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Abstract

We study path planning on grids with blocked and
unblocked cells. Any-angle path-planning algo-
rithms find short paths fast because they propagate
information along grid edges without constraining
the resulting paths to grid edges. Incremental path-
planning algorithms solve a series of similar path-
planning problems faster than repeated single-shot
searches because they reuse information from the
previous search to speed up the next one. In this
paper, we combine these ideas by making the any-
angle path-planning algorithm Basic Theta* incre-
mental. This is non-trivial because Basic Theta*
does not fit the standard assumption that the parent
of a vertex in the search tree must also be its neigh-
bor. We present Incremental Phi* and show experi-
mentally that it can speed up Basic Theta* by about
one order of magnitude for path planning with the
freespace assumption.

1 Introduction

We study path planning where a two-dimensional terrain is
discretized into square cells that are either blocked (grey) or
unblocked (white) and each corner of a cell represents a grid
vertex on an eight-neighbor grid [Choset et al., 2005]. A
robot can use path planning with the freespace assumption
to move from a given start vertex to a given goal vertex with-
out knowing the blockage status of all cells a priori [Koenig
et al., 2003]. It finds a short path from its current vertex to the
goal vertex given its current knowledge of the blockage sta-
tus of the cells in the grid. The robot then repeatedly moves
one unit along this path, observes the blockage status of cells
within its sensor radius, finds a new short path from its cur-
rent vertex to the goal vertex given its revised knowledge of
the blockage status of the cells in the grid and then repeats this
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Figure 1: Grid Edge Path (left) vs. Any-Angle Path (right)

process. Thus, the robot must at least find a new short path
each time it observes its existing path to be blocked, which
can be slow on large grids. Incremental path-planning algo-
rithms based on A* [Hart et al., 1968], such as D* [Stentz,
1995] and D* Lite [Koenig and Likhachev, 2002], solve a
series of similar path-planning problems faster than repeated
single-shot A* searches because they reuse information from
the previous search to speed up the next one. However, they
constrain the resulting paths to grid edges (just like A*), see
Figure 1 (left). Any-angle path-planning algorithms based on
A* find much shorter paths because they propagate informa-
tion along grid edges without constraining the resulting path
to grid edges. For example, the any-angle path in Figure 1
(right) avoids the unnecessary heading change at C2 in Fig-
ure 1 (left). It therefore makes sense to study combinations
of incremental and any-angle path-planning algorithms. Field
D* [Ferguson and Stentz, 2006] is one such combination, but
it suffers from unnecessary heading changes as a result of lin-
ear interpolation. Basic Theta* [Nash et al., 2007] is an any-
angle path-planning algorithm that finds shorter paths than
Field D* for our path-planning problems, but cannot easily be
made incremental because it does not fit a standard assump-
tion that holds for A*, namely that the parent of a vertex in the
search tree must also be its neighbor. We present Incremen-
tal Phi*, an incremental version of Basic Theta*, and show
experimentally that it can speed up Basic Theta* by about
one order of magnitude for path planning with the freespace
assumption.

2 Notation and Definitions

We assume an eight-neighbor grid, where S is the set of all
grid vertices, sstart ∈ S is the start vertex of the search and
sgoal ∈ S is the goal vertex of the search. L(s, s′) is the line
segment between vertices s and s′ and c(s, s′) is its length.
lineofsight(s, s′) is true iff vertex s has line-of-sight to vertex
s′, that is, the line segment L(s, s′) neither traverses blocked
cells nor passes between blocked cells that share a grid edge.
L(s, s′) traverses a cell if it crosses into its interior. For sim-
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Figure 2: Example Trace of Basic Theta*

plicity, we allow the line segment L(s, s′) to pass between
diagonally touching blocked cells. nghbr8(s) ⊆ S is the set
of eight neighbors of vertex s. nghbrvis(s) ⊆ nghbr8(s) is
the set of visible neighbors of vertex s, that is, neighbors of s
that have line-of-sight to s. nghbr4(s) ⊆ nghbr8(s) is the set
of four neighbors to the immediate north, east, south and west
of vertex s. We refer to nghbr4(s) as the crossbar neighbors
of s since the four line segments that connect them to s form
a crossbar.

3 Basic Theta*

All path-planning algorithms in this paper build on Basic
Theta* and use the h-values h(s) = c(s, sgoal) to focus their
search. The h-values correspond to an approximation of the
distance from vertex s to the goal vertex. Basic Theta* is
the A* variant shown in Algorithm 1 which becomes A* if
Lines 43-49 are removed. [Statements in curly braces are to
be ignored for now.]

Like A*, Basic Theta* maintains two values for every ver-
tex s: (1) its g-value g(s), which is the length of the shortest
path from the start vertex to s found so far; and (2) its parent
parent(s) in the search tree, which is used to extract paths af-
ter the search terminates. In particular, the path from the start
vertex to the goal vertex is extracted by repeatedly following
the parent pointers from the goal vertex to the start vertex. We
allow Basic Theta* to maintain one additional value for every
vertex s which will be required by Incremental Phi*, namely
its local parent local(s). local(s) is the vertex that was ex-
panded when the g-value and parent of s were set. Notice that
if Lines 43-49 are removed the local parent and parent are al-
ways the same. The local parent path Gp(s) consists of the
vertices encountered by repeatedly following the local parent
pointers from s to its parent (inclusive of the endpoints). Like
A*, Basic Theta* also maintains two global data structures:
(1) the open-list open, which is a priority queue that contains
all vertices that it considers for expansion; and (2) the closed-
list closed, which is a set that contains all vertices that it has
already expanded.1 When Basic Theta* expands a vertex s in
procedure ComputeShortestPath, it updates the g-value, par-
ent and local parent of each unexpanded visible neighbor s′ of
s by considering two paths in procedure ComputeCost: Path
1 is the path considered by A*. It goes from the start vertex
to s and from s to s′ in a straight-line (Line 51). Path 2 is

1open is a priority queue. open.Insert(s, x) inserts vertex s with
key x into the priority queue open, open.Remove(s) removes ver-
tex s from the priority queue open, and open.Pop() removes a ver-
tex with the smallest key from priority queue open and returns it.
open.TopKey() returns the smallest key of all vertices in the priority
queue open unless open is empty in which case it returns ∞.

Main()1

Initialize();2

ComputeShortestPath();3

if g(sgoal) �= ∞ then4

return “path found”;5

else6

return “no path found”;7

end8

Initialize()9

open := closed := ∅;10

InitializeVertex(sstart);11

InitializeVertex(sgoal);12

g(sstart) := 0;13

parent(sstart) := sstart;14

open.Insert(sstart, g(sstart) + h(sstart));15

end16

InitializeVertex(s)17

g(s) := ∞;18

parent(s) := NULL;19

{local(s) := NULL};20

{lb(s) := −∞};21

{ub(s) := ∞};22

end23

ComputeShortestPath()24

while open.TopKey() < g(sgoal) + h(sgoal) do25

s := open.Pop();26

closed := closed ∪ {s};27

foreach s′ ∈ nghbrvis(s) do28

if s′ �∈ closed then29

if s′ �∈ open then30

InitializeVertex(s′);31

UpdateVertex(s, s′);32

end33

UpdateVertex(s, s’)34

gold := g(s′);35

ComputeCost(s, s′);36

if g(s′) < gold then37

if s′ ∈ open then38

open.Remove(s′);39

open.Insert(s′, g(s′) + h(s′));40

end41

ComputeCost(s, s’)42

if lineofsight(parent(s), s′) then43

/* Path 2 */44

if g(parent(s)) + c(parent(s), s′) < g(s′) then45

parent(s′) := parent(s);46

g(s′) := g(parent(s)) + c(parent(s), s′);47

{local(s′) := s};48

else49

/* Path 1 */50

if g(s) + c(s, s′) < g(s′) then51

parent(s′) := s;52

g(s′) := g(s) + c(s, s′);53

{local(s′) := s};54

end55

Algorithm 1: Basic Theta*

the path that allows for any-angle paths. It goes from the start
vertex to the parent of s and from the parent of s to s′ in a
straight-line (Line 45). Since Path 2 is no longer than Path 1
due to the triangle inequality, Basic Theta* uses Path 2 if the
parent of s has line-of-sight to s′ (Line 43) and then sets the
g-value of s′ to the length of Path 2, the parent of s′ to the
parent of s and the local parent of s′ to s. Otherwise, Basic
Theta* uses Path 1 and sets the g-value of s′ to the length of
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Figure 3: Path 2 Parent Problem

Path 1 and both the parent and local parent of s′ to s. The
key idea behind Basic Theta* and Path 2 is that unlike A*,
where the parent of a vertex must be a visible neighbor of
that vertex, Basic Theta* allows the parent of a vertex to be
any vertex.

Figure 2 shows a trace of Basic Theta*. The vertices
are labeled with their g-values and parents. The hollow cir-
cle indicates the vertex that is currently being expanded, the
larger black circles indicate vertices that have already been
expanded, and the arrows point to the parent of a vertex. The
start vertex A4 is expanded first (left) and B3 is expanded next
(right). Consider Figure 2 (right), where B3 with parent A4
is expanded. C3 is an unexpanded visible neighbor of B3 that
does not have line-of-sight to A4 and thus is updated accord-
ing to Path 1. Basic Theta* therefore sets both its parent and
local parent to B3. On the other hand, B2 is an unexpanded
visible neighbor of B3 that does have line-of-sight to A4 and
thus is updated according to Path 2. Basic Theta* therefore
sets its parent to A4 and its local parent to B3.

While Basic Theta* is not guaranteed to find shortest paths
it finds much shorter paths than A* [Nash et al., 2007]. When
applied to planning with the freespace assumption, the robot
must at least find a new short path each time it observes its
existing path to be blocked. This problem could certainly
be solved by repeatedly performing single shot Basic Theta*
searches, but this would be too slow on large grids. Alter-
natively the robot could reuse information from the previ-
ous search when finding a new short path. Incremental path-
planning algorithms, such as D* [Stentz, 1995] and D* Lite
[Koenig and Likhachev, 2002] extend A* to planning with the
freespace assumption by efficiently reusing information from
the previous search to speed up the next one. Despite the sim-
ilarities between Basic Theta* and A*, these methods do not
apply to Basic Theta* because they assume that the parent of
a vertex in the search tree must also be its neighbor and Ba-
sic Theta* allows the parent of a vertex in the search tree to
be any vertex. We refer to this as the Path 2 Parent Prob-
lem. Reusing information from the previous search requires
that all vertices that no longer have line-of-sight to their par-

ComputeCost(s, s’)56

if lineofsight(parent(s), s′) and57

Φ(s, parent(s), s′) ∈ [lb(s), ub(s)] and

∠(s′, parent(s)) is not a multiple of 45◦ then

/* Path 2 */58

if g(parent(s)) + c(parent(s), s′) < g(s′) then59

parent(s′) := parent(s);60

g(s′) := g(parent(s)) + c(parent(s), s′);61

local(s′) := s;62

l := mins′′∈nghbr4(s′)(Φ(s′, parent(s), s′′));63

h := maxs′′∈nghbr4(s′)(Φ(s′, parent(s), s′′));64

δ = Φ(s, parent(s), s′);65

lb(s′) := max(l, lb(s) − δ);66

ub(s′) := min(h, ub(s) − δ);67

else68

/* Path 1 */69

if g(s) + c(s, s′) < g(s′) then70

parent(s′) := s;71

g(s′) := g(s) + c(s, s′);72

local(s′) := s;73

lb(s′) := −45◦;74

ub(s′) := 45◦;75

end76

Algorithm 2: Phi*

ent due to a newly blocked cell be identified. The fact that
the paths found by A* are constrained to grid edges, makes
this easy because any vertex that no longer has line-of-sight
to its parent must be a corner of a newly blocked cell. For
example, assume that cell (B2-B3-C3-C2) becomes blocked
in Figure 1 (left). C2 no longer has line-of-sight to its par-
ent B3 which can easily be identified because C2 and B3 are
both corners of the newly blocked cell. The paths found by
Basic Theta* are not constrained to grid edges, which makes
this more difficult because vertices that no longer have line-
of-sight to their parent are not necessarily corners of a newly
blocked cell. For example, assume that cell (C3-C4-D4-D3)
becomes blocked in Figure 3 (top), which is not an actual
trace of Basic Theta*. The larger black circles and black ar-
rows indicate the local parent path of D1: Gp(D1) = (D1, C1,
B1, A1, A2, A3, A4, A5, B6). D1 no longer has line-of-sight
to its parent B6, but neither it nor any vertex on its local par-
ent path is a corner of the newly blocked cell.

4 Phi*

Phi* is a version of Basic Theta* that can be made incremen-
tal because it addresses the Path 2 Parent Problem by main-
taining Property 1: The local parent path of any vertex that
no longer has line-of-sight to its parent after cells become
blocked must contain some corner of a newly blocked cell.2

Phi* is identical to Algorithm 1 except for procedure Com-
puteCost shown in Algorithm 2. [Statements in curly braces
are to be executed from now on.] Phi* is complete and cor-
rect. We constructed it so that we can prove the following
lemma which implies Property 1:

Lemma 1. The local parent path Gp(s) of any vertex s con-
tains at least one corner of each cell that the line segment
L(s, parent(s)) traverses.

2Statements like these only apply to vertices that are in either
open or closed, but we do not mention this to improve readability.
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Figure 4: Example Trace of Phi*

If the line segment from a vertex to its parent traverses a
blocked cell, then it must touch at least one of the four grid
edges (two horizontal and two vertical) that form the perime-
ter of the traversed blocked cell. We constructed Phi* so that
the local parent path of any vertex contains at least one of the
two end points of each horizontal and vertical grid edge that
the line segment from the vertex to its parent touches. Phi*
satisfies this property by maintaining an angle range for each
vertex that restricts which of its unexpanded visible neigh-
bors can be updated according to Path 2. To illustrate this
assume that cell (C3-C4-D4-D3) becomes blocked in Figure
3 (bottom), which is not an actual trace of Phi*. The larger
grey circles and grey arrows indicate the local parent path of
D1: Gp(D1) = (D1, D2, C3, C4, B5, B6). D1 no longer has
line-of-sight to its parent B6, but unlike Figure 3 (top) this
can easily be identified because a vertex on its local parent
path is a corner of the newly blocked cell. In fact, the local
parent path of D1 contains at least one of the two end points
of each horizontal and vertical grid edge that the line segment
from D1 to its parent B6 touches. Figure 4 shows a trace of
Phi*. The vertices are now labeled with their angle ranges in
addition to their g-values and parents.

4.1 Angle Ranges

Phi* maintains two additional values for every vertex s: a
lower angle bound lb(s) and an upper angle bound ub(s)
that together form the angle range [lb(s), ub(s)]. We de-
fine Φ(s, p, s′) to explain their meaning. Φ(s, p, s′) is the
(smaller) angle ∠(s, p, s′) ∈ [−180◦, 180◦) between the ray
from p through s′ and the ray from p through s. It is pos-
itive iff the former ray is counterclockwise of the latter ray.
Assume that Phi* expands a vertex s and considers a Path
2 update for an unexpanded visible neighbor s′ of s. Phi*
constrained the angle range of s so that the local parent path
of s′ contains at least one corner of each cell that the line
segment L(s′, parent(s)) traverses if Φ(s, parent(s), s′) ∈
[lb(s), ub(s)]. In Figure 4 (right) the angle range of B2 with
parent A4 is denoted by the two dashed rays emanating from
A4. The dotted line within this angle range is Φ(B2, A4, B2)
= 0, which is the reference point of the angle range.

4.2 Updating Angle Ranges

When Phi* expands a vertex s, it updates the g-value and
parent of each unexpanded visible neighbor s′ of s by con-
sidering Path 1 and Path 2. It updates the g-value, parent and

local parent of s′ in the same way as Basic Theta*, but also
updates the angle range of s′.

• Path 1: When Phi* expands A4 in Figure 4 (left), it
updates its unexpanded visible neighbor B3 according to
Path 1 (Line 70). Phi* sets the angle range of B3 to the
angle range defined by the crossbar centered at B3, as
follows: It computes Φ(s′, parent(s), s′′) = Φ(B3, A4,
s′′) for each crossbar neighbor s′′ of B3, namely A3, B4,
C3 and B2. (This is independent of the blocked cell with
corner B3.) It sets the upper angle bound of B3 to the
maximum of the four computed angles, namely 45.0◦

due to B4. It sets the lower angle bound of B3 to the
minimum of the four computed angles, namely -45.0◦

due to A3. Phi* does not need to compute these angle
bounds since the upper angle bound is always 45.0◦ and
the lower angle bound is always -45.0◦ in the Path 1 case
(Lines 74 and 75).

• Path 2: When Phi* expands B3 in Figure 4 (right), it
updates its unexpanded visible neighbor B2 according to
Path 2 (Line 59). Phi* then sets the angle range of B2 to
the intersection of the angle range defined by the cross-
bar centered at B2 and the angle range of its local par-
ent B3, as follows: It computes Φ(s′, parent(s), s′′) =
Φ(B2, A4, s′′) for each crossbar neighbor s′′ of B2,
namely A2, B3, C2 and B1. Phi* computes the max-
imum of the four computed angles (Line 64), namely
18.4◦ due to B3 and C2. It sets the upper angle bound
of B2 to the minimum of that angle and the upper angle
bound of B3 shifted so that the reference point is now
B2 rather than B3 (Line 67), resulting in 18.4◦. Phi*
also computes the minimum of the four computed angles
(Line 63), namely -26.6◦ due to A2. It sets the lower an-
gle bound of B2 to the maximum of that angle and the
lower angle bound of B3 shifted so that the reference
point is now B2 rather than B3 (Line 66), resulting in
-26.6◦. Thus, it calculates the angle range of vertex s′ as
for Path 1, but then intersects it with the angle range of
vertex s.

Assume that Phi* expands a vertex s. If it updates the un-
expanded visible neighbor s′ of s according to Path 2, then it
sets the angle range of s′ to the intersection of the angle range
defined by the crossbar centered at s′ and the angle range of
the local parent of s′. Thus, it sets the angle range of s′ to
the intersection of the angle ranges defined by all crossbars
centered on vertices that are members of the local parent path
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of s′, including s′, but not the parent of s′. We refer to this
as the Crossbar Property. If Phi* updates the unexpanded
visible neighbor s′ of s according to Path 1, then it sets the
angle range of s′ to the angle range defined by the crossbar
centered at s′. Thus, the Crossbar Property holds in this case
as well.

4.3 Using Angle Ranges

Due to the Crossbar Property any ray within the angle range
of a vertex s will touch all crossbars centered on vertices
that are members of the local parent path of s. There-
fore any unexpanded visible neighbor s′ of s that satisfies
Φ(s, parent(s), s′) ∈ [lb(s), ub(s)] (Line 57) will be such
that the line segment L(s′, parent(s)) touches all crossbars
centered on vertices that are members of the local parent path
of s′. Thus the local parent path of s′ contains at least one
corner of each cell that the line segment traverses, which is
how Phi* satisfies Lemma 1.

4.4 Tie Breaking and the Triangle Inequality

When Phi* expands a vertex s, it updates each unexpanded
visible neighbor s′ of s by considering Path 1 and Path 2.
∠(s, p) is the smaller angle formed by the ray from p through
s and the vertical line through p. Path 2 is no longer than
Path 1 due to the triangle inequality. They are equally long if
∠(s′, parent(s)) is a multiple of 45◦, that is, if the vertices lie
on a horizontal, vertical or 45◦ line. In this case, it is better to
update s′ according to Path 1, which explains the third con-
dition on Line 57. The reason is that an update according to
Path 1 results in faster line-of-sight checks and often slightly
reduces path lengths (although this is not guaranteed). For
example in Figure 5, if A3 has parent C1 when it is expanded
by Phi*, then it updates its unexpanded visible neighbor A4
according to Path 1 (dashed line segment). However, if A3
has parent B2 when it is expanded by Phi*, then it updates its
unexpanded visible neighbor A4 according to Path 2 (dotted
line segment), resulting in a shorter path.

5 Incremental Phi*

Incremental Phi* is an incremental version of Phi* that re-
computes any-angle paths faster than repeated single shot
Basic Theta* or Phi* searches when cells become blocked.
Incremental Phi* is identical to Algorithm 2 except for pro-
cedures Main and ClearSubtree shown in Algorithm 3.3 In-
cremental Phi* is complete and correct, but can find paths

3under is a FIFO queue. under.Enqueue(s) inserts vertex s at the
end of the FIFO queue under and under.Dequeue removes a vertex
from the front of the FIFO queue under. over is a FIFO queue similar
to under.

Main()77

Initialize();78

while true do79

ComputeShortestPath();80

Wait for cells to become blocked ;81

foreach newly blocked cell c do82

Update blockage status of cell c to blocked ;83

foreach s′ ∈ corners(c) do84

if ((s′ ∈ closed or s′ ∈ open) and s′ �= sstart)85

then

ClearSubtree(s′);86

end87

ClearSubtree(s)88

under := over := ∅;89

under.Enqueue(s);90

while under �= ∅ do91

u := under.Dequeue();92

over.Enqueue(u);93

InitializeVertex(u);94

if u ∈ open then95

open.Remove(u);96

if u ∈ closed then97

closed.Remove(u);98

foreach s′ ∈ nghbr8(u) do99

if local(s′) = u then100

under.Enqueue(s′);101

while over �= ∅ do102

v := over.Dequeue();103

foreach s′ ∈ nghbrvis(v) do104

if s′ ∈ closed then105

UpdateVertex(s′, v);106

end107

Algorithm 3: Incremental Phi*

that are longer than those found by repeated single shot Basic
Theta* or Phi* searches, especially if cells can become un-
blocked (which was not permitted in our experiments). We
constructed Phi* so that all vertices that no longer have line-
of-sight to their parent due to newly blocked cells can be iden-
tified and removed quickly. Incremental Phi* uses a prepro-
cessing technique that does this in a way that is similar in
spirit to the preprocessing technique used by Differential A*
[Trovato and Dorst, 2002] (Lines 81-86). We constructed this
preprocessing technique so that we can prove the following
lemma:

Lemma 2. Every vertex in either open or closed has line-of-
sight to its parent each time procedure ComputeShortestPath
is called on Line 80.

If every vertex in either open or closed has line-of-sight to
its parent immediately prior to procedure ComputeShortest-
Path then every vertex in either open or closed has line-of-
sight to its parent immediately afterwards as well. If cells
become blocked (Line 83), Incremental Phi* uses the prepro-
cessing technique to maintain Lemma 2 prior to the next call
to procedure ComputeShortestPath. The preprocessing tech-
nique uses Property 1 to identify all vertices that no longer
have line-of-sight to their parent. This can be done easily
because Property 1 ensures that the local parent path of any
vertex that no longer has line-of-sight to its parent after cells
become blocked must contain some corner of a newly blocked
cell. The preprocessing technique thus calls procedure Clear-
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Figure 6: Example Trace of Incremental Phi*

Subtree on each corner of each newly blocked cell (Lines
82 and Line 84), where each call performs a breadth-first
search by following local parent pointers backwards. Proce-
dure ClearSubtree removes all encountered vertices from both
open and closed and reinitializes their values as if they had
never been visited by procedure ComputeShortestPath (Lines
94-98). It then updates open by reinserting all vertices with a
visible neighbor in closed back into open (Line 106), which
allows the next call to procedure ComputeShortestPath to be
a standard Phi* search that reuses information from the pre-
vious search. Notice that ClearSubtree is fast because it uses
FIFO queues. Consider Figure 6 in which black arrows point
to the local parent of a vertex. Figure 6 (left) shows a snap
shot after the first call to procedure ComputeShortestPath.
Assume that the cell (B2-B3-C3-C2) becomes blocked in Fig-
ure 6 (right). The preprocessing technique would iterate over
the four corners of the newly blocked cell, calling procedure
ClearSubtree on each corner that is in either open or closed
(Line 85). If procedure ClearSubtree is applied to B3 first,
the hollow blue vertices B1, C1, D1, A2, B2, C2, D2, B3 and
D3 would be reinitialized after which B3 would be reinserted
into open with parent A5 and local parent B4. If procedure
ClearSubtree were then applied to C3 the hollow green vertex
C3 would be reinitialized and reinserted into open with par-
ent and local parent B4. Procedure ClearSubtree would not
be applied to C2 and B2 as neither corner would be in open
or closed after ClearSubtree was applied to B3 and C3.

6 Moving Robot

Incremental Phi* needs to handle a moving robot to ap-
ply to planning with the freespace assumption. We pro-
ceed similarly to D* [Stentz, 1995] and D* Lite [Koenig and
Likhachev, 2002]. We let Incremental Phi* search from the
goal vertex to the current vertex of the robot. The h-values
then correspond to an approximation of the distance from a
vertex to the current vertex of the robot. The keys of the
vertices in the priority queue open are thus no longer valid
when the robot moves. Incremental Phi* uses the heap re-
ordering technique of D* [Stentz, 1995] and D* Lite [Koenig
and Likhachev, 2002] instead of repeatedly reordering the pri-
ority queue by recomputing all keys.

7 Experimental Results

We now compare the path length, number of vertex expan-
sions and runtime of Phi* and Incremental Phi* against those
of Basic Theta*. Unlike A*, we break ties among vertices
with the same key in favor of the vertex with the smaller g-
value in all of our experiments since this tie-breaking scheme

% Blocked Cells Path Length Vertex Expansions Runtime

0 1.0000 3.4788 2.2412

5 1.0000 1.1923 0.9900

10 1.0002 1.1155 0.9167

20 1.0004 1.0669 0.9012

Table 1: Single-Shot Searches on Random Grids

finds shorter paths for variants of Basic Theta*[Nash et al.,
2007]. We report ratios such that values larger than 1.0 in-
dicate that Basic Theta* did worse than Phi* or Incremen-
tal Phi*. We use grids with a given percentage of randomly
blocked cells (random grids) and scaled indoor and outdoor
maps from robotics and the real-time game Baldur’s Gate II
[Bulitko et al., 2005] (non-random grids). We averaged over
500 path-planning problems for random grids and 650 path-
planning problems for non-random grids (50 path-planning
problems were run on each non-random grid of which there
were twelve game maps and one robotics map). For random
grids, the start vertex is always in the bottom left corner and
the goal vertex is randomly selected on the right border. For
non-random grids, the start and goal vertices are randomly
selected with the constraint that the distance between them is
at least 250.

7.1 Phi*

Table 1 compares Phi* and Basic Theta* for single-shot
searches on random grids of size 500×500, where both path-
planning algorithms search from the start vertex to the goal
vertex. Phi* finds paths of essentially the same length as Ba-
sic Theta*, which is important because Basic Theta* typi-
cally finds shorter paths than Field D* [Nash et al., 2007].
Phi* runs faster than Basic Theta* on grids with no blocked
cells and slightly slower on grids with larger percentages of
blocked cells, for the following reason: Phi* expands far
fewer vertices than Basic Theta* on grids with no blocked
cells because it updates fewer vertices according to Path 2
than Basic Theta* due to its additional angle range constraint.
When Phi* updates a vertex according to Path 1 and Basic
Theta* updates that same vertex according to Path 2, Phi* in-
serts it into open with a larger key than Basic Theta*. Thus,
Phi* is more likely to finish the search without expanding
that vertex than Basic Theta*. Phi* expands more of these
vertices as the percentage of blocked cells increases.

7.2 Incremental Phi*

Table 2 compares Incremental Phi* and Basic Theta* for
planning with the freespace assumption. For these experi-
ments we maintained two grids: one represented the terrain
(terrain grid) and the other represented the knowledge that
the robot has of the terrain (knowledge grid). The robot finds
a short path from its current vertex, initially the start vertex,
to the goal vertex in its knowledge grid and then repeatedly
moves one unit along this path. After each move, it scans all
cells within a given sensor radius around its current point and
updates the scanned cells in its knowledge grid to match the
blockage status of those same cells in the terrain grid. The
robot then finds a new short path from its current vertex to
the goal vertex in its knowledge grid and repeats this pro-
cess until it reaches the goal vertex. Unblocked cells in the
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% Blocked Cells Path Length

100 × 100 250 × 250 500 × 500
0 0.9902 0.9902 0.9902

5 0.9925 0.9922 0.9919

10 0.9947 0.9937 0.9944

20 0.9995 0.9970 0.9971

% Blocked Cells Vertex Expansions

100 × 100 250 × 250 500 × 500
0 3.2551 7.8718 15.3940

5 4.4492 11.5943 25.7134

10 5.1763 13.7031 31.1268

20 5.7573 15.4465 33.8728

% Blocked Cells Runtime

100 × 100 250 × 250 500 × 500
0 1.2870 3.3653 7.0040

5 1.5056 3.9075 8.0542

10 1.7062 4.5855 10.0422

20 1.9680 5.6277 11.7307

(a) Grid Sizes and Percentages of Blocked Cells on Random Grids

Sensor Radius Path Length Vertex Expansions Runtime

5 0.9954 31.9153 9.6181

10 0.9961 28.3299 8.1223

20 0.9966 19.8923 5.5846

(b) Sensor Radius on Random Grids

Path Length Vertex Expansions Runtime

1.0037 25.1068 12.0073

(c) Non-Random Grids

Table 2: Planning with the Freespace Assumption

knowledge grid can become blocked in the terrain grid but
not vice versa. For random grids, the knowledge grid con-
tained a given percentage of randomly blocked cells and the
terrain grid corresponded to the knowledge grid except that
twenty percent of randomly chosen cells were made blocked
in addition to the blocked cells in the knowledge grid. For
non-random grids, the knowledge grid contained only un-
blocked cells and the terrain grid corresponded to the given
map. Incremental Phi* operated as described earlier. Basic
Theta* always searched from the start vertex to the goal ver-
tex if the existing path in the knowledge grid became blocked.
The number of vertex expansions includes all vertices that
were removed from open and updated their unexpanded vis-
ible neighbors. The runtime includes the entire time from
the start of the search until the robot reached the goal vertex.
Table 2(a) reports on random grids with a sensor radius of
three. As the grid size and the percentage of blocked cells
in the knowledge grid increases, Incremental Phi* expands
many fewer vertices than Basic Theta* and its speedup rela-
tive to Basic Theta* increases. Table 2(b) reports on random
grids of size 500 × 500 with ten percent blocked cells in the
knowledge grid. As the sensor radius decreases, Incremental
Phi* expands many fewer vertices than Basic Theta* and its
speedup relative to Basic Theta* increases. Table 2(c) reports
on non-random grids of size 500× 500 and a sensor radius of
three, where the path-planning algorithms often needed to re-
plan more frequently than on random grids. Across all tables,
Incremental Phi* finds paths of essentially the same length as
Basic Theta* (although both path-planning algorithms search
in opposite directions and thus the paths of the robot quickly

diverge). However, Incremental Phi* does so up to 12 times
faster than Basic Theta*.

8 Conclusions

In this paper, we made the any-angle path-planning algorithm
Basic Theta* incremental. We presented Phi*, a version of
Basic Theta* that can be made incremental, and then ex-
tended it to Incremental Phi*. Both Phi* and Incremental
Phi* are complete and correct. We demonstrated that Incre-
mental Phi* is simple, that it finds paths of essentially the
same length as Basic Theta* and that it can provide a speedup
of approximately one order of magnitude for path planning
with the freespace assumption. Future research will be di-
rected toward making Incremental Phi* even faster by (1) in-
tegrating it with Angle Propagation Theta* [Nash et al., 2007]

so that in the worst case its runtime per vertex expansion is
constant and not linear in the number of cells (2) using quanti-
ties that are not as computationally intensive as angles and (3)
identifying and repairing vertices lazily rather than eagerly.
Future research should also be directed toward obtaining an-
alytical bounds on the lengths of the paths found by Incre-
mental Phi* and comparing these lengths with the lengths of
the paths found by Basic Theta* and the lengths of the truly
shortest any-angle paths.
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