∗ Constructed CP-net ∗/
2: k := 0 /∗ Number of allowed parents ∗/
3: X := V /∗ Remaining variables not in h ∗/
4: repeat
5: repeat
6: added := extendNetwork(X ,V \ X ,P, k, h)
7: X := X \ added
8: until added = ∅
9: if X = ∅ then

10: return h
11: end if
12: k := k + 1
13: until k = |V |
14: return failure

Algorithm 2 extendNetwork (variable set X , variable set
V ′, comparison set P , number k, CP-net h)

1: while X 	= ∅ do
2: choose X from X
3: U := ∅ /∗ Provisional parent set for X ∗/
4: repeat
5: CPTcreated := createCPT (X,U ,P, h)
6: subsetExists := getNextSubset(V ′, k,U)
7: until CPTcreated or not(subsetExists)
8: if CPTcreated then
9: return {X}

10: end if
11: X := X \ {X}
12: end while
13: return ∅

Observe that since V ′ = V \ X , then V ′ contains exactly
those variables that are already in the CP-net h at the time
that the CPT of some variable X ∈ X is added. This guaran-
tees that the constructed CP-net h is acyclic. Note further that
we may assume that the subsets U ⊆ V ′ returned by the pro-
cedure getNextSubset(V ′, k,U), are considered in order of
increasing size. Although this is not required for our formal

results to go through, it might provide a heuristic for further
reducing the size of the constructed CP-nets.

To decide whether U can be the parent set of X in h, the
procedure createCPT (X,U ,P, h) examines each uixiyi �
ujxjyj ∈ P , where ui, uj ∈ Asst(U), xi, xj ∈ Dom(X),
yi, yj ∈ Asst(V \ (U ∪{X})), and considers the inclusion of
either ui : xi � xj or uj : xi � xj in CPT(X). Given the set

S = {(ui : xi � xj or uj : xi � xj) | uixiyi � ujxjyj ∈ P}
of all choices that procedure createCPT (X,U ,P, h) has to
make, the procedure attempts to generate CPT(X) by select-
ing one of the disjuncts in each element of S such that the
selected entries are jointly consistent (i.e., for every choice of
u, exactly one of u : x1 � x2 and u : x2 � x1 is chosen).

The above problem of selecting disjuncts from the set S
can be naturally casted as a propositional satisfiability prob-
lem: to each element u ∈ Asst(U) that appears in S associate
a boolean variable v(u), whereas to each entry u : x1 � x2

associate the positive literal v(u), and to each entry u : x2 �
x1 the negative literal v(u). Then, the elements of S translate
to binary clauses, and the resulting satisfiability problem is a
2-SAT one. The following example illustrates the translation.

Example 1. Consider the variables A, B,C, with domains
{a1, a2}, {b1, b2}, {c1, c2}, respectively. Consider also the
set P of comparisons:

(1) a1b1c1 � a1b2c2 (2) a1b1c2 � a2b1c1

(3) a2b1c1 � a2b1c2 (4) a2b2c1 � a1b2c2

During the invocation of createCPT (C, {A, B} ,P, h),
the set S of choices is populated as follows:

(1) a1b1 : c1 � c2 or a1b2 : c1 � c2

(2) a1b1 : c2 � c1 or a2b1 : c2 � c1

(3) a2b1 : c1 � c2 (the second disjunct is the same)

(4) a2b2 : c1 � c2 or a1b2 : c1 � c2

Assume that we associate the elements of Asst({A, B})
with boolean variables as follows: a1b1 → v1, a1b2 → v2,
a2b1 → v3, a2b2 → v4. Then, the candidate entries are
associated with literals as follows: a1b1 : c1 � c2 → v1,
a1b1 : c2 � c1 → v1, a1b2 : c1 � c2 → v2, a1b2 : c2 �
c1 → v2, a2b1 : c1 � c2 → v3, a2b1 : c2 � c1 → v3,
a2b2 : c1 � c2 → v4, a2b2 : c2 � c1 → v4. The resulting
2-SAT instance is (v1 ∨ v2) ∧ (v1 ∨ v3) ∧ v3 ∧ (v4 ∨ v2).

A satisfying assignment for the above 2-SAT instance as-
signs false to v1, and true to v2, v3 (and either truth-value
to v4). This translates to the CPT entries a1b1 : c2 � c1,
a1b2 : c1 � c2, and a2b1 : c1 � c2 (and the remaining entry
can be either a2b2 : c1 � c2 or a2b2 : c2 � c1).

Thus, constructing a CPT for a variable X given a provi-
sional parent set U reduces to computing a satisfying assign-
ment of a 2-SAT instance, which can be done in polynomial
time [Aspvall et al., 1979]. If the 2-SAT instance is unsatisfi-
able, U cannot be the parent set of X in the CP-net h.

We now illustrate the working of the entire algorithm.

Example 2. Consider the set V = {A, B, C,D} of variables,
with Dom(A) = {a1, a2}, Dom(B) = {b1, b2}, Dom(C) =

1892

{c1, c2}, Dom(D) = {d1, d2}. Consider also the following
set P of comparisons:

(1) a1b1c2d1 � a1b2c2d2 (2) a1b2c1d2 � a1b1c1d1

(3) a2b2c2d2 � a2b1c2d1 (4) a1b1c1d1 � a1b2c1d1

(5) a1b2c1d1 � a2b1c2d1

During the algorithm’s first iteration with k = 0, the
algorithm successfully constructs CPTs for the variables A
and C through two consecutive invocations of the procedure
extendNetwork. The CP-net h is, thus, updated to include
: a1 � a2 as CPT(A), and : c1 � c2 as CPT(C). During
the third invocation of the procedure extendNetwork, the
empty set is returned, since the CPT of none of the remaining
variables B and D can be constructed with an empty parent
set — in comparisons (1) and (2) the preference over b1 and
b2 is reversed; so is the case for d1 and d2.

The value of k is increased to 1, and the algorithm attempts
again to create CPTs for B and D, only to discover that this
is still not possible. The provisional parent set {A} does not
become an actual parent set of B, since in comparisons (1)
and (2) conditioning on a1 does not resolve the fact that the
preference over b1 and b2 is reversed. Similarly, the provi-
sional parent set {C} fails due to the comparisons (1) and
(3), where conditioning on c2 does not resolve the reversed
preference over b1 and b2. An analogous situation applies
when the algorithm attempts to build the CPT of D.

In the subsequent iteration the value of k is increased to
2. Assume that the algorithm first chooses the variable B.
All attempts to create CPT(B) with a parent set other than
{A, C} fail as before. The attempt also fails when {A, C}
is considered, since in comparisons (2) and (4) condition-
ing on a1c1 does not resolve the reversed preference over
b1 and b2. Next, variable D is chosen. When the proce-
dure createCPT (D, {A, C} ,P, h) is invoked, it succeeds
and adds the following CPT as CPT(D) in the CP-net h:

a1c1 d2 � d1

a1c2 d1 � d2

a2c1 d1 � d2

a2c2 d2 � d1

Since CPTcreated becomes true, {D} is returned by pro-
cedure extendNetwork, the set X is updated, and the pro-
cedure extendNetwork is invoked anew. The variable B is
(necessarily) chosen. All attempts to create CPT(B) with
an empty or singleton parent set fail. When the procedure
createCPT (B, {A, D} ,P, h) is invoked, it succeeds and
adds the following CPT as CPT(B) in the CP-net h:

a1d1 b1 � b2

a1d2 b2 � b1

a2d1 b2 � b1

a2d2 b1 � b2

The procedure extendNetwork returns {B}, and in its
subsequent call it returns ∅. Since X is now empty, the algo-
rithm returns the CP-net h, and terminates.

4 Properties of the Learning Algorithm

We now prove the soundness and completeness of the pre-
sented algorithm. For every outcome o over the set V of vari-

ables, and every subset S ⊆ V , o[S] denotes the projection of
o on S; to avoid clattering, for every X ∈ V , we write o[X]

instead of o[{X}]. In the outcome o[S1]o[S2] . . . o[Sn]o, with
Si ⊆ V and 1 ≤ i ≤ n, it holds that o ∈ Asst(V \ (S1 ∪S2 ∪
. . . ∪ Sn)). Finally, for every CP-net N over V , and every
X ∈ V , �N (X) denotes the level of X in N .

Theorem 2 (Soundness of Algorithm learn). If the call
learn(V,P) returns a CP-net h, then h entails every pair-
wise comparison between outcomes in P .

Proof (sketch). Let Vn = {X | X ∈ V and �h(X) ≤ n}. We
show that for every oi � oj ∈ P , and every positive integer
n, if oi[Vn] 	= oj[Vn] then h |= oi[Vn]o � oj[Vn]o for every
appropriate choice of o. The result follows when n = |V |.
Let V ′

n =
{
X | X ∈ Vn \ Vn−1 and oi[X] 	= oj[X]

}
.

We proceed by induction on n. The base case n = 1 fol-
lows easily, and we omit the proof. Assume that the claim
holds for all values up to some n ≥ 1, and consider the case
of n + 1. Assume oi[Vn+1] 	= oj[Vn+1]. We only consider the
case V ′

n+1 	= ∅. Let X ∈ V ′
n+1 and x1 = oi[X], x2 = oj[X].

Then the CPT of X contains either (i) the entry oi[Pah(X)] :
x1 � x2, or (ii) the entry oj[Pah(X)] : x1 � x2. In case (i),
N |= oi[Vn]oi[X]o � oi[Vn]oj[X]o. By the inductive hypoth-
esis, N |= oi[Vn]oj[X]o � oj[Vn]oj[X]o (or oi[Vn] = oj[Vn]),
and by transitivity, N |= oi[Vn]oi[X]o � oj[Vn]oj[X]o. In
case (ii), N |= oj[Vn]oi[X]o � oj[Vn]oj[X]o. By the in-
ductive hypothesis, N |= oi[Vn]oi[X]o � oj[Vn]oi[X]o (or
oi[Vn] = oj[Vn]), and by transitivity, N |= oi[Vn]oi[X]o �
oj[Vn]oj[X]o. In either case it follows that for every X ∈
V ′

n+1, N |= oi[Vn]oi[X]o � oj[Vn]oj[X]o.
Now let Vi

n+1 =
{
Xi

1, . . . , X
i
b

}
= {X | X ∈ V ′

n+1

and CPT(X) contains oi[Pah(X)] : x1 � x2}, and define
Vj

n+1 analogously. Let Vi,−
n+1 =

{
Xi

1, . . . , X
i
b−1

}
. It fol-

lows that N |= omo � om+1o, for 1 ≤ m < b, where
o1 = oi[Vn]oi[Vi,−

n+1]
, ob−1 = oi[Vn]oj[Vi,−

n+1]
, and om differs

from om+1 in the value of exactly one variable X ∈ Vi,−
n+1,

with om[X] = oi[X] and om+1[X] = oj[X]. By transitivity,
N |= oi[Vn]oi[Vi,−

n+1]
o � oi[Vn]oj[Vi,−

n+1]
o.

We have already shown that N |= oi[Vn]oi[Xi
b]
oj[Vi,−

n+1]
o �

oj[Vn]oj[Xi
b]
oj[Vi,−

n+1]
o. Thus, N |= oi[Vn]oi[Xi

b]
oi[Vi,−

n+1]
o �

oj[Vn]oj[Xi
b]
oj[Vi,−

n+1]
o; equivalently N |= oi[Vn]oi[Vi

n+1]
o �

oj[Vn]oj[Vi
n+1]

o. Using similar arguments it holds that N |=
oj[Vn]oj[Vi

n+1]
oi[Vj

n+1]
o � oj[Vn]oj[Vi

n+1]
oj[Vj

n+1]
o. Hence,

N |= oi[Vn]oi[Vi
n+1]

oi[Vj
n+1]

o � oj[Vn]oj[Vi
n+1]

oj[Vj
n+1]

o, or
equivalently N |= oi[Vn+1]o � oj[Vn+1]o, as needed. �

Note that the soundness of the algorithm is unconditional.
Given Theorem 1, however, we cannot hope for an uncondi-
tional completeness result also. We establish completeness
for a special case, that of learning CP-nets that not only entail
the comparisons in a set P , but do so in a transparent manner.

Definition 5 (Transparent Entailment). Consider a CP-net
N over a set V of variables that entails every comparison in
a set P of pairwise comparisons between outcomes over V .

1893

N transparently entails P if for every oioi[PaN (X)]oi[X] �
ojoj[PaN (X)]oj[X] ∈ P with oi[X] 	= oj[X], N entails either
ooi[PaN (X)]oi[X] � ooi[PaN (X)]oj[X] or ooj[PaN (X)]oi[X] �
ooj[PaN (X)]oj[X] for some o ∈ Asst(V \ (PaN (X)∪{X})).

Note that transparency does not restrict the complexity of a
CP-net, but indicates how detailed information P offers about
the CP-net. It is easy to show that if P contains comparisons
only between outcomes that differ on exactly one variable (in
some sense, the best one can hope for, given Theorem 1), then
entailment and transparent entailment coincide. Transparent
entailment is, however, a broader notion. Indeed, if P con-
tains only the preference a1b1c1 � a2b2c2, then the CP-net
N over the variables A, B,C, and with their CPTs containing
: a1 � a2, : b1 � b2, and a1b1 : c1 � c2 irrespectively of the
other entries, transparently entails P . Yet, the preference in
P is between outcomes that differ on three variables. If P is
extended with a1b1c2 � a1b1c1 and a2b2c2 � a2b2c1, then
no CP-net transparently entails P . Moreover, the algorithm
returns failure, although there is a CP-net that entails P .

Theorem 3 (Completeness of Algorithm learn). Consider
a set P of pairwise comparisons between outcomes over a set
V of variables. If some CP-net N ∈ Nk over V transparently
entails P , then the call learn(V,P) returns a CP-net h∈Nk.

Proof (sketch). Consider the Steps (4)–(13) of learn(V,P)
during the k-th iteration, and assume by way of contradic-
tion that X 	= ∅ at Step (9). Then, the last invocation of
extendNetwork(X ,V ′,P, k, h) at Step (4) returned ∅; note
that V ′ = V \ X . Choose X ∈ X such that no variable
in X is a parent variable for X in the CP-net N ; since N
is acyclic, this can always be done. It follows that all par-
ent variables PaN (X) of X in N are in V \ X . Since
extendNetwork(X ,V ′,P, k, h) returned ∅, it follows that
the invocation of createCPT (X,U ,P, h) failed when U =
PaN (X); a contradiction by the transparency assumption. �

Roughly, transparency implies that the preferences in P of-
fer information for the dependency of a variable on its parents
to be “easily” determined. Thus, backtracking is avoided.

By Theorems 2 and 3, and by observing that learn(V,P)
runs in time poly(|P|, |V |k), we obtain:

Corollary 2 (Consistent-Learning CP-Nets). The class Nk

of CP-nets over a set V of variables is consistent-learnable in
time poly(|P|, |V |k) given a set P of pairwise comparisons
between outcomes over V that is transparently entailed by
some N ∈ Nk. In particular, the result holds if all compar-
isons between outcomes differ on exactly one variable.

5 Learning with Predictive Guarantees

Beyond simply fitting the available data, the ultimate goal in
many real-world domains is to confidently predict a user’s
preferences on future, and possibly previously unseen, occa-
sions. We examine next a learning setting that builds on the
Probably Approximately Correct semantics [Valiant, 1984].

A learner observes the user’s preferences, modelled as be-
ing entailed by some unknown CP-net N ∈ N . To account
for the learner’s lack of control on what such preferences are

obtained, the preferences are assumed to be randomly drawn
from some unknown probability distribution D.

Definition 6 (Random Instance Oracle). Given a set V of
variables, a probability distribution D over unordered out-
come pairs over V , and a CP-net N over V , the (transparent)
random instance oracle R(D; N) is a procedure that runs in
unit time, and on each call o1 � o2 ← R(D; N) returns a
comparison o1 � o2, where {o1, o2} is drawn randomly and
independently from D, and N (transparently) entails o1 � o2.

Definition 7 (CP-Net PAC-Learnability). A class N of CP-
nets over a set V of variables is PAC-learnable (by a class H
of hypotheses) if there exists an algorithm L such that for ev-
ery probability distribution D over unordered outcome pairs
over V , every CP-net N ∈ N , and every pair of real numbers
δ, ε ∈ (0, 1], algorithm L has the following property: given
access to V , R(D; N), δ, and ε, algorithm L runs in time
polynomial in |V |, 1/δ, 1/ε, and size(N), and with proba-
bility 1 − δ returns a hypothesis h (in H) such that

Pr (h |= o1 � o2 | o1 � o2 ← R(D; N)) ≥ 1 − ε.

Except with an arbitrarily small probability of failure δ, a
learner is expected to return a hypothesis h ∈ H that cor-
rectly predicts the user’s preference o1 � o2 in an arbitrarily
high fraction 1 − ε of occasions. An appropriate increase in
the allowed resources compensates for this requirement. Al-
though the learner need not return a CP-net as its hypothesis,
restricting the learner to do so is possible by fixing H = N .

We show that learnability under these strong requirements
is possible, by observing that the algorithm presented earlier
produces concise CP-nets h ∈ N with maximum in-degree
that does not exceed that of the hidden target CP-net N ∈ N .

Theorem 4 (The Effect of Conciseness). Consider a class
Nk of CP-nets over a set V of variables. If Nk is consistent-
learnable by Nk, then Nk is PAC-learnable by Nk.

Proof (sketch). The consistent-learnability of Nk implies an
(α, β)-Occam algorithm for Nk using Nk, for some constant
α and β = 0. The claim follows by standard results [Kearns
and Vazirani, 1994, pp. 33–34, Theorem 2.1]. �

An immediate consequence of Theorem 4 is that all hard-
ness results for PAC-learnability that we establish in the re-
mainder of this work also apply to consistent-learnability. On
the positive side, Theorem 4 implies:

Corollary 3 (PAC-Learning CP-Nets). The class Nk of CP-
nets over a set V of variables is PAC-learnable by Nk, if a
transparent random instance oracles is employed, and time
poly(|V|k) is allowed in addition to the time prescribed by
Definition 7. (Observe that since size(N) ≥ 2k for every
N ∈ Nk, then poly(|V|k) ≤ poly(size(N)log |V |).)

We emphasize that modulo the restriction imposed on the
random instance oracle (corresponding to a restriction on the
probability distributions from which comparisons are drawn),
and the quasi-polynomial in |V | running time, Corollary 3
establishes that the presented algorithm is a PAC-learner as
per Definition 7. Furthermore, if CP-nets with a constant in-
degree are considered, the algorithm runs in polynomial time.

1894

While more efficient algorithms could conceivably exist,
we show that this is unlikely, since such algorithms could be
used to PAC-learn the class of k-juntas — the class of all
boolean functions over n variables that depend on at most
k of them, albeit in any arbitrary manner. No PAC-learner
for the class of k-juntas is known that runs in time poly(n)
for non-constant values of k; the most efficient known one
requires time poly(nk). Improving upon this time would re-
solve a major long-standing open problem in Computational
Learning Theory [Blum, 2003], one, in fact, that was shown
to be in the heart of numerous other open problems.

Theorem 5 (Reduction of k-Junta to CP-Net Learning).
Let Jk be the class of k-juntas over n variables. Consider the
class Nk of all CP-nets over some set V of n + 1 variables
(and can even assume that all but one variables have zero
parents). If Nk is PAC-learnable (by Nk) in time t, then Jk

is PAC-learnable (by Jk) in time poly(t, n).

Proof (sketch). Introduce a variable Vi ∈ V for each of the
n variables xi over which k-juntas are defined, and an ad-
ditional variable Q ∈ V that corresponds to the output of
k-juntas. For each v ∈ {0,1}, let v be s.t. {v, v} = {0,1}.

For each k-junta ϕ ∈ Jk that depends on the variables
{xi1 , . . . , xik

} let the CP-net net(ϕ) ∈ Nk over V be s.t.:
net(ϕ) includes links from the variables in {Vi1 , . . . , Vik

}
to the variable Q, and CPT(Q) contains for each input in
of ϕ the entry in : ϕ(in) � ϕ(in). Observe, then, that
ϕ(in) = out if and only if net(ϕ) |= inout � inout.

The bijection between inputs/outputs of ϕ to comparisons
entailed by net(ϕ) is computable in time polynomial in n;
thus, a PAC-learner for Nk implies a PAC-learner for Jk.

Finally, if Nk is PAC-learned by Nk, then CPT(Q) con-
tains at most 2k entries, which determine a k-junta in Jk. �

Note, in particular, that the reduction preserves a proper-
ness property: the PAC-learner returns a hypothesis in the
same class as the target concept, as opposed to some other
hypothesis class H. Recent results imply that properly PAC-
learning k-juntas is W[2]-hard [Arvind et al., 2007, Lemma
4], which amounts to an intractability result for obtaining a
PAC-learner for k-juntas that runs in time g(k)poly(n), for
any computable function g. By Theorem 5, we have that:

Corollary 4 (Fixed-Parameter PAC-Learning Hardness).
PAC-learning the CP-net class Nk by Nk is W[2]-hard.

6 Conclusions

The importance of preference learning has been recognized
in different scientific areas. This paper presents some of the
first results, both positive and negative, concerning the prob-
lem of learning CP-nets. On the positive side it introduces
a polynomial-time learning algorithm for a restricted class of
input examples and CP-nets. Moreover, it establishes that CP-
nets that can be learned by this procedure are PAC-learnable.
On the negative side it proves that learning is intractable even
for rather simple cases. It also shows that properly PAC-
learning CP-nets of bounded in-degree is W[2]-hard.

There are many possibilities for future research. In one di-
rection we plan to investigate the integration of our approach

with the global consistency of [Lang and Mengin, 2008]. An
input comparison a � b understood under global consistency,
requires that the learned CP-net does not entail b � a. Thus,
it is possible to learn with both kinds of comparisons, where
those under entailment can be seen as positive examples, and
those under global consistency as negative ones. We also in-
tent to study the learnability of other CP-net classes, includ-
ing the case of CP-nets over non-binary variables, as well
the case of the more expressive TCP-nets [Brafman et al.,
2006]. In the former case, the algorithm presented herein can
be generalized to use a SAT/CSP solver for solving general
constraint satisfaction problems. State of the art solvers have
been proven very effective in solving real-world problems,
and this efficiency can be exploited for learning CP-nets.

Investigating different learning paradigms is another pos-
sible line of research. For instance, it would be of practi-
cal importance to devise techniques for learning when only
partial assignments are available, or when the data does not
perfectly fit any hidden CP-net. Finally, online learning is
another direction, where the learner is given (possibly adver-
sarially chosen) preferences one by one, and each time makes
a prediction on the next preference before obtaining it.

References

[Arvind et al., 2007] V. Arvind, J. Köbler, and W. Lindner.
Parameterized learnability of k-juntas and related prob-
lems. In ALT’07, 2007.

[Aspvall et al., 1979] B. Aspvall, M. Plass, and R. Tarjan. A
linear-time algorithm for testing the truth of certain quan-
tified boolean formulas. Inform. Proc. Letters, 8, 1979.

[Athienitou and Dimopoulos, 2007] F. Athienitou and Y. Di-
mopoulos. Learning CP-networks: A preliminary investi-
gation. In M-Pref’07, 2007.

[Blum, 2003] A. Blum. Learning a function of r relevant
variables (open problem). In COLT’03, 2003.

[Boutilier et al., 2003] C. Boutilier, R. Brafman, C. Domsh-
lak, H. Hoos, and D. Poole. CP-nets: A tool for represent-
ing and reasoning with conditional ceteris paribus prefer-
ence statements. Journal of AI Research, 2003.

[Brafman et al., 2006] R. Brafman, C. Domshlak, and
S. Shimony. On graphical modeling of preference and im-
portance. Journal of AI Research, 25, 2006.

[Brinker et al., 2006] K. Brinker, J. Fürnkranz, and
E. Hüllermeier. A unified model for multilabel clas-
sification and ranking. In ECAI’06, 2006.

[Cohen et al., 1999] W. Cohen, R. Schapire, and Y. Singer.
Learning to order things. Journal of AI Research, 10, 1999.

[Kearns and Vazirani, 1994] M. J. Kearns and U. V. Vazirani.
An Introduction to Computational Learning Theory. The
MIT Press, Cambridge, Massachusetts, U.S.A., 1994.

[Lang and Mengin, 2008] J. Lang and J. Mengin. Learn-
ing preference relations over combinatorial domains. In
NMR’08, 2008.

[Valiant, 1984] L. G. Valiant. A theory of the learnable.
Communications of the ACM, 27:1134–1142, 1984.

1895

