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Abstract

Reading involves, among others, identifying what is
implied but not expressed in text. This task, known
as textual entailment, offers a natural abstraction
for many NLP tasks, and has been recognized as
a central tool for the new area of Machine Reading.

Important in the study of textual entailment is mak-
ing precise the sense in which something is implied
by text. The operational definition often employed
is a subjective one: something is implied if humans
are more likely to believe it given the truth of the
text, than otherwise. In this work we propose a nat-
ural objective definition for textual entailment.

Our approach is to view text as a partial depiction of
some underlying hidden reality. Reality is mapped
into text through a possibly stochastic process, the
author of the text. Textual entailment is then for-
malized as the task of accurately, in a defined sense,
recovering information about this hidden reality.

We show how existing machine learning work can
be applied to this information recovery setting, and
discuss the implications for the construction of ma-
chines that autonomously engage in textual entail-
ment. We then investigate the role of using multiple
inference rules for this task. We establish that such
rules cannot be learned and applied in parallel, but
that layered learning and reasoning are necessary.

1 Introduction

Text understanding has long been considered one of the cen-
tral aspects of intelligent behavior, and one that has received
a lot of attention within the Artificial Intelligence community.
Many aspects of this problem have been considered and ex-
tensively studied, and frameworks have been developed for
tasks such as summarization, question answering, syntactic
and semantic tagging. The importance of text understanding
has greatly increased over the past few years, following the
recognition that the web offers an abundant source of human
knowledge encoded in text, on which machines can capital-
ize (see, e.g., Reading the Web [Mitchell, 2005]). It has also
been suggested that a robust and viable way for machines to
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acquire commonsense knowledge, similar to that employed
by humans, is through learning from natural language text
(see, e.g., Knowledge Infusion [Valiant, 2006]). A new area
has, in fact, emerged with the goal of extracting knowledge
from text, dubbed Machine Reading [Etzioni er al., 2006].
Traditional Natural Language Processing tasks and tech-
niques are useful components of this ambitious goal. Yet, the
emphasis shifts from extracting knowledge encoded within a
piece of text, to that of understanding what text implies, even
if not explicitly stated. As an example, consider the follow-
ing sentence: “Alice held a barbecue party last weekend.”.
Traditional NLP tasks include recognizing the entities, tag-
ging words with their part of speech, creating the syntactic
tree, identifying the verbs and their arguments, and so on.
Beyond these tasks, however, one may also ask what can be
inferred from this sentence. Although this question might not
admit a unique answer, a possible inference might be that the
weather was good last weekend. In fact, the author of the sen-
tence may be aware, or even take for granted, that readers will
make such an inference, and she may choose not to explicitly
include this information. If machines are to understand the
intended meaning of text, they should be able to draw similar
inferences as those (expected to be) drawn by human readers.
The inference task can be seen as one of deciding whether
the truth of a statement follows from the truth of some piece
of text and some background knowledge. This task, known
as textual entailment, has recently received considerable at-
tention, since it naturally generalizes and abstracts many of
the traditional NLP tasks [Dagan et al., 2005]. Amongst the
most successful approaches for this task is one that employs
knowledge induced from a large corpus [Hickl et al., 2006].
The ultimate goal, of course, is to have machines that com-
pletely autonomously acquire relevant background knowl-
edge and subsequently use it to recognize textual entailment.
Designing and implementing such machines would arguably
be a concrete step forward in endowing machines with the
ability to understand text by drawing those commonsense in-
ferences that humans do when reading text. For this to hap-
pen, a crisp definition of textual entailment is first needed.
The classical definition follows the semantics of logical im-
plication (i.e., a possible worlds interpretation of entailment).
This definition is, though, too rigid to be useful in practice.
Instead, a more applied (operational) definition of textual en-
tailment is used: “[a piece of text] entails [a statement] if the
meaning of [the statement] can be inferred from the mean-
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ing of [the text], as would typically be interpreted by people”
[Dagan e al., 2005]. This definition requires, however, a sub-
jective human gold standard, making the task an inherently
supervised one, clashing with the goal for autonomy.

In this work we propose a definition for textual entailment
that retains the formal objective aspects of the classical defi-
nition, yet it embraces the statistical nature of the operational
definition, and avoids rigidness. Our approach is to view text
as a partial depiction of some underlying hidden reality. This
reality is mapped into a piece of text through the author of the
text. Textual entailment is then formalized as the task of ac-
curately, in a defined sense, recovering information about this
underlying reality. An agent engaged in the textual entailment
task is first given access to a corpus of text relevant to some
domain of interest, and only then it is asked to recognize tex-
tual entailment. This training phase aims, from a semantics
point of view, to make precise the type of statistical accuracy
guarantees that are expected on the textual entailment task,
and, from a practical point of view, to provide the agent with
a means of acquiring relevant background knowledge.

We argue that for learning to be meaningful in this setting,
a learner needs to be able to deal with missing information
in its learning examples, both during the training phase, and
the actual deployment phase, while making minimal assump-
tions on the nature of this missing information. We briefly
review the key features of a learning framework called auto-
didactic [Michael, 2007], which respects these requirements,
and show how it can be applied to the textual entailment task.

We continue to investigate the role of learning and reason-
ing with multiple rules in the textual entailment task. It is
shown that chaining the conclusions of rules is provably ben-
eficial. It is also established that these rules cannot be learned
in parallel, but need to be learned iteratively, a layer at a time.
These results we view as a formal prescription of how ma-
chines built for the textual entailment task should operate.

2 Text as Appearance of Some Hidden Reality

We propose that text be viewed as an appearance of some
underlying and hidden reality. This view is naturally exem-
plified through the following scenario. Consider the case of a
newspaper reporter present by chance at the scene of a bank
robbery at the time of the event. The news reporter observes
the event unfolding, and later documents her experience in
a newspaper article. The article is subsequently read by the
readers of the newspaper. From a reader’s point of view, the
reality of interest is the event of the actual bank robbery that
took place. This reality, however, is not directly visible to
the reader. The reader’s only source of information about the
event is the reporter’s article, a piece of text. In this sense, this
piece of text acts as an appearance, a partial observation, of
the actual reality. Depending on the reporter, the article might
contain many details of the actual event, or mention only the
important, in the reporter’s opinion, pieces of the event. The
reporter might have a page limit to uphold in writing her arti-
cle, and may be forced to drop even important aspects of the
event. Even more so, the reporter might be biased in favor
of or against the bank robber, and the text might describe the
event noisily or inaccurately. Yet, from this piece of text the
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reader hopes to reconstruct (to some extent) the actual event.

To capture the nature of text as an appearance of some un-
derlying reality, a means is required to model reality, text,
and the author that ties the two together. We consider a fixed
set A = {1,...,24} of attributes, and think of each at-
tribute in A as an indicator variable of some aspect of the re-
ality of interest. Certain domains may require representations
that comprise a set of objects, and relations that hold amongst
them. It has been shown, however, that in the context of learn-
ing, certain restricted forms of relational representations are
not harder to learn than propositional representations [Roth
and Yih, 2001; Valiant, 2000]. For this reason, and in the in-
terest of simplicity, we restrict our attention to propositional
representations. An event is represented as a binary string
evn of length |.A|, with the i-th bit of evn, denoted evn[i],
corresponding to the value of attribute x;. The bank robbery
event of our example could, for instance, correspond to the
binary string evn = 010001110111001, where 1 might
stand for whether the bank robber was holding a gun (in this
case “no”), xo for whether the bank robbery was successful
(in this case “yes”), and so on. Some other bank robbery
event would be represented by a different binary string, keep-
ing, though, the same interpretation of the attributes.

By analogy, text describing an event is also represented as
a string. To capture the fact that text is only partially depict-
ing the event, we introduce a third value *, which stands for
“don’t know”. A piece of text describing the bank robbery
event of our example could, for instance, correspond to the
ternary string txt = *00%x011%x1110x1, with the same
interpretation of the attributes as before. Note that the val-
ues of some attributes are »; we will say that these attributes
are masked in t xt. Observe that this particular piece of text
does not state whether the bank robber was holding a gun (the
value of 1 in txt is %), but it does say that the bank robbery
was not successful (the value of x5 in txt is 0). Thus, this
piece of text is not accurately depicting the underlying reality
according to evn, since the actual bank robbery was success-
ful. We will say that x5 is noisy in txt w.r.t. evn.

Recall that a reader hopes to reconstruct the actual event,
given as input a piece of text (partially and noisily) describ-
ing it. In terms of our example, the reader is given txt
*00%x011%%x1110+1, and attempts to construct some new
ternary string that resembles evn = 010001110111001
more closely than txt. But, is this task even well-defined?
The reader does not have access to the actual event. It is possi-
ble that the same piece of text describes many bank robberies
that differ amongst them. A bank robbery where a gun was
involved, and one where a gun was not are equally well de-
scribed by the text “The bank robber fled the scene with the
loot.”. Which of the two possible realities is the reader sup-
posed to reconstruct? Or, in other words, does this piece of
text entail the statement that “a gun was used during the bank
robbery”? The answer depends on what was observed by the
text’s author! This response becomes useful when the author
is modelled. The author is modelled as a (stochastic) process
that takes as input events (i.e., binary strings), and outputs
text (i.e., ternary strings). An event exists first, and is then
mapped into text through the workings of an author. When
reading this text the reader attempts to recover the event. We



will call any such process that maps binary to ternary strings
a sensor; the author is the sensor through which a reader ob-
serves an event. The reader’s task is now well-defined.

To understand why it is even conceivable to be able to re-
cover information about some underlying event, by only read-
ing some text about it, one needs to appreciate the fact that the
reader also employs some prior knowledge presumably rele-
vant to the event of interest. Most readers know, for instance,
that bank robberies often involve the use of some form of an
assault weapon, and a means of escaping the crime scene.
Even if the news reporter does not mention such information,
it is reasonable to assume that the reader will infer it given the
context. The prior knowledge employed by a reader, then, can
be modelled as a rule that tries to predict the value of some
target attribute x; given only t xt. We take the approach that
this rule (¢) = x4 is of the typical form. The rule’s body ¢
is a propositional formula defined over the attributes A of a
domain, and the rule’s head is the attribute x, to be predicted.
In our example, the rule could be of the following form: the
bank robber was holding a gun and an accomplice was wait-
ing outside the bank if and only if the bank robbery was suc-
cessful. Given such a rule, and given a piece of text offering
the information that indeed the bank robber was holding a
gun and an accomplice was waiting outside the bank, then
the reader can infer that the bank robbery was successful, ir-
respectively of whether the text offers this information. If we
are confident in the accuracy of the rule, then we should be
willing to accept that its prediction is correctly reconstructing
the particular event described by the given piece of text.

3 A Semantics for Textual Entailment

We denote by ¢ the knowledge base that an agent uses to rec-
ognize textual entailment, including both the actual knowl-
edge, and the inference engine that applies this knowledge on
a given piece of text t xt. We write conc(p|txt) to mean
the ternary string that results when p is applied on t xt.

A first attempt to define textual entailment is to ask that for
a sensing process sense, an event evn, and a piece of text
txt drawn from sense(evn), it holds that conc(g| txt)
is equal to evn. Thus, the application of the knowledge base
o on the piece of text t xt reconstructs the hidden event evn.

Clearly, for any knowledge base g, an event evn can be ad-
versarially chosen so as to make it impossible to reliably (i.e.,
not by chance) reconstruct evn, even if no attribute is noisy in
txt, and only a single attribute is masked in t xt. A minimal
assumption is needed to circumvent this: that the events have
some structure, in the sense that the values of the attributes
in an event are somehow correlated with each other. Follow-
ing the approach of standard learning models (e.g., [Valiant,
1984]), the possibly complex correlations that exist among
the values of attributes in the underlying reality are captured
by assuming that an event is drawn from some arbitrary prob-
ability distribution D; we write evn «— D. By the same to-
ken, some minimal structure should be assumed on the sens-
ing process. We model the possibly complex workings of an
author by assuming that once an event evn is chosen, a piece
of text txt is drawn from some arbitrary probability distri-
bution sense(evn); we write txt < sense(evn).

We can now define two metrics that measure the extent to
which some knowledge base o succeeds in the textual entail-
ment task. Soundness amounts to asking that if some attribute
in a selected set A, hasa {0, 1} value in conc(g | txt), then
this value should match the one specified by the underlying
event evn that gave rise to txt. Completeness amounts to
asking that the attributes in A; should have a {0,1} value
in conc(p| txt). For flexibility, we ask that soundness and
completeness hold except with some small probability, giving
them a statistical flavor, without sacrificing objectivity.

Definition 1 (Soundness) A knowledge base ¢ is (1 — €)-
sound for a target attribute set Ay C A under a probability
distribution D and a sensing process sense if

Pr 3z, € A that is noisy in conc(p| txt) w.rt. evn |
evn « D;txt « sense(evn)] <e.

Definition 2 (Completeness) A knowledge base g is (1—w)-
complete for a target attribute set Ay C A under a probabil-
ity distribution D and a sensing process sense if

Pr[3x, € Ay that is masked in conc(p| txt) |
evn < D;txt « sense(evn)] < w.

We emphasize that the soundness and completeness met-
rics differ from the precision and recall metrics. Both pairs
of metrics are employed in cases where some universe of ob-
jects (in our case, these are events) are classified as having
some property or not (in our case, this is the value of a single
fixed attribute), and the goal is to accurately predict what the
case is for each object. In the case of precision and recall,
predictions are made on every object, corresponding to hav-
ing a 1-complete knowledge base. By contrast, we allow for
knowledge bases that do not make predictions on certain at-
tributes, making them (1 — w)-complete for w > 0. Another
important difference is the asymmetry that precision and re-
call impose between having the property of interest or not.
Precision is: out of the objects predicted to have the property,
how many actually do? Recall is: out of the objects that have
the property, how many were predicted as such? Soundness,
on the other hand, measures how often the value of an at-
tribute was not predicted wrongly (i.e., it was either predicted
correctly or not predicted at all). There is no asymmetry in
the treatment of the {0, 1} values that an attribute may take.

Precision and recall are often employed for evaluating suc-
cess in the textual entailment task. In such evaluations, a pre-
dictor is given a piece of text and a statement and is asked
to determine whether the latter follows from the former. Our
proposed view of textual entailment goes beyond treating it
as the classification task of checking whether a statement fol-
lows from a piece of text. Instead, we view textual entailment
more broadly as the generation task of drawing all possible
inferences that can be reliably drawn from a given piece of
text. The traditional classification view of textual entailment
is, then, a special case: check if the statement is one of the
drawn inferences. In our setting, soundness and complete-
ness are more appropriate metrics than precision and recall.

4 Learning Background Knowledge

Manually constructed knowledge bases (e.g., [Lenat, 1995]),
are not accompanied by guarantees on their appropriateness
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for any particular textual entailment task. Learning has been
used to construct knowledge bases for the textual entailment
classification task, yet, most approaches proceed by process-
ing a training set comprised of pairs of a piece of text and a
statement, tagged — in line with the operational and subjec-
tive definition of textual entailment — by humans to indicate
whether the latter is implied by the former. For autonomous
machines to be built, and for the broader textual entailment
generation task to be solved, learning techniques not relying
on human supervision need to be employed. Access to text
is still allowed, but text is not tagged with the inferences ex-
pected to be drawn. Since text is a partial depiction of some
underlying reality, a learning framework that can deal with
partial information in its learning examples is needed. It is
also desirable that such a learning framework makes minimal
assumptions on how information is missing in its learning ex-
amples, allowing it thus to be employed as broadly as possi-
ble. We review in this section one such learning framework,
called autodidactic [Michael, 2007]. The reader is directed to
the cited paper for details and discussion of related work.
The autodidactic learning framework extents the Probably
Approximately Correct semantics [Valiant, 19841, and inher-
its from that the formal guarantees for learned knowledge. On
the other hand, it can deal with partial learning examples, and
does without the supervised nature of the original PAC model.
For this section, we focus our attention on how a single rule
for predicting a fixed target attribute x is to be learned.
Consider the domain of bank robberies, and let x; stand for
“the bank robbery was successful”. What does it mean when
we say that a rule () = z is appropriate for inferring from
text whether x; is true or not? Following Definition 1, this
could be formalized as asking that the rule does not wrongly
predict the value of z; in some underlying event evn, given
access to a piece of text txt < sense(evn). Note that
completeness is taken into account implicitly, since the rule
makes a “don’t know” prediction if and only if t xt does not
offer sufficient information for ¢ to be uniquely determined.
Denote by val(y | txt) the prediction that the rule (¢) = x4
makes on the value of its head x; given a piece of text t xt.
Say that (¢) = x; has an accuracy conflict with evn given
txtifval(e|txt) € {0,1}and val(p|txt) # evnlt].
So, for the rule (z3 V (1 A T7)) = x4, the event evn =
1000110, and the text txt = 10x%%10, it holds that
val(xzsV (x1 AT7)|txt) = 1, and evn[4] = 0; there is an
accuracy conflict, since the predicted value of x4 is incorrect.

Definition 3 A rule (¢) = x4 is (1 — ¢)-accurate under a
probability distribution D and a sensing process sense if

Pr[(¢) = ¢ has an accuracy conflict with evn given txt |
evn «— D;txt « sense(evn)] <e.

How is a rule evaluated when the underlying reality it is
trying to infer and against which its accuracy is measured is
unknown? Interestingly, it suffices to consider another metric.

Say that (@) = x; has a consistency conflict with txt if

val(p|txt),txt[t] € {0,1} and val(p|txt) # txt[t].

So, for the rule (x5 V (1 A T7)) = x4, and the text txt =
10%**10, it holds that val(zs V (x1 AT7) | txt) = 1, and
txt[4] = «; there is no consistency conflict independently of
the value of x4 in the underlying event that gave rise to t xt.

Definition 4 A rule (¢) = x; is (1 — €)-consistent under a
probability distribution D and a sensing process sense if

Pr () = x4 has a consistency conflict with t xt |
evn < D;txt « sense(evn)] <e.

The next result shows that highly consistent rules are also
highly accurate to the extent possible [Michael, 2007].

Theorem 4.1 (The Relation of Consistency and Accuracy)
For every noiseless sensing process sense, and every class
F of rules with head x, there exists n € [0,1] s.z. if n # 0:

(i) for every probability distribution D, and rule () = x4,
the rule is (1 — ¢)-accurate if it is (1 —n - €)-consistent;

(ii) there is a probability distribution Dy, and a rule (pg) =
xy that is (1—¢)-accurate only if it is (1—n-€)-consistent.

Roughly, 1 — 7 measures how adversarially the author of
text (on which rules in F are applied) hides information.

An immediate implication for the textual entailment task is
that in order to be able to infer whether “the bank robbery was
successful”, and be confident that this was indeed the case in
the actual event, it suffices to construct a rule that when tested
on pieces of text, it is almost never found to be in conflict
with the text; it either makes no prediction due to lack of in-
formation to determine whether the rule’s premises hold, or
it makes a prediction but the text does not offer any informa-
tion of whether this is true or false, or it makes a prediction
that is corroborated by the text. Assuming that such a rule
can be found, this rule is, by virtue of Theorem 4.1, reliable
in the sense that it will almost never predict something that
is in conflict with the actual event underlying the text. Thus,
such rules, learned from text alone, can be later applied on
new pieces of text and reliably, in a precisely defined sense,
recover information on the event observed by the author. Suf-
ficient learnability conditions are given next [Michael, 2007].

Theorem 4.2 (Autodidactic Learning from Text) Assume:

(i) in the underlying reality, as determined by some arbitrary
probability distribution D, the value of some target attribute
x¢ is determined by some monotone formula v over the rest of
the attributes; (ii) events drawn from D are mapped into text
through an arbitrary noiseless sensing process sense; (iii)
the formula v belongs in a class of formulas that is learnable
in the standard PAC model (from complete examples). Then:

there exists an algorithm that given access to pieces of text
drawn from sense(D), runs in time polynomial in the rele-
vant learning parameters, and returns a rule (@) = x4 that,

w.h.p., is (1 — €)-consistent under D and sense.

From known PAC results [Blumer et al., 1989], the class
of linear threshold formulas is learnable in the sense above.
This is a rather broad and useful class of rules, employed in
practice for knowledge acquisition in many machine learning
frameworks (see, e.g, [Roth and Yih, 2001; Valiant, 2006]).

5 How Should Learned Rules be Used?

Given rules that have been learned, how should they be used
for recovering missing information implied by a piece of text?
Conceivably, an inference engine could choose to apply all
rules in parallel, that is, check whether the premises of each
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rule are satisfied given the original text. Some other inference
engine could choose to apply some of the rules, and extent the
piece of text with the rules’ conclusions. The remaining rules
could be then applied on this extended piece of text. Thus,
this second layer of rules would be able to take into account
the conclusions of the rules in the first layer. Are the two
approaches equally beneficial for the textual entailment task?

Valiant [2006] offers pragmatic considerations in favor of a
layered application of rules in the context of automated acqui-
sition and handling of unaxiomatized knowledge: the statis-
tics of the data might not support the induction of rules within
a single layer, and even if they do, the induction task might
be computationally hard; and programmed rules might need
to be integrated in the reasoning process (naturally accommo-
dated by applying them in a layer prior to the learned rules).

Certain empirical evidence discussed by Dietterich [2000]
in the context of aggregating multiple learned rules could also
be viewed as supporting the same conclusion: a statistical
reason relates to the scarcity of training data; a computational
reason appeals to the hardness of searching the hypothesis
space; and a representational reason accounts for the case
that the hypothesis class is not expressive enough.

In the context of textual entailment, we are able to formally
show that applying rules in multiple layers is provably bene-
ficial. This result holds without appealing to any statistical,
computational, or representational assumptions, and irrespec-
tively of whether the rules are learned or programmed.

Say that reasoning collapses for a target attribute set A; C
A under a probability distribution D and a sensing process
sense if for every (1 — ¢)-sound and (1 — w)-complete
knowledge base, there exists a (1 — &’)-sound and (1 — w')-
complete single-layered knowledge base s.t. e’ +w' < e +w.

Thus, reasoning does not collapse if it is possible to find a
knowledge base that strictly outperforms, in terms of sound-
ness and completeness, every knowledge base whose rules
are applied in parallel. We claim that the knowledge base that
chains the following two rules in two layers has this property:

Layer 1 Rule:
Layer 2 Rule:

The setting is one where an agent learned the two rules above
by reading text. It now faces the new piece of text “It was not
noon time yet, but Bob was hungry.” and wishes to determine
whether this text implies Bob eats. Applying the rule in the
first layer yields that is is not lunch time. Applying, then, the
rule in the second layer yields that Bob eats does not hold.
Consider now an attempt to merge the two rules into a single
rule. One such attempt, for instance, could be the following:

(noon time) = lunch time.

(lunch time and Bob hungry) = Bob eats.

((noon time or lunch time) and Bob hungry) = Bob eats.

Note that this rule makes no prediction, since the text does not
offer sufficient information to uniquely determine the rule’s
premises; lunch time is unknown. A similar phenomenon can
be reproduced for any choice of a single rule!, and even if the

"Note that rules of the form “((it is noon time and he text does
not state that it is not lunch time) and Bob is hungry) if and only if
Bob eats” are not permissible. Such rules do not encode background
knowledge about the underlying reality. Instead, they try to encode
the way that the text’s author omits information when writing.
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given text is “It was not lunch time yet, but Bob was hungry.”.

This phenomenon manifests itself whenever more than one
piece of information unilaterally determines what holds in
some context. In our example, the context is that Bob is hun-
gry, and the two pieces of information each of which unilat-
erally determines that Bob eats are noon time and lunch time.

Consider arule (p) = x4, and an attribute x; that is masked
in a piece of text txt. If changing the value of x; to 0 or 1
causes the rule to make different {0, 1} predictions, then call
x; critical for (p) = x, w.rt. txt. Itis not hard to show:

Lemma 5.1 (Unique Critical Attribute) Az most one at-
tribute is critical for any rule (@) = x; w.rt. any text txt.

Lemma 5.1 implies an inherent and unconditional limita-
tion of individual rules. No rule encoding background knowl-
edge about the underlying reality can have more than one
source of information unilaterally determining its prediction.
If such types of knowledge need to be encoded, then, this
should be done by applying multiple rules in multiple layers.

A sensing process sense is k-critical inducing under a
probability distribution D for a target attribute x, if in some
text drawn from sense(D) with non-zero probability, each
of k attributes unilaterally determines?® the value of z;.

Theorem 5.2 (Domains with Non-Collapsible Reasoning)
For every k > 2, and every noiseless sensing process sense
that is k-critical inducing under a probability distribution
D for a target attribute x, reasoning does not collapse for
{z¢} under D and sense.

Proof (sketch): Choose p; that maximizes the performance
among knowledge bases that use only a single layer. Extend
it to gy, by adding perfectly accurate rules to predict z; from
the values of the £ attributes that determine the value of z;.
The multi-layered knowledge base gj can be shown to be
perfectly sound and complete on some particular set O of
texts. As a consequence of Lemma 5.1, any knowledge base
that uses a single layer and makes {0, 1} predictions on all
texts in O, necessarily makes at least one wrong prediction. [J

6 The Necessity of Learning in Layers

The formal result that reasoning does not collapse in the con-
text we consider, can be seen as a prescription that it is bene-
ficial to chain pieces of knowledge when engaged in the tex-
tual entailment task. Theorem 5.2, however, shows only that
there exists some beneficial way to chain rules; it does not
say how an appropriate order in which to apply the rules can
be identified. It can be easily seen that not every ordering of
rules is (equally) useful. In our earlier example for predicting
whether Bob eats, chaining the two rules in the reverse order
would result in the rule that predicts Bob eats not exploiting
the conclusions of the rule that predicts lunch time.

Before attempting to determine how to order rules, we ask
amore basic question. Can the rules be learned independently
of each other, and then be ordered? That is, can the learning
of rules be decoupled from the way they are ordered for draw-
ing inferences? An easy argument shows that this is not the

’In the sense discussed above, where realities that differ on the
value of any one of these attributes, also differ on the value of .



case. Indeed, assume that multiple rules are learned indepen-
dently, and that they are subsequently chained in a knowledge
base. Consider a rule (¢) = x; in the last layer of the con-
structed knowledge base. Although during the learning phase
(¢) = z, faces as inputs original pieces of text (i.e., outputs
of some fixed sensing process sense), during the reasoning
phase the rule faces different pieces of text, namely those that
result when the original pieces of text are extended with the
inferences drawn from rules in earlier layers of the knowledge
base. It is easy to construct adversarial scenarios where this
change in the pieces of text given as inputs to () = x; causes
the rule to suffer an arbitrary loss in accuracy with respect to
what it achieves when given the original pieces of text.

This argument suggests that rules in higher reasoning lay-
ers should be learned by facing the same inputs that they will
face during the reasoning phase. This can be achieved only if
when learning (¢) = x, all rules in the previous layers have
already been learned, and are applied on pieces of text to draw
inferences, which are then given as input (along with the orig-
inal pieces of text) to (¢) = x;, which uses them as training
instances. Thus, an iterative learning strategy that interleaves
learning and reasoning is necessitated. Such a strategy is ben-
eficial, in that the multi-layered knowledge bases it constructs
improve upon the single-layered knowledge bases.

Theorem 6.1 (Iterative Learning) By interleaving learning
and reasoning, and by an appropriate choice of accuracies
for rules at each layer, a learning algorithm L as those whose
existence is guaranteed by Theorem 4.2 can be extended to
one that produces multi-layered knowledge bases, does not
sacrifice the soundness of knowledge bases returned by L,
and in certain cases improves upon their completeness.

Proof (sketch): Before learning the rules in the j-th layer,
ensure that the knowledge base ¢;_1 that is comprised of the
j — 1 first layers is (1 — €;_1)-sound for a sufficiently small
€j—1, so that, wh.p., no unsound inference will be drawn
during the training phase of the rules in the j-th layer. This
requirement propagates recursively to lower layers, and is
amplified each time in a manner that grows exponentially
with j. To ensure efficiency, we restrict j to a constant. [

Our study [Michael, 2008] has shown that the guarantees
offered by the aforementioned iterative learning strategy can-
not, in general, be surpassed by other natural approaches.

7 Conclusions

An objective metric for measuring success in the textual en-
tailment task was proposed, and was shown to naturally ac-
commodate a generalization of textual entailment from a clas-
sification task to a generation task. It was argued that ma-
chines that completely autonomously engage in the textual
entailment generation task can be built by exploiting existing
work in Machine Learning. The case of using multiple rules
was examined, and it was shown that it is beneficial for such
rules to be chained in multiple layers, and that rules should
not be learned independently, but in an iterative manner.
This work provides a formal basis for actual systems to be
built that engage in textual entailment. Their ultimate success
is determined in part by an appropriate selection of learning
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features. Traditional NLP tasks can aid in extracting informa-
tion encoded in text, in terms of propositional (or relational)
statements. Collections of such statements will correspond to
the ternary strings t xt used in our framework. This is not to
suggest that textual entailment cannot, itself, aid in enhancing
the performance of systems for traditional NLP tasks. Indeed,
an iterative approach, along the lines of that presented in Sec-
tion 6, seems to provide a fruitful and mutually beneficial in-
teraction of traditional NLP tasks and textual entailment.

Some of the presented ideas have been employed in exper-
imental work that examined the feasibility of massive knowl-
edge infusion [Michael and Valiant, 2008]. Although the task
considered in that work is broader than textual entailment, the
conclusions of that work suggest that our proposed approach
to textual entailment is applicable in real-world settings.
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