A Context Driven Approach for Workflow Mining

Fusun Yaman Tim Oates Mark Burstein
BBN Technologies Department of Computer Science and BBN Technologies
10 Moulton Street Electrical Engineering, UMBC 10 Moulton Street
Cambridge MA 02138 USA Baltimore MD 21250 USA Cambridge MA 02138 USA

fusun@bbn.com

Abstract

Existing work on workflow mining ignores the
dataflow aspect of the problem. This is not accept-
able for service-oriented applications that use Web
services with typed inputs and outputs. We propose
a novel algorithm WIT (Workflow Inference from
Traces) which identifies the context similarities of
the observed actions based on the dataflow and uses
model merging techniques to generalize the control
flow and the dataflow simultaneously. We identify
the class of workflows that WIT can learn correctly.
We implemented WIT and tested it on a real world
medical scheduling domain where WIT was able to
find a good approximation of the target workflow.

1 Introduction

Automation of routine procedures removes the necessity of
human supervision and leaves more time for people to co-
ordinate complex tasks that require human level intelligence
which the Al researchers aspire and are yet to achieve. Over
the last decade, workflows have been commonly utilized to
automate business processes, grid computing applications
and many more. There has been a great deal of research in
designing workflows that can capture the control flow of com-
posite and complex processes.

Unfortunately designing workflows is a burden for users. It
is much easier for humans to demonstrate the solution than to
state the solution declaratively. An answer for this knowledge
acquisition bottleneck is called workflow mining or process
mining which aims to learn the underlying workflow given
some example traces, i.e steps followed in the workflow for a
specific case.

In this paper, we present a novel workflow mining ap-
proach where we combine the control flow and dataflow rea-
soning to discover the workflow. Interestingly, in all of the
previous work on workflow mining the dataflow aspect of the
problem was casually ignored. This is not acceptable in many
applications which are built on top of Web services that have
well defined I/O behaviors. It is worth to note that other re-
search communities closely related to workflow mining, such
as programming by demonstration and web service composi-
tion, have studied the dataflow aspect of the problem. How-
ever the nature of these work are quite different than ours.

oates @cs.umbc.edu

1798

burstein @bbn.com

Our approach analyzes the data dependencies in the trace
to discover the context of the actions that appear in the trace.
Using the context information we can decide whether the two
occurrences of the same action correspond to the same node
in the workflow or not. As a result, unlike the previous work
[van der Aalst er al., 2004; Cook and Wolf, 1998b; Agrawal
et al., 1998], we are able to learn workflows with non-unique
action nodes. Furthermore, the context discovery can easily
be generalized to work with causal dependencies instead of
data dependencies. Thus, the ideas presented in this work
can be applied to other areas such as learning domain specific
knowledge for Al planning problems.

In this paper, we present the algorithm Workflow Infer-
ence From Traces (WIT). WIT identifies the context similar-
ities of the trace elements based on the dataflow and uses
model merging (a technique borrowed from grammar infer-
ence literature) to generalize the control flow and dataflow si-
multaneously. In addition WIT can decompose the learned
workflow into a hierarchy of workflows representing self-
contained complex processes each of which can be reused in
future workflow designs.

We implemented WIT and deployed it as a component in
POIROT [Burstein et al., 20071, an integrated learning appli-
cation initiated by DARPA, where several learners interact to
solve different parts of a complex learning problem. The per-
formance of the system has been evaluated using a real world
medical scheduling domain. Despite the additional complex-
ity of the domain, WIT was able to learn the correct control
flow as well as the dataflow in most of the cases.

In addition to the empirical results, we present theoretical
results on learnability of the workflows using WIT. Specifi-
cally, we show that the class of workflows that WIT can learn
is a subset of reversible regular grammars [Angluin, 1982].

2 Definitions

The building blocks of workflows are actions. An action is
either simple, i.e. executed as one step, or composite, i.e.
accomplished in more than one ways or steps. The actions
we consider have typed parameters. For any action A, the
inputs and outputs of the action is represented as In(A) and
Out(A) respectively. We will use IO(A) to denote In(A) U
Out(A). We assume the parameter types have a semantic
component (i.e. concepts in an ontology).

An instantiation of an action A maps the elements of
IO(A) to values consistent with the type of each /O ele-
ment. We use the notation a = [A, (in; = vy,...,in, =
vp), (out; = wy,...,out,, = wy,)] to denote that a is an
instance of the action A where each input in; is mapped
to v; and output out; is mapped to w;. For example
[lookUpAirport, (loc = Baltimore), (airport = BWI)
is an instance of lookUpAirport action that returns BWI as
the closest airport to Baltimore.

A trace is a sequence of action instances, such as the one
in Figure 1(a) which shows the steps of finding flights for two
passengers. The data dependencies in a trace are the set of
equality constraints in the form of a.o = b.¢ which states
the output o of the action instance a supplies the value for
the input ¢ of the instance b. Figure 1(b) lists all the data
dependencies in the trace in Figure 1(a).

gpl = [getNextPassenger, (), (ID=pl)]

gol = [getOrigin, (pID=ID), (origin=Baltimore)]

lal = [lookUpAirport, (loc=Baltimore), (airport=BWI)]
gdl = [getDestination, (pID=ID), (dest=Tampa)]

la2 = [lookUpAirport, (loc=Tampa), (airport=TPI)]

ff1 = [findFlight, (from=BWI, to=TPI), (flightNo=SW212)]
gp2 = [getNextPassenger, (), (ID=p2)]

g02 = [getOrigin, (pID=ID), (origin=London)]

1a3 = [lookUpAirport, (loc=London), (airport=LON)]

gd2 = [getDestination, (pID=ID), (dest=Los Angeles)] gd2.dest = la4.loc
la4 = [lookUpAirport, (loc=Los Angeles), (airport=LAX)] 1a3.airport = ff2.from
f2 = [findFlight, (from=LON, to=LAX), (flightNo=BA009)] la4.airport = ff2.to

(a) ®)

gpl.iD = gol.pID
gol.origin = lal.loc
gpl.iD = gdl.pID
gdl.dest = la2.loc
lal.airport = ff1.from
1a2.airport = ffl.to
gp2.iD = go2.pID
go2.origin = 1a3.loc
gp2.iD = gd2.pID

Figure 1: (a)Trace (b) Data dependencies in (a)

A control flow is a directed graph with two special nodes
designated as the start and the end nodes. In a control flow
every node, other than the start and end nodes, has an action
associated with it. We will use Action(n) to denote the action
associated with a node n. An arc (nj,no) signals that n;
has to be executed before ny. If a node has more than one
successors then during the execution of the control flow only
one of the edges will be followed. In this work we restrict
ourselves to sequentially executed workflows. Thus we don’t
allow parallel execution of multiple branches. The top graph
in Figure 2 is of a control flow that can produce the trace in
Figure 1.

sta getOrigin getDestination findFlig

getNextPassenger lookUpAirport lookUpAimort end
%,
r;"’@ rigirr=>loc 7"":§A
@ 9 - ° @
o
0*.\ dest =>Joc. - PO“ =
N il

Figure 2: A Control flow(top) and its dataflow (bottom).

Note that the control flow in Figure 2 gives us only the ac-
cepted sequence of actions but it does not tell us how the I/O
of each node is wired. A dataflow associated with a control
flow C, is another directed graph in which there is a node
for every node in the control flow. For any dataflow node n,
cNode(n) denotes the node in C' that n is mapped to. Sim-
ilarly, for a node n in C, dNode(n) denotes the node in D

that n is mapped to. Since there is a one to one mapping
from dataflow nodes to control flow nodes we can overload
the definition of Action(n) for dataflow nodes, to act as a
shortcut notation to Action(cNode(n)). Every arc (ny, ng)
in the dataflow has a label of the form o = ¢ meaning the
output o of Action(n,) produces the value for the input ¢ of
Action(ng). Any arc originating from the start node repre-
sents an input of the workflow, similarly any arc entering the
end node is an output of the process. The bottom graph in
Figure 2 is a dataflow for the control flow above. The map-
ping of the nodes is evident by the node numbers. It is easy
to verify that the data dependencies Figure 1(b)are consistent
with the arc labels in this dataflow. Note that the dataflow
does not have to be connected.

A workflow is a tuple W = (C, D) where C is a control
flow and D is a dataflow for C. An execution is a tuple F =
(T, B) where T is a trace and B is a set of data dependencies
in T'. Furthermore W produces the execution E (equivalently
E is a production of W) if C' can generate the action instance
sequence in 7" and D can generate data dependencies in B.

Definition 1 A workflow W = (C,D) produces an
execution E = ([a1,...,a,],B) iff C has a path
[start(W),n1, ..., ng, end(W)] such that

e every a; is an instantiation of Action(n;) and

o for every constraint a;.0 = a;.i in B there is an edge
(ni,n;) in D with label 0 = 1i.

where start(W) /end(W) is the start/end node in C.

Finally the workflow mining problem is to discover a work-
flow that can produce a given a set of executions.

3 WIT Algorithm

Our solution to the workflow mining problem as described
in the previous section, is the WIT (Workflow Inference
from Traces) algorithm which generalizes the traces and data
dependencies simultaneously by applying techniques from
grammar inference literature.

The WIT algorithm has 3 steps; initialization, context in-
ference and step generalization. The input to WIT is a set
of executions (i.e. pairs of trace and data dependency sets).
The initialization step transforms the input into a very specific
workflow that can only produce the input executions. The
context inference step analyzes the similarities between the
data dependencies of the dataflow nodes. Step generalization,
merges some of the states in the control flow and the dataflow
based on their context and proximity. Step generalization can
discover additional context similarities. If so WIT goes back
to context inference step. WIT continues this loop until no
more new context inferences can be made and outputs the
workflow it has generalized so far. The following subsections
explain the context inference and step generalization steps in
detail.

3.1 Context Inference

The goal of context inference is to determine which nodes
in a workflow are similar to each other. Nodes are similar if
they represent same type of actions and their inputs/outputs

1799

are supplied/used by similar actions. In other words, nodes
with same kind of data dependencies are similar. We will
use the concept of context to capture this similarity notion.
More formally, given a dataflow D = (N, E') with nodes N
and edges F, context is a mapping of each node n € N and
edge e € E to a token, denoted C(z) = a. A context for
a dataflow D is closed if it satisfies all of the following four
context axioms:

e Vey,es € E prod(er) = prod(ez) = C(e1) = C(e2)
e Vey,es € E cons(er) = cons(ez) = C(e1) = C(eq)

e Let ny,ny be two nodes in N such that Action(ny) =
Action(ng) = A. Then C(ny) = C(nz) iff for every
input i € In(A) there are edges ey, ez such that C(e;) =
C(ez2) and cons(ey) = (n1,) and cons(ez) = (na,).

e Let ny,no be two nodes in N such that Action(n,) =
Action(ng) = A. Then C(ny) = C(nz) iff for every
output o of A there are edges e1, e; such that C(e;) =
C(ez) and prod(e1) = (n1,0) and prod(ez) = (na, o).

where for any edge e = (s1,s2) with label 0 = 4,
prod(e) = (s1,0) and cons(e) = (s2,14). Intuitively prod(e)
and cons(e) are the producer and the consumer of a value.
Since there can be more than one action with the same input
(i.e. name and type), cons has to identify the node the input
belongs to. For the same reason prod is a pair of a node and
an output.

Basically the first condition states that all edges providing
a value to an input must have the same context. The second
condition is the counterpart for outputs. The third condition
enforces that the nodes will have the same context token if
and only if all of their inputs are provided by same context
edges. The last condition ensures that the nodes with same
context will have the same context assignment on their out-
going edges per output.

Given a dataflow D, the base context of D is a closed con-
text with maximum number of unique mappings. WIT com-
putes a base context, by assigning a unique token to every
node and edge and then iteratively merging the tokens (i.e.
replace all occurrences of one with the other) that violate the
context axioms. Afterwards, WIT refines the base context
by postulating additional equality constraints. These equality
constraints are discovered during step generalization. Over-
all, WIT refines a context C for a given dataflow D and con-
text constraints X using Algorithm 1 as shown.

Algorithm 1 Re fine(D,C, X)
Inputs: Dataflow D, context C, set of equality constraints X
while X is notempty do
Remove a constraint ¢t; = t5 from X
Replace every occurrence of ¢; in C and & by 5.
while C violates context axioms do
Find tokens o and (3 violating context axioms w.r.t D
Replace every occurrence of « in C and X by (.
return C

Example 1 Let T' be a trace with the following instance se-
quence: [, (), (0 = V],[B,(i = 1),(0 = 2)[D, (i =

2), ()]7 [A7 ()7 (0 = 3)]7 [Cv (z = 3)7 (0 = 4)], [D7 (i =
2,01 14, (s (0 = 5)LIC, (i = 5), (0 = 6)], [D. (i = 6), ().
Figure 3(i) shows the dataflow for a control flow which chains
nine action nodes to produce T. Also the actions associated
with each node is shown in the nodes. The base context is
shown in (ii)where the context tokens are shown in the nodes
and under the edges. Finally when we revise the base context
with the constraint d1 = d2, we get the context in (iii).

=@ @@ @
Csr@=@ | @ @r @ | @ @@
@=0=0 @r @@ @

[0] ii) (i)

Figure 3: Dataflow, base context and revised contexts.

3.2 Step generalization

This step generalizes a workflow W by merging some of the
states in its control flow and dataflow. Since there is a one-
to-one correspondence between the nodes in a control flow
and a dataflow, when two states are merged in one graph, the
corresponding states in the other graph is also merged. When
nodes n; and ny are merged, all edges incoming/outgoing
to/from no are redirected to n; and n, is removed. There are
two kinds of merge:

e Step merging, is applicable if two dataflow states d; and
ds have the same context. Step merging simply merges
the nodes d; and dy and the corresponding states in the
control flow and no new context constraint is discovered.

o Context merging step, is applicable if two control flow
states w; and ws have a common predecessor or a com-
mon successor and Action(wy) = Action(ws). Let d;
and ds be the dataflow states for w; and wy. Context
merging requires the context to satisfy the equality con-
straint C(d;y) = C(d2).

Step merges are useful for identifying the loops in a control
flow even when there is only one trace to learn from. Context
merges on the other hand deemphasizes the context difference
between two action instances if they are close enough in the
control flow. Deemphasizing prevents the control flow from
being overly specific.

Algorithm Generalize({(W, D), C), starts with an empty
set of constraints X and performs all the step merges on
dataflow D based on the context C. Then context merges
on control flow W are performed as the constraints X are
updated. It returns the generalized workflow along with a
possibly empty set of constraints X.

Figure 4 demonstrates the control flows (left) and the
dataflows (right) obtained after the step merges (top) and
context merges (bottom) for the trace in Example 1. In the
dataflows, instead of the arc labels, which are all o = i, the
context for each node and edge are shown. Note that the con-
text tokens x2 and y2 violate the first context axiom. They

1800

Algorithm 2 Generalize((W, D),C)

Inputs: A workflow with control flow W and dataflow D,
context C.
while step merge is applicable do
Pick any two nodes d;,ds € D such that C(d;) = C(d2)
Merge nodes d; and dy in D.
Merge nodes cNode(dy) and cNode(ds) in W.
X ={}
while context merge is applicable do
Pick two nodes wy,ws € W with a common predecessor
or successor and Action(wy) = Action(ws).
Merge nodes wy and ws in W.
Add constraint C(w) = C(wz) to X.
Merge nodes dNode(w;) and dNode(ws) in D.
return OV, D)X

<ol
©)- @8@
o680

Figure 4: Control flows (left), dataflows and context (right)
for the trace in Example 1, after step merging (top) and con-
text merging (bottom).

will be merged into a single token when the algorithm goes
into context inference step again.

If new context constraints are discovered during the
merges, then WIT goes back to the context inference step
with an updated constraint list. Otherwise WIT outputs the
workflow after all the merges are completed.

4 Hierarchical Decomposition

We can also simplify a workflow by identifying subgraphs
(representing branches or loops) in the control flow and re-
placing them with single a node that is associated with a new
composite action. Every composite action has a workflow,
denoted w f(A) which details the internals of the action. By
applying the same decomposition algorithm to the workflows
of discovered actions we end up with a hierarchy of compos-
ite actions.

The procedure Decompose((WW, D)) (shown in Algorithm
3) takes the workflow (W, D) as input. It first identifies and
processes the loops and then moves on to branches. The loop
identification assumes that for every loop there are two nodes
n1 and ng in W such that every iteration of the loop starts
with n; and ends with node no. For any two nodes n; and
ng such that all paths from n; visits no and there is an edge
ng, ny there is a loop in the control flow. Furthermore n, is
a sink of ny, denoted sink(ny) and ny is a source for na,
denoted source(ny). So loop identification requires two con-
trol flow nodes n1, no such that sink(n;) = ns and an edge
(ng,np) creating the loop. Then we replace all nodes that
appear in a path from ny to ng, using Replace function as

1801

shown in Algorithm 4 and apply Decompose procedure to
the newly extracted workflow. Identifying branches is sim-
ilar, only this time we require the source node to have more
than one outgoing edges and we do not include the source and
sink nodes in the set that is to be replaced.

Algorithm 3 Decompose({(W, D))

Inputs: Control flow W = (N, Eyw) and dataflow D
for every ni,n2 € Ny such that sink(n;) = ne and e =
(ng,nl) € Ey do
S = {n € N | appear in a path from ng to n; }
((W, D), A) = Replace((W, D), S, e)
({w, dy, actionList) = Decompose(w f(A))
newActions = newActions U actionSet U A
for each ny,ny € Ny such that sink(n;) = ny and
outDegree(ny) > 1 do
S = {n € Nw | appear in a path from n; to n2}
S =5—{ni,n}
({(W, D), A) = Replace((W, D), S, nil)
((w, d), actionList) = Decompose(w f(A))
newActions = newActions U actionSet U A
return W, D and newActions.

The procedure Replace((W, D), S,loopEdge) replaces
the nodes S from the control flow W and the dataflow nodes
corresponding to nodes in S, denoted Dg, from D with new
nodes n,, and ng respectively. The procedure redirects the
edges in WV and D to the new nodes. A new composite ac-
tion A is created such that for every incoming/outgoing edge
e to/from a node in Dg from/to outside of Dg there is an in-
put/output in In(A)/Out(A). Furthermore let e; and ey be
such incoming/outgoing edges, if C is the base context for D
and C(e;) = C(ez) then the edges are mapped to same in-
put/ output of A. This condition ensures that the action A
won’t have any duplicate or unnecessary 1/0. The Replace
procedure assumes that composite actions representing loops
do not have any outputs.

5 Theoretical Results

In this section we define a class of workflows which WIT can
learn correctly and completely. We use WIT'(S) to denote
the workflow that was learned by WIT given .S, a set of pro-
ductions (instances) of a target workflow.

Definition 2 (Witty workflow) A workflow (W, D) is witty
iff it satisfies the following conditions:

e Let C be the base context for D. For any two nodes dy , do
in D, C(dy) = C(dy) implies di = dy, i.e. the dataflow
has unique nodes per context token.

e [f any two nodes w1 and wy in W has a common prede-
cessor or successor then Action(wy) # Action(ws).

Next we are going to explore the relationship between
witty workflows and reversible regular grammars [Angluin,
1982]. The importance of this relationship lies in the fact
that, grammar induction is a special case of workflow mining
(i.e., when actions have no parameters). It has been shown
that in the absence of negative-examples the target grammar

Algorithm 4 Replace({(W, D), S, loopEdge)

Inputs: Workflow with control flow W = (Nw, Ew) and
dataflow D = (Np, Ep), S C Nw and loopEdge € Eyw
Sp contains the dataflow nodes for nodes in S
Add new nodes n,, and ng to YV and D.

Let C be the base context for D.
A = CreateNewAction(D, Dg,C)
Action(n,) = A and cNode(ng) = ny,
if loopFEdge # nil then
Remove loopEdge from Ey, and add edge (14, ny,)
w = subControl flow(W, S)
Remove every edge e from Eyy, if both ends of e are in .S
for every e = (n1,n2) € Ey such thatny € S do
Add edge (n1,ny) to By
for every e = (n1,n2) € Ew such thatny € S do
Add edge (1, n2) to Ew
d = subData flow(D, Dg)
Remove every edge e from Ep, if both ends of e are in Dg
for every e = (n1,n2) € Ep such that ny € Dg do
Let 0 = i be the label of e
Let i’ € (A) such that i’ is associated with C(e)
Add edge ¢/ = (n1,n4) to Ep with label o = ¢’
for every e = (n1,n2) € Eyw such thatn; € Dg do
Let o = i be the label of e
Let o’ € (A) such that o’ is associated with C(e)
Add edge ¢/ = (ng,n2) to Ep with label o' = ¢
wf(A) = (w,d)
return (WW,D), and A

can be learned if it is reversible [Angluin, 1982]. In workflow
mining we get only positive examples so we are constrained
by this result as well. Theorem?2 states that witty workflows
are a subset of reversible grammars. A regular grammar G is
reversible iff the productions of G satisfy the following two
conditions: ()If A — aB and A — aC then B = C and
(ii))A — aC and B — aC then A = B, where A, B and C
are nonterminals and « is a terminal.

Theorem 1 Let (W, D) be a witty workflow then there is a
reversible regular grammar G = (T, N, P) with terminals
T, nonterminals N and production rules P such that (i) For
every node in W there is a non terminal in N (ii) For every
action in W, there is a terminal in T(iii) A — aB is in P
iff there is an arc (s,w) in W such that A, B and a are the
corresponding non-terminal and terminal symbols for s, w
and Action(s).

The correctness of the theorem is entailed by the second
condition in Definition 2.

Theorem 2 (soundness/completeness) Let W be a witty
workflow. Then
o WIT is sound, i.e. for any set S of productions of W,
every production of WIT(S) is a production of W.

o WIT is complete, i.e. there is a finite set S of of pro-
ductions of W such that all productions of W are pro-
ductions of WIT(S).

Correctness of WIT can be proven by induction where base
case is the workflow representing the input traces which are

1802

by definition productions of W. The inductive step shows
that with every merge the previous workflow converges to
(W, D). The general idea of the completeness proof is to
show that for any witty workflow W there is an S containing
a finite number of productions that traverses all edges of the
controlflow and the dataflow.

6 Implementation and Empirical Results

We implemented WIT in Java. The implementation has some
extra features. The most notable of all being the data de-
pendency extraction which analyses the inputs and outputs of
trace elements and extracts the data dependency information
using a set of domain independent heuristics. In many do-
mains traces are available (e.g., in the form of execution logs)
however the data dependencies are not explicitly provided,
i.e. need to be inferred from the I/O of the trace elements.
Data dependency extraction feature allows WIT to run in do-
mains where data dependencies are not provided.

We have deployed WIT as a component in POIROT, a
framework built to take DARPA’s integrated learning chal-
lenge, where several learners interact to solve different parts
of a complex learning problem. In this framework WIT is the
learner responsible for discovering the workflow given a sin-
gle execution. Other components in POIROT are responsible
for learning expert preferences, preconditions/effects of com-
posite actions and finally conditions for branches and loops
in the control flow.

POIROT is tested using a real world medical transporta-
tion/scheduling domain where the wounded soldiers are
transported outside of the combat zones into safe areas. The
system is presented an expert trace that demonstrates the
transportation of 4 patients. The expert trace contains 126
actions and 337 data bindings. The data dependency infor-
mation is not explicitly provided so WIT uses the data de-
pendency extraction step. After the learning phase, POIROT
solves 20 new problems (each containing 4 patients)and out-
puts a trace per problem. Output traces are aligned with the
expert solution traces and the percentage of correct action
steps and correct parameter assignments are computed (in ad-
dition to other metrics). Note that these two metrics demon-
strate the performance of WIT as well. In these experiments
the average action step accuracy of POIROT was 92 percent
and the parameter assignment accuracy was 82 percent. For
novice humans that were subject to the same test, the numbers
were 70 and 76 percent respectively where the difference was
statistically significant.

7 Related Work

There is a large body of work in workflow/process min-
ing. Most of these work [van der Aalst er al., 2004;
Cook and Wolf, 1998a; Agrawal et al., 1998], can discover
non-sequential workflows but they can not handle workflows
containing more than one node per action. Among the exist-
ing work some [Cook and Wolf, 1995; Herbst and Karagian-
nis, 1998] employ grammar inferencing techniques to find
the target workflow. Cook and Wolf [1995], groups the ac-
tions that have the same k-step future into the same node.

The major problem with this approach is figuring out the pa-
rameter k. Usually a correct guess requires prior knowledge
about the structure of the target workflow. Herbst and Kra-
giannis [1998] uses Bayesian model merging with the aim of
maximizing the likelihood of the model. Unlike WIT, this
aproach requires more than one example to learn loops.

WIT can also decompose workflows using a simple
structure-driven approach which is significantly different
from the taxonomy-based approach described in [Greco et al.,
2005]. Our approach does not involve search for detecting the
best possible decomposition in terms of grouping the actions
that are used for achieving a common goal. Although WIT’s
decomposition is computationally in expensive, it is applica-
ble to certain kinds of graphs.

Programming by demonstration is a research area that is
closely related to our work. Shen et al. [2009] describes a
domain specific system that identifies frequent patterns in a
dataflow to identify actions related to the same task. Ex-
tracted actions are then fed into an ordinary workflow learn-
ing algorithm to learn macros actions. Unlike our approach
this work is useful for generalizing parts of the observations.
Furthermore identifying the dataflow patterns boils down to
graph isomorphism problem which is different and harder
than inferring context similarities.

In general provenance is utilized in web services research
to track the quality of service however some work goes be-
yond that. Leake and Kendall-Morwick [2008] propose a
system to facilitate workflow generation. Even though the
system does not discover workflows, it uses the dataflow to
determine the similarities between workflows. The similar-
ity evaluation is based on matching dataflow patterns which
again is a form of graph isomorphism. Another work [Dust-
dar and Gombotz, 2007] uses detailed logs to learn workflows
composed of webservices. The log includes certain types of
interactions between services and is used for identifying sub-
sequences of a trace that correspond to executions of different
composite services.

8 Conclusions

In this paper, we presented a novel workflow mining algo-
rithm WIT, which combines the control flow and dataflow
reasoning to approximate the target workflow. WIT uses
model merging to generalize the control flow and dataflow
simultaneously. In addition, we have presented a hierarchical
decomposition algorithm which simplifies a given workflow
by recursively identifying and replacing complex subgraphs
with composite processes, allowing them to be reused in fu-
ture workflow designs. We have identified a class of work-
flows for which WIT is sound and complete. Our implemen-
tation is tested with target workflows that were outside of the
class we have identified, WIT was able to approximate most
of the characteristics of the target workflows. Future work
will generalize WIT for parallel workflows by detecting the
controlflow elements that don’t have a data dependency. Also
we think that decomposition can help us discover additional
context similarities and can lead to further generalization of
the workflow.

1803

Acknowledgments

This project is supported by DARPA IPTO under contract
FA8650-06-C-7606. Approved for Public Release, Distribu-
tion Unlimited.

References

[Agrawal er al., 1998] R. Agrawal, D. Gunopulos, and
F. Leymann. Mining process models from workflow logs.
Lecture Notes in Computer Science, 1377, 1998.

[Angluin, 1982] D. Angluin. Inference of reversible lan-
guages. J. ACM, 29(3):741-765, 1982.

[Burstein et al., 2007] M. Burstein, M. Brinn, M. Cox,
T. Hussain, R. Laddaga, D. McDermott, D. McDonald,
and R. Tomlinson. An architecture and language for the
integrated learning of demonstrations. In AAAI Workshop
Acquiring Planning Knowledge via Demonstration, pages
6-11, 2007.

[Cook and Wolf, 1995] J. E. Cook and A. L. Wolf. Automat-
ing process discovery through event-data analysis. In Proc.
of ICSE ’95, pages 73-82, New York, NY, USA, 1995.

[Cook and Wolf, 1998a] J. E. Cook and A. L. Wolf. Event-
based detection of concurrency. In Proc. of SIGSOFT
"98/FSE-6, pages 35-45, New York, NY, USA, 1998.
ACM.

[Cook and Wolf, 1998b] Jonathan E. Cook and Alexander L.
Wolf. Discovering models of software processes from
event-based data. ACM Trans. Softw. Eng. Methodol., 7(3),
1998.

[Dustdar and Gombotz, 2007] Schahram Dustdar and
Robert Gombotz. Discovering web service workflows
using web services interaction mining. International

Journal of Business Process Integration and Management,
1:256-266(11), 2007.

[Greco er al., 2005] Gianluigi Greco, Antonella Guzzo, and
Luigi Pontieri. Mining hierarchies of models: From ab-
stract views to concrete specifications. In Business Process
Management, pages 32—47, 2005.

[Herbst and Karagiannis, 1998] J. Herbst and D. Karagian-
nis. Integrating machine learning and workflow manage-
ment to support acquisition and adaptation of workflow
models. In Proc. of DEXA 98, Washington, DC, USA,
1998. IEEE Computer Society.

[Leake and Kendall-Morwick, 2008] David B. Leake and
Joseph Kendall-Morwick. Towards case-based support for
e-science workflow generation by mining provenance. In
ECCBR, volume 5239 of Lecture Notes in Computer Sci-
ence, pages 269-283, 2008.

[Shen et al., 2009] Jiangiang Shen, Erin Fitzhenry, and
Thomas G. Dietterich. Discovering frequent work proce-
dures from resource connections. In IUI, pages 277-286.
ACM, 20009.

[van der Aalst et al., 2004] W. van der Aalst, T. Weijters, and
L. Maruster. Workflow mining: Discovering process mod-

els from event logs. IEEE Trans. on Knowl. and Data Eng.,
16(9):1128-1142, 2004.

