HTN Planning with Preferences

Shirin Sohrabi

Jorge A. Baier

Sheila A. Mcllraith

Department of Computer Science
University of Toronto
{shirin, jabaier, sheila} @cs.toronto.edu

Abstract

In this paper we address the problem of generat-
ing preferred plans by combining the procedural
control knowledge specified by Hierarchical Task
Networks (HTNs) with rich user preferences. To
this end, we extend the popular Planning Domain
Definition Language, PDDL3, to support specifica-
tion of simple and temporally extended preferences
over HTN constructs. To compute preferred HTN
plans, we propose a branch-and-bound algorithm,
together with a set of heuristics that, leveraging
HTN structure, measure progress towards satisfac-
tion of preferences. Our preference-based planner,
HTNPLAN-P, is implemented as an extension of
the SHOP2 planner. We compared our planner with
SGPlan; and HPLAN-P- the top performers in
the 2006 International Planning Competition pref-
erence tracks. HTNPLAN-P generated plans that in
all but a few cases equalled or exceeded the qual-
ity of plans returned by HPLAN-P and SGPlans.
While our implementation builds on SHOP2, the
language and techniques proposed here are relevant
to a broad range of HTN planners.

1 Introduction

Hierarchical Task Network (HTN) planning is a popular
and widely used planning paradigm, and many domain-
independent HTN planners exist (e.g., SHOP2, SIPE-2, I-X/I-
PLAN, O-PLAN) [Ghallab et al., 2004]. In HTN planning, the
planner is provided with a set of tasks to be performed, pos-
sibly together with constraints on those tasks. A plan is then
formulated by repeatedly decomposing tasks into smaller and
smaller subtasks until primitive, executable tasks are reached.
A primary reason behind HTN’s success is that its task net-
works capture useful procedural control knowledge—advice
on how to perform a task—described in terms of a decompo-
sition of subtasks. Such control knowledge can significantly
reduce the search space for a plan while also ensuring that
plans follow one of the stipulated courses of action.

While HTNs specify a family of satisfactory plans, they
are, for the most part, unable to distinguish between suc-
cessful plans of differing quality. Preference-based planning
(PBP) augments a planning problem with a specification of

properties that constitute a high-quality plan. For example,
if one were generating an air travel plan, a high-quality plan
might be one that minimizes cost, uses only direct flights,
and flies with a preferred carrier. PBP attempts to optimize
the satisfaction of these preferences while achieving the stip-
ulated goals of the plan. To develop a preference-based HTN
planner, we must develop a specification language that refer-
ences HTN constructs, and a planning algorithm that com-
putes a preferred plan while respecting the HTN planning
problem specification.

In this paper we extend the Planning Domain Definition
Language, PDDL3 [Gerevini et al., 20091, with HTN-specific
preference constructs. This work builds on our recent work
on the development of LPH [Sohrabi and Mcllraith, 2008],
a qualitative preference specification language designed to
capture HTN-specific preferences. PDDL3 preferences are
highly expressive, however they are solely state centric, iden-
tifying preferred states along the plan trajectory. To develop
a preference language for HTN we add action-centric con-
structs to PDDL3 that can express preferences over the occur-
rence of primitive actions (operators) within the plan trajec-
tory, as well as expressing preferences over complex actions
(tasks) and how they decompose into primitive actions. For
example, we are able to express preferences over which sets
of subtasks are preferred in realizing a task (e.g., When book-
ing inter-city transportation, I prefer to book a flight) and
preferred parameters to use when choosing a set of subtasks
to realize a task (e.g., I prefer to book a flight with United).
To compute preferred HTN plans, we propose a branch-and-
bound algorithm, together with a set of heuristics that lever-
age HTN structure.

The main contributions of this paper are: (1) a language
that supports the specification of temporally extended pref-
erences over complex action- and state-centric properties
of a plan, and (2) heuristics and an algorithm that exploit
HTN procedural preferences and control to generate preferred
plans that under some circumstances are guaranteed optimal.
The notion of adding advice to an HTN planner regarding
how to decompose a task network was first proposed by My-
ers (e.g., [Myers, 2000]). Recently, there was another attempt
to integrate preferences into HTN planning without the provi-
sion of action-centric language constructs [Lin et al., 2008].
We discuss these and other related works in Section 7. PBP
has been the topic of much research in recent years, and there

1790

has been a resurgence of interest in HTN planning. Experi-
mental evaluation of our planner shows that HTN PBP gen-
erates plans that, in all but a few cases, equal or exceed the
best PBP planners in plan quality. As such, it argues for HTN
PBP as a viable and promising approach to PBP.

2 Background
2.1 HTN Planning

Informally, an HTN planning problem can be viewed as a
generalization of the classical planning paradigm. An HTN
domain contains, besides regular primitive actions, a set of
tasks or high-level actions. Tasks can be successively re-
fined or decomposed by the application of so-called methods.
When this happens, the task is replaced by a new, intuitively
more specific task network. In short, a task network is a set of
tasks plus a set of restrictions (often ordering constraints) that
its tasks should satisfy. The HTN planning problem consists
of finding a primitive decomposition of a given (initial) task
network.

Example 1 (Travel Example) Consider the planning prob-
lem of arranging travel in which one has to arrange accom-
modation and various forms of transportation. This prob-
lem can be viewed as a simple HTN planning problem, in
which there is a single task, “arrange travel”, which can be
decomposed into arranging transportation, accommodations,
and local transportation. Each of these more specific tasks
can successively be decomposed based on alternative modes
of transportation and accommodations, eventually reducing
to primitive actions that can be executed in the world. Further
constraints can be imposed to restrict decompositions.

A formal definition of HTN planning with preferences
follows. Most of the basic definitions follow Ghallab et
al. [2004].

Definition 1 (HTN Planning Problem) An HTN planning
problem is a 3-tuple P = (sg,wq, D) where sq is the ini-
tial state, wq is a task network called the initial task network,
and D is the HTN planning domain which consists of a set of
operators and methods.

A domain is a pair D = (O, M) where O is a set of oper-
ators and M is a set of methods. An operator is a primitive
action, described by a triple o =(name(0), pre(o), eff(0)), cor-
responding to the operator’s name, preconditions and effects.
In our example, ignoring the parameters, operators might in-
clude: book-train, book-hotel, and book-flight.

A task consists of a task symbol and a list of arguments. A
task is primitive if its task symbol is an operator name and its
parameters match, otherwise it is nonprimitive. In our exam-
ple, arrange-trans and arrange-acc are nonprimitive tasks,
while book-flight and book-car are primitive tasks.

A method, m, is a 4-tuple (name(m), task(m),subtasks(m),
constr(m)) corresponding to the method’s name, a nonprimi-
tive task and the method’s task network, comprising subtasks
and constraints. Method m is relevant for a task ¢ if there
is a substitution o such that o (t) =task(m). Several methods
can be relevant to a particular nonprimitive task ¢, leading to
different decompositions of ¢. In our example, the method
with name by-flight-trans can be used to decompose the task

arrange-trans into the subtasks of booking a flight and pay-
ing, with the constraint (constr) that the booking precede pay-
ment. An operator o may also accomplish a ground primitive
task ¢ if their names match.

Definition 2 (Task Network) A task network is a pair
w=(U, C) where U is a set of task nodes and C is a set of
constraints. Each task node u € U contains a task t,,. If all of
the tasks are primitive, then w is called primitive; otherwise
it is called nonprimitive.

In our example, we could have a task network (U, C)
where U = {uq,us}, u1 =book-car, and us= pay, and C
is a precedence constraint such that «; must occur before us
and a before-constraint such that at least one car is available
for rent before u;.

Definition 3 (Plan) m = 010 ... 0y is a plan for HTN plan-
ning program P = (sg, wo, D) if there is a primitive decom-
position, w, of wo of which T is an instance.

Finally, to define the notion of preference-based planning
we assume the existence of a reflexive and transitive relation
= between plans. If m; and 7o are plans for P and m; =< 7o
we say that 7y is at least as preferred as mo. We use w1 < o
as an abbreviation for m; < 79 and 7wy A 1.

Definition 4 (Preference-based HTN Planning) An HTN
planning problem with user preferences is described as a
4-tuple P = (so,wo, D, <) where < is a preorder between
plans. A plan 7 is a solution to ‘P if and only if: 7 is a plan
for P = (so, wo, D) and there does not exists a plan 7’ for
P’ such that 7’ < .

The =< relation can be defined in many ways. Below we
describe PDDL3, which defines < quantitatively through a
metric function.

2.2 Brief Description of PDDL3

The Planning Domain Definition Language (PDDL) is the
de facto standard input language for many planning systems.
PDDL3 [Gerevini et al., 2009] extends PDDL2.2 to sup-
port the specification of preferences and hard constraints over
state properties of a trajectory. These preferences form the
building blocks for definition of a PDDL3 metric function that
defines the quality of a plan. In this context PBP necessitates
maximization (or minimization) of the metric function. In
what follows, we describe those elements of PDDL3 that are
most relevant to our work.

Temporally extended preferences/constraints PDDL3
specifies temporally extended preferences (TEPs) and tempo-
rally extended hard constraints in a subset of linear temporal
logic (LTL). Preferences are given names in their declaration,
to allow for later reference. The following PDDL3 code il-
lustrates one preference and one hard constraint.

(forall (2?1 - light)

(preference p-light (sometime (turn-off ?21))))

(always (forall ?x — explosive)

(not (holding ?2x)))

The p-1ight preference suggests that the agent eventually
turn all the lights off. The (unnamed) hard constraint estab-
lishes that an explosive object cannot be held by the agent at
any point in a valid plan.

1791

When a preference is externally universally quantified, it
defines a family of preferences, comprising an individual
preference for each binding of the variables in the quantifier.
Therefore, preference p—1ight defines an individual pref-
erence for each object of type 1ight in the domain.

Temporal operators cannot be nested in PDDL3. Our ap-
proach can however handle the more general case of nested
temporal operators.

Precondition Preferences Precondition preferences are
atemporal formulae expressing conditions that should ideally
hold in the state in which the action is performed. They are
defined as part of the action’s precondition.

Simple Preferences Simple preferences are atemporal for-
mulae that express a preference for certain conditions to hold
in the final state of the plan. They are declared as part of the
goal. For example, the following PDDL3 code:
(:goal

(and (delivered pkgl depotl)

(preference p-truck (at truck depotl))))
specifies both a hard goal (pkgl must be delivered at
depotl) and a simple preference (that truck is at
depot1). Simple preferences can also be quantified.

Metric Function The metric function defines the quality of
a plan, generally depending on the preferences that have been
achieved by the plan. To this end, the PDDL3 expression
(is—-violated name), returns the number of individual
preferences in the name family of preferences that have been
violated by the plan.

Finally, it is also possible to define whether we want to
maximize or minimize the metric, and how we want to weigh
its different components. For example, the PDDL3 metric
function:

(:metric minimize (+

(x 40 (is-violated p-light))

(» 20 (is-violated p-truck))))
specifies that it is twice as important to satisfy preference
p-1light as to satisfy preference p—truck.

Since it is always possible to transform a metric that re-
quires maximization into one that requires minimization, we
will assume that the metric is always being minimized.

Finally, we now complete the formal definition for HTN
planning with PDDL3 preferences. Given a PDDL3 metric
function M the HTN preference-based planning problem with
PDDL3 preferences is defined by Definition 4, where the re-
lation < is such that 1 < o iff M (71) < M (m2).

3 PDDL3 Extended to HTN

In this section, we extend PDDL3 with the ability to ex-
press preferences over HTN constructs. As argued in Section
1, supporting preferences over how tasks are decomposed,
their preferred parameterizations, and the conditions under-
which these preferences hold, is compelling. It goes beyond
the traditional specification of preferences over the properties
of states within plan trajectories to provide preferences over
non-functional properties of the planning problem including
how some planning objective is accomplished. This is partic-
ularly useful when HTN methods are realized using web ser-
vice software components, because these services have many

1792

non-functional properties that distinguish them (e.g., credit
cards accepted, country of origin, trustworthiness, etc.) and
that influence user preferences.

In designing a preference specification language for HTN
planning, we made a number of strategic design decisions.
We first considered adding our preference specifications di-
rectly to the definitions of HTN methods. This seemed like
a natural extension to the hard constraints that are already
part of method definitions. Unfortunately, this precludes easy
contextualization of methods relative to the task the method
is realizing. For example, in the travel domain, many meth-
ods may eventually involve the primitive operation of pay-
ing, but a user may prefer different methods of payment de-
pendent upon the high-level task being realized (e.g., When
booking a car, pay with amex to exploit amex’s free collision
coverage, when booking a flight, pay with my Aeroplan-visa
to collect travel bonus points, etc.). We also found the op-
tion of including preferences in method definitions unappeal-
ing because we wished to separate domain-specific, but user-
independent knowledge, such as method definitions, from
user-specific preferences. Separating the two, enables users
to share method definitions but individualize preferences. We
also wished to leverage the popularity of PDDL3 as a lan-
guage for preference specifications.

Here, we extend PDDL3 to incorporate complex action-
centric preferences over HTN tasks. This gives users the
ability to express preferences over certain parameterization
of a task (e.g., preferring one task grounding to another) and
over certain decompositions of nonprimitive tasks (i.e., pre-
fer to apply a certain method over another). To support pref-
erences over task occurrences (primitive and nonprimitive)
and task decompositions, we added three new constructs to
PDDL3: occ(a), initiate(x) and terminate(x), where a is
a primitive task (i.e., an action), and x is either a task or a
name of method. occ(a) states that the primitive task a oc-
curs in the present state. On the other hand initiate(¢) and
terminate(t) state, respectively, that the task ¢ is initiated or
terminated in the current state. Similarly initiate(n) (resp.
terminate(n)) states that the application of method named n
is initiated (resp. terminated) in the current state. These new
constructs can be used within simple and temporally extended
preferences and constraints, but not within precondition pref-
erences.

The following are a few temporally extended preferences
from our travel domain' that use the above extension.

(preference pl

(always (not (occ (pay MasterCard)))))

(preference p2 (sometime (occ
(book—-flight SA Eco Direct WindowSeat))))

(preference p3 (imply (close origin dest)

(sometime (initiate (by-rail-trans)))))
(preference p4
(sometime-after (terminate (arrange-trans))

(initiate (arrange—acc))))

The p1 preference states that the user never pays by Mas-
tercard. The p2 preference states that at some point the user

'For simplicity many parameters have been suppressed.

books a direct economy window-seated flight with a Star Al-
liance (SA) carrier. The p3 preference states that the by-rail-
trans method is applied when origin is close to destination.
Finally p4 states that arrange-trans task is terminated before
the arrange-acc task begins (for example: finish arranging
your transportation before booking a hotel).

Semantics: The semantics of the preference language falls
into two parts: (1) a formal definition of satisfaction of single
preference formulae, and (2) a formal definition of the ag-
gregation of preferences through an objective function. The
first part is defined formally by mapping HTN decomposi-
tions and LTL formulae into the Situation Calculus [Reiter,
2001]. Thus, satisfaction of a single preference formula is
reduced to entailment in a logical theory. A sketch of the
formal encoding is found in Appendix A. The semantics of
the metric function, including the aggregation of preferences
from the same family via the 1 s-violated function, is de-
fined in the same way as in PDDL3, following Gerevini et
al. [2009].

4 Preprocessing HTN problems

Before searching for a most preferred plan, we preprocess the
original problem. This is needed in order to make the plan-
ning problem more easily manageable by standard planning
techniques. We accomplish this objective by removing all of
the modal operators appearing in the preferences. The result-
ing domain, has only final-state preferences, and all prefer-
ences refer to state properties.

By converting TEPs into final-state preferences, our heuris-
tic functions are only defined in terms of domain predicates,
rather than being based on non-standard evaluations of an
LTL formula, such as the ones used by other approaches
[e.g. Bienvenu et al., 2006]. Nor do we need to implement
specialized algorithms to reason about LTL formulae such as
the progression algorithm used by TLPLAN [Bacchus and Ka-
banza, 1998].

Further, by removing the modal operators occ, initiate, and
terminate we provide a way to refer to these operators via
state predicates. This allows us to use standard HTN planning
software as modules of our planner, without needing special
modifications such as a mechanism to keep track of the tasks
that have been decomposed or the methods that have been
applied.

Preprocessing Tasks and Methods Our preferences can re-
fer to the occurrence of tasks and the application of methods.
In order to reason about task occurrences and method applica-
tions, we preprocess the methods of our HTN problem. In the
compiled problem, for each non-primitive task ¢ that occurs
in some preference of the original problem, there are two new
predicates: executing-t and terminated-t. If apa; - - - ay, is
a plan for the problem, and a; and a; are respectively the first
and last primitive actions that resulted from decomposing ¢,
then executing-t is true in all the states in between the ap-
plication of a; and a;, and terminated-t is true in all states
after a;. This is accomplished by adding new actions at the
beginning and end of each task network in the methods that
decompose t. Further, for each primitive task (i.e., operator)
t occurring in the preferences, we extend the compiled prob-

lem with a new occ-t predicate, such that occ-t is true iff ¢ has
just been performed.

Finally, we modify each method m whose name n (i.e.,
n = name(m)) that occurs in some preference. We use
two predicates executing-n and terminated-n, whose up-
dates are realized analogously to their task versions described
above.

Preprocessing the Modal Operators We replace each
occurrence of occ(t), initiate(t), and terminate(t) by occ-t
when ¢t is primitive. We replace the occurrence of initiate(t)
by executing-t, and terminate(t) by terminated-t when ¢
is non-primitive. Occurrences of initiate(n) are replaced by
executing-n, and terminate(n) by terminated-n.

Up to this point all our preferences exclusively reference
predicates of the HTN problem, enabling us to apply standard
techniques to simplify the problem further.

Temporally Extended and Precondition Preferences We
use an existing compilation technique [Baier er al., 2009] to
encode the satisfaction of temporally extended preferences
into predicates of the domain. For each LTL preference
in the original problem, we generate additional predicates for
the compiled domain that encode the various ways in which ¢
can become true. Indeed, the additional predicates represent a
finite-state automaton for (, where the accepting state of the
automaton represents satisfaction of the preference. In our re-
sulting domains, we axiomatically define an accepting pred-
icate for ¢, which represents the accepting condition of ¢’s
automaton. The accepting predicate is true at a state s if and
only if is satisfied at s. Quantified preferences are compiled
into parametric automata for efficiency. Finally, precondition
preferences, preferences that should ideally hold in the state
in which the action is performed, are compiled away as con-
ditional action costs, as is done in the HPLAN-P planner. For
more details refer to the original paper [Baier et al., 2009].

S Preference-based Planning with HTNs

We address the problem of finding a most preferred decom-
position of an HTN by performing a best-first, incremental
search in the plan search space induced by the initial task net-
work. The search is performed in a series of episodes, each of
which returns a sequence of ground primitive operators (i.e.,
a plan that satisfies the initial task network). During each
episode, the search performs branch-and-bound pruning—a
search node is pruned from the search space, if we can prove
that it will not lead to a plan that is better than the one found
in the previous episode. In the first episode no pruning is per-
formed. In each episode, search is guided by inadmissible
heuristics, designed specifically to guide the search quickly
to a good decomposition. The remainder of this section de-
scribes the heuristics we use, and the planning algorithm.

5.1 Algorithm

Our HTN PBP algorithm outlined in Figure 1, performs a
best-first, incremental search in the space of decompositions
of a given initial task network. It takes as input a planning
problem (sp,wg, D), a metric function METRICFN, and a
heuristic function HEURISTICFEN.

1793

1: function HTNPBP(so, wo,D, METRICFN,HEURISTICFN)

2: frontier «— {sq,wo,) > initialize frontier
3 bestMetric < worst case upper bound

4: while frontier is not empty do

5: current «— Extract best element from frontier
6 (s, w, partial P) < current

7 Ibound <— METRICBOUNDFN(s)

8

if lbound < bestMetric then > pruning by bounding

if w = () and current’s metric < bestMetric then
10: Output plan partial P
11: bestMetric «— METRICFN(s)
12: succ < successors of current
13: frontier < merge succ into frontier

Figure 1: A sketch of our HTN PBP algorithm.

The main variables kept by the algorithm are frontier and
bestMetric. frontier contains the nodes in the search fron-
tier. Each of these nodes is of the form (s, w, partial P),
where s is a plan state, w is a task network, and partial P
is a partial plan. Intuitively, a search node (s, w, partial P)
represents the fact that task network w remains to be decom-
posed in state s, and that state s is reached from the initial
state of the planning problem s by performing the sequence
of actions partial P. frontier is initialized with a single node
(s0,wp, @), where () represents the empty plan. Its elements
are always sorted according to the function HEURISTICFN.
On the other hand, bestMetric is a variable that stores the
metric value of the best plan found so far, and it is initialized
to a high value representing a worst case upper bound.

Search is carried out in the main while loop. In each
iteration, HTNPLAN-P extracts the best element from the
frontier and places it in current. Then, an estimation of
a lowerbound of the metric value that can be achieved by
decomposing w — current’s task network — is computed
(Line 7) using the function METRICBOUNDFN. Function
METRICBOUNDFN will be computed using the optimistic
metric function described in the next subsection.

The algorithm prunes current from the search space if
lbound is greater than or equal to bestMetric. Otherwise,
HTNPLAN-P checks whether or not current corresponds
to a plan (this happens when its task network is empty). If
current corresponds to a plan, the sequence of actions in its
tuple is returned and the value of bestMetric is updated.

Finally, all successors to current are computed using
the Partial-order Forward Decomposition procedure (PFD)
[Ghallab et al., 2004], and merged into the frontier. The al-
gorithm terminates when frontier is empty.

5.2 Heuristics

Our algorithm searches for a plan in the space of all possible
decompositions of the initial task network. HTNs that have
been designed specifically to be customizable by user prefer-
ences may contain tasks that could be decomposed by a fairly
large number of methods. In this scenario, it is essential for
the algorithm to be able to evaluate which methods to use to
decompose a task in order to get to a reasonably good solu-
tion quickly. The heuristics we propose in this section are
specifically designed to address this problem. All heuristics
are evaluated in a search node (s, w, partial P).

Optimistic Metric Function (OM) This function is an es-

timate of the best metric value achievable by any plan that can
result from the decomposition of the current task network w.
Its value is computed by evaluating the metric function in s
but assuming that (1) no further precondition preferences will
be violated in the future, (2) temporally extended preference
that are violated and that can be proved to be unachievable
from s are regarded as false, (3) all remaining preferences
are regarded as satisfied. To prove that a temporally extended
preference p is unachievable from s, OM uses a sufficient
condition: it checks whether or not the automaton for p is
currently in a state from which there is no path to an accept-
ing state. Recall that an accepting state is reached when the
preference formula is satisfied.

OM provides a lower bound on the best plan extending
the partial plan partial P assuming that the metric function is
non-decreasing in the number of violated preferences. This is
the function used as METRICBOUNDFN in our planner. OM
is a variant of “optimistic weight” [Bienvenu et al., 2006].
Pessimistic Metric Function (PM) This function is the
dual of OM. While OM regards anything that is not prov-
ably violated (regardless of future actions) as satisfied, PM
regards anything that is not provably satisfied (regardless of
future actions) as violated. Its value is computed by evaluat-
ing the metric function in s but assuming that (1) no further
precondition preferences will be violated in the future, (2)
temporally extended preferences that are satisfied and that can
be proved to be true in any successor of s are regarded as sat-
isfied, (3) all remaining preferences are regarded as violated.
To prove that a temporally extended preference p is true in
any successor of s, we check whether in the current state of
the world the automaton for p would be in an accepting state
that is also a sink state, i.e., from which it is not possible to
escape, regardless of the actions performed in the future.

For reasonable metric functions (e.g., those non-decreasing

in the number of violated preferences), PM is monotoni-
cally decreasing as more actions are added to partial P. PM
provides good guidance because it is a measure of assured
progress towards the satisfaction of the preferences.
Lookahead Metric Function (L A) This function is an es-
timate of the metric of the best successor to the current node.
It is computed by conducting a two-phase search. In the first
phase, a search for all possible decompositions of w is per-
formed, up to a certain depth k. In the second phase, for
each of the resulting nodes, a single primitive decomposition
is computed, using depth-first search. The result of LA is
the best metric value among all the fully decomposed nodes.
Intuitively, LA estimates the metric value of a node by first
performing an exhaustive search for decompositions of the
current node, and then by approximating the metric value of
the resulting nodes by the metric value of the the first primi-
tive decomposition that can be found, a form of sampling of
the remainder of the search space.
Depth (D) We use the depth as another heuristic to guide
the search. This heuristic does not take into account the pref-
erences. Rather, it encourages the planner to find a decompo-
sition soon. Since the search is guided by the HTN structure,
guiding the search toward finding a plan using depth is nat-
ural. Other HTN planners such as SHOP2 also use depth or
depth-first search to guide the search to find a plan quickly.

1794

Strategy ~ Check whether If tied If tied
No-LA OM;, < OM, PM, < PM, -
LA LA; < LAy OM; < OM> PM, < PM>

Figure 2: Strategies to determine whether a node n; is better than
a node no. OM is the optimistic-metric, PM is the pessimistic-
metric, and LA is the look-ahead heuristic.

The HEURISTICFN function we use in our algorithm cor-
responds to a prioritized sequence of the above heuristics, in
which D is always considered first. As such, when compar-
ing two nodes we look at their depths, returning the one that
has a higher depth value. If the depths are equal, we use the
other heuristics in sequence to break ties. Figure 2 outlines
the sequences we have used in our experiments.

5.3 Optimality and Pruning

Since we are using inadmissible heuristics, we cannot guar-
antee that the plans we generate are optimal. The only way to
do this is to run our algorithm until the space is exhausted. In
this case, the final plan returned is guaranteed to be optimal.
Exhaustively searching the search space is not reasonable
in most planning domains, however here we are able to ex-
ploit properties of our planning problem to make this achiev-
able some of the time. Specifically, most HTN specifica-
tions severely restrict the search space so that, relative to a
classical planning problem, the search space is exhaustively
searchable. Further, in the case where our preference metric
function is additive, our O M heuristic function enables us to
soundly prune partial plans from our search space. Specif-
ically, we say that a pruning strategy is sound if and only
if whenever a node is pruned (line 8) the metric value of
any plan extending this node will exceed the current bound
bestMetric. This means that no state will be incorrectly
pruned from the search space.
Proposition 1 The OM function provides sounds pruning if
the metric function is non-decreasing in the number of satis-
fied preferences, non-decreasing in plan length, and indepen-
dent of other state properties.
A metric is non-decreasing in plan length if one cannot make
a plan better by increasing its length only (without satisfying
additional preferences).
Theorem 1 If the algorithm performs sound pruning, then
the last plan returned, if any, is optimal.
Proof sketch: Follows the proof of optimality for the
HPLAN-P planner [Baier et al., 2009].

6 Implementation and Evaluation

Our implemented HTN PBP planner, HTNPLAN-P, has two
modules: a preprocessor and a preference-based HTN plan-
ner. The preprocessor reads PDDL3 problems and generates a
SHOP2 planning problem with only simple (final-state) pref-
erences. The planner itself is a modification of the LISP ver-
sion of SHOP2 [Nau er al., 2003] that implements the algo-
rithm and heuristics described above.

We had three objectives in performing our experimental
evaluation: to evaluate the relative effectiveness of our heuris-
tics, to compare our planner with state-of-the-art PBP plan-
ners, and to compare our planner with other HTN PBP plan-
ners. Unfortunately, we were unable to achieve our third ob-

HTNPLAN-P
No-LA LA SGPlan; | HPLAN-P
#Prb | #S | #Best | #S | #Best | #S | #Best | #S | #Best
travel | 41 |41 3 41| 37 |41 1 411 17
rovers| 20 [20| 4 [20| 19 |20 1 11 2
trucks| 20 |20 6 |20| 15 |20 11 4 2

Figure 3: Comparison between two configurations of HTNPLAN-
P, HPLAN-P, and SGPlans on rovers, trucks, and travel do-
mains. Entries show number of problems in each domain (#Prb),
number of solved instances in each domain (#S) by each planner,
and number of times each planner found a plan of equal or better
quality to those found by all other planners (#Best). All planners
were ran for 60 minutes, and with a limit of 2GB per process.

jective, since we could not obtain a copy of SCUP, the only
HTN PBP planner we know of [Lin er al., 2008]. (See Section
7 for a qualitative comparison.)

We used three domains for the evaluation: the rovers do-
main, the trucks domain, both standard IPC benchmark do-
mains; and the travel domain, which is a domain of our own
making. Both the rovers and trucks domains comprised
the preferences from IPC-5. In rovers domain we used the
HTN designed by the developers of SHOP2 for IPC-2 and in
trucks we created our own HTN. We modified the HTN in
rovers very slightly to reflect the true nondeterminism in our
HTNPLAN-P planner: i.e., if a task could be decomposed us-
ing two different methods, then both methods would be con-
sidered, not just the first applicable one. We also modified the
IPC-5 preferences slightly to ensure fair comparison between
planners. The rovers and trucks problems sets comprised 20
problems. The number of preferences in these problem sets
ranged in size, with several having over 100 preferences per
problem instance.

The travel domain is a PDDL3 formulation of the domain
introduced in Example 1. Its problem set was designed in or-
der to evaluate the PBP approaches based on two dimensions:
(1) scalability, which we achieved by increasing the branch-
ing factor and grounding options of the domain, and (2) the
complexity of the preferences, which we achieved by inject-
ing inconsistencies (i.e., conflicts) among the preferences. In
particular, we created 41 problems with preferences gener-
ated automatically with increasing complexity. For example
problem 3 has 27 preferences with 8 conflicts in the choice of
transportation while problem 40 has 134 preferences with 54
conflicts in the choice of transportation.

Our experiments evaluated the performance of four
planners: HTNPLAN-P with the No-LA heuristic, and
HTNPLAN-P with the LA heuristic, SGPlans [Hsu et al.,
2007], and HPLAN-P- the latter two being the top PBP
performers at IPC-5. Results are summarized in Figure 3,
and show that HTNPLAN-P generated plans that in all but
a few cases equalled or exceeded the quality of plans re-
turned by HPLAN-P and SGPlan;. The results also show
that HTNPLAN-P performs better on the three domains with
the LA heuristic.

Conducting the search in a series of episodes does help in
finding better-quality plans. To evaluate this, we calculated
the percent metric improvement (PMI), i.e., the percent differ-
ence between the metric of the first and the last plan returned
by our planner (relative to the first plan). The average PMI is

1795

3000

No-LA ——

2500 R

2000 LA g
g
o 1500 R
=

1000

500 R

0 Il Il Il Il Il Il
1 15 30 120 300 900 3600
Time (sec.)

Figure 4: Added metric vs. time for the two strategies in the trucks
domain. Recall that a low metric value means higher quality plan.
When a problem is not solved at time ¢, we add its worst possible
metric value (i.e. we assume no satisfied preferences).

40% in rovers, 72% in trucks, and 8% in travel.

To compare the relative performance between LA and No-
LA, we averaged the percent metric difference (relative to the
worst plan) in problems in which the configurations found
a different plan. This difference is 45% in rovers, 60% in
trucks, and 3% in travel, all in favour of LA.

We created 18 instances of the travel domain where we
tested the performance between LA and No-LA on problems
that have preferences that use our HTN extension of PDDL3.
The average PMI for these problems is 13%, and the relative
performance between the two is 5%.

Finally Figure 4 shows the decrease of the sum of the met-
ric value of all instances of the trucks domain relative to solv-
ing time. We observe a rapid improvement during the first
seconds of search, followed by a marginal one after 900 sec-
onds. Other domains exhibit similar behaviour.

7 Discussion and Related Work

PBP has been the subject of much interest recently, spurred
on by three IPC-5 tracks on this subject. A number of plan-
ners were developed, all based on the competition’s PDDL3
language. Our work is distinguished in that it employs HTN
domain control extending PDDL3 with HTN-inspired con-
structs. The planner itself then employs heuristics and algo-
rithms that exploit HTN-specific preferences and control. Ex-
perimental evaluation of our planner shows that HTNPLAN-
P generates plans that, in all but a few cases, equal or exceed
the best PBP in plan quality. As such, it argues generally for
HTN PBP as a viable and promising approach to PBP.

With respect to advisable HTN planners, Myers was the
first to advocate augmenting HTN planning with hard con-
straints to capture advice on how fo decompose HTNs, ex-
tending the approach to conflicing advice in [Myers, 2000].
Their work is similar in vision and spirit to our work, but
different with respect to the realization. In their work, pref-
erences are limited to consistent combinations of HTN ad-
vise; they do no include the rich temporally extended state-
centric preferences found in PDDL3, nor do they support the
weighted combination of preferences into a metric function
that defines plan quality. With respect to computing HTN
PBP, Myers’ algorithm does not exploit lookahead heuristics

1796

or sound pruning techniques.

The most notable related work is that of Lin et al. [2008]
who developed a prototype HTN PBP planner, SCUP, tai-
lored to the task of web service composition. Unfortunately,
SCUP is not available for experimental comparison, however
there are fundamental differences between the planners, that
limit the value of such a comparison. Most notably, Lin et
al. [2008] do not extend PDDL3 with HTN-specific prefer-
ence constructs, a hallmark of our work. Further, their plan-
ning algorithm appears to be unable to handle conflicting user
preferences since they note that such conflict detection is per-
formed manually prior to invocation of their planner. Opti-
mization of conflicting preferences is common in most PBP’s,
including ours. Also, their approach to HTN PBP planning is
quite different from ours. In particular, they translate user
preferences into HTN constraints and preprocess the prefer-
ences to check if additional tasks need to be added to wq. This
is well motivated by the task of web service composition, but
not a practice found in classical HTN planning.

Also related is the ASPEN planner [Rabideau et al., 20001,
which performs a simple form of preference-based plan-
ning, focused mainly on preferences over resources. It can
plan with HTN-like task decomposition, but its preference
language is far less expressive than ours. In contrast to
HTNPLAN-P, ASPEN performs local search for a local op-
timum. It does not perform well when preferences are inter-
acting, nested, or not local to a specific activity.

It is interesting and important to note that the HTN plan-
ners SHOP2 [Nau ez al., 2003] and ENQUIRER [Kuter ef al.,
2004] can be seen to handle some simple user preferences.
In particular the order of methods and sorted preconditions in
a domain description specifies a user preference over which
method is more preferred to decompose a task. Hence users
may write different versions of a domain description to spec-
ify simple preferences. However, unlike HTNPLAN-P the
user constraints are treated as hard constraints and (partial)
plans that do not meet these constraints will be pruned from
the search space.

Finally, observe that we approached HTN PBP by integrat-
ing PBP into HTN planning. An alternative approach would
be to integrate HTN into PBP. Kambhampati er al. [1998]
hints at how this might be done by integrating HTN into their
plan repair planning paradigm. For the integration of HTN
into PBP to be effective, heuristics would have to be devel-
oped that exploited the special compiled HTN structure. Fur-
ther, such a compilation would not so easily lend itself to
mixed-initiative PBP, a topic for future investigation.

Acknowledgements: We thank our colleague Christian Fritz
for helpful discussion. We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Council
of Canada (NSERC) and the Ontario Ministry of Innovations
Early Researcher Award (ERA).

References

[Bacchus and Kabanza, 1998] F. Bacchus and F. Kabanza. Plan-
ning for temporally extended goals. Annals of Mathematics and
Artificial Intelligence, 22(1-2):5-27, 1998.

[Baier et al., 2009] J. A. Baier, F. Bacchus, and S. A. Mcllraith. A
heuristic search approach to planning with temporally extended
preferences. Artificial Intelligence, 173(5-6):593-618, 2009.

[Bienvenu et al., 2006] M. Bienvenu, C. Fritz, and S. A. Mcllraith.
Planning with qualitative temporal preferences. In Proc. of the

10th Int’l Conference on Knowledge Representation and Reason-
ing (KR), 134-144, 2006.

[Gabaldon, 2002] A. Gabaldon. Programming hierarchical task net-
works in the situation calculus. In AIPS’02 Workshop on On-line
Planning and Scheduling, April 2002.

[Gabaldon, 2004] A. Gabaldon. Precondition control and the pro-
gression algorithm. In Proc. of the 9th Int’l Conference on
Knowledge Representation and Reasoning (KR), 634—643. AAAI
Press, 2004.

[Gerevini et al., 2009] A. Gerevini, P. Haslum, D. Long, A. Saetti,
and Y. Dimopoulos. Deterministic planning in the fifth interna-
tional planning competition: PDDL3 and experimental evalua-
tion of the planners. Artificial Intelligence, 173(5-6):619-668,
20009.

[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso. Hierar-
chical Task Network Planning. Automated Planning: Theory and
Practice. Morgan Kaufmann, 2004.

[Hsu et al., 20071 C.-W. Hsu, B. Wah, R. Huang, and Y. Chen. Con-
straint partitioning for solving planning problems with trajectory
constraints and goal preferences. In Proc. of the 20th Int’l Joint
Conference on Artificial Intelligence (1JCAI), 1924-1929, 2007.

[Kambhampati et al., 1998] S. Kambhampati, A. D. Mali, and
B. Srivastava. Hybrid planning for partially hierarchical domains.
In Proc. of the 15th National Conference on Artificial Intelligence
(AAAI), 882-888, 1998.

[Kuter et al., 2004] U. Kuter, E. Sirin, D. S. Nau, B. Parsia, and
J. A. Hendler. Information gathering during planning for web
service composition. In Proc. of the 3rd Int’l Semantic Web Con-
ference (ISWC), 335-349, 2004.

[Lin et al., 2008] N. Lin, U. Kuter, and E. Sirin. Web service com-
position with user preferences. In Proceedings of the 5th Euro-
pean Semantic Web Conference (ESWC), 629-643, 2008.

[Myers, 2000] K. L. Myers. Planning with conflicting advice. In
Proc. of the 5th Int’l Conference on Artificial Intelligence Plan-
ning and Scheduling (AIPS), 355-362, 2000.

[Nau et al., 2003] D. Nau, T.-C. Au, O. Iighami, U. Kuter, J. Mur-
dock, D. Wu, and F. Yaman. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research, 20:379-404, 2003.

[Rabideau et al., 2000] G. Rabideau, B. Engelhardt, and S. A.
Chien. Using generic preferences to incrementally improve plan
quality. In Proc. of the 5th Int’l Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS), 236-245, 2000.

[Reiter, 20011 R. Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems. MIT
Press, Cambridge, MA, 2001.

[Sohrabi and Mcllraith, 2008] S. Sohrabi and S. A. Mcllraith. On
planning with preferences in HTN. In Proc. of the 12th Int’l
Workshop on Non-Monotonic Reasoning (NMR), 241-248, 2008.

A Sketch of the Semantics

The satisfaction of all constraint and preference formulae is defined
by a translation of formulae into the Situation Calculus (SC), a log-
ical language for reasoning about action and change [Reiter, 2001]

1797

Formulae are satified if their translations are entailed by the SC log-
ical theory representing the HTN planning problem and plan. The
translation of our HTN constructs are more complex, so we begin
with the original elements of PDDL3.

In the SC, primitive actions a are instantaneous. A situation s
is a history of primitive actions performed at a distinguished initial
situation So. The logical function do(a, s) returns the situation that
corresponds to performing action a in s. In the SC, the state of
the world is expressed in terms of functions and relations (fluents)
relativized to a particular situation s, e.g., F(Z, s).

The translation to SC proceeds as follows. Since we are operating
over finite domains, all universally quantified PDDL3 formulae are
translated into individual grounded instances of the formulae. Sim-
ple preferences (resp. constraints) are translated into corresponding
SC formulae. Temporally extended preferences (resp. constraints)
are translated into SC formulae following the translation of LTL for-
mulae into SC by Gabaldon [2004] and Bienvenu et al. [2006].

To define the semantics of our HTN extension, we appeal to a
translation of HTN planning into SC entailment of a ConGolog pro-
gram that is again credited to Gabaldon [2002]. ConGolog is a logic
programming language built on top of the SC that supports the ex-
pression of complex actions. In short, the translation defines a way
to construct a logical theory and formula W (s) such that ¥(s) is en-
tailed by the logical theory iff the sequence of actions encoded by s
is a solution to the original HTN planning problem.

More specifically, the initial HTN state s is encoded as the initial
situation, So. The HTN domain description maps to a corresponding
SC domain description, D, where for every operator o there is a
corresponding primitive action a, such that the preconditions and the
effects of o are axiomatized in D. Every method and nonprimitive
task together with constraints is encoded as a ConGolog procedure.
R is he set of procedures in the ConGolog domain theory.

In addition to this translation, we need to deal with the new el-
ements of PDDL3 that we introduced: occ(a), initiate(X), and
terminate(X). To this end, following Gabaldon’s translation we
add two new primitive actions start(P(?)), end(P(7)), to each pro-
cedure P that corrensponds to an HTN task or method. In addi-
tion, we add the fluents executing(P(¥), s) and terminated(X, s),
where P(¥) is a ConGolog procedure and X is either P(¥) or a
primitive action a. executing(P (), s) states that P(¥) is executing
in situation s, rerminated(X, s) states that X has terminated in s.
executing(a, s) where a is a primitive action, is defined to be false.

occ(a), initiate(X'), and terminate(X) are translated into the
situation calculus by building SC formulae that are evaluated when
they appear in a preference formula. Below we define these for-
mulae, using a notation compatible with Gabaldon’s translation, in
which [s’, s] denotes that the (temporal) expression ¢ holds over
the situation fragment s, that starts in situation s’.

occ(a) tells us the first action executed is a:

occ(a)[s’, s] = do(a,s') C s
initiate(X) and terminate(X) are interpreted as follows:

;5 [do(X,s")Cs ifXeA
initiate(X)[s’, s] = { do(start(X),s'YCs ifXeR
. ;5 f do(X,s")Cs ifXeA
terminate(X)[s’, s] = { do(end(X),s)Cs ifX € R,

where s’ C s denotes that situation s is a predecessor of situation
s, and A is a set containing all primitive actions.

Space precludes a full exposition of the translation. Details pro-
vided here and in Section 3, together with the details in Gabal-
don [2002] and Bienvenu ez al. [2006] provide all the pieces.

