Efficient Online Learning and Prediction of Users’ Desktop Actions

Omid Madani and Hung Bui and Eric Yeh
Artificial Intelligence Center, SRI International
333 Ravenswood Ave., Menlo Park, CA 94025

Abstract

We investigate prediction of users’ desktop activi-
ties in the Unix domain. The learning techniques
we explore do not require explicit user teaching.
We show that simple efficient many-class learn-
ing can perform well for action prediction, signifi-
cantly improving over previously published results
and baselines. This finding is promising for vari-
ous human-computer interaction scenarios where a
rich set of potentially predictive features is avail-
able, where there can be many different actions to
predict, and where there can be considerable non-
stationarity.

1 Introduction

An exciting and promising domain for machine learning con-
tinues to be the area of action monitoring and personaliza-
tion. Adaptive systems find applications in task comple-
tion, for instance in aiding users’ desktop activity, or in re-
minding users of actions they may have forgotten (assisted
living) or proposing alternative possibilities. In this paper,
we investigate user action prediction. In our approach, the
user does not explicitly try to teach or inform the system
about her activity. The system simply observes and learns
to predict her actions. As in [Davison and Hirsh, 1998;
Korvemaker and Greiner, 2000], our experiments will be in
the Unix domain [Greenberg, 1988], as much data on a vari-
ety of users is available, and we can compare prediction ac-
curacy to previous methods.

We focus on the problem of predicting the entire command
line that the user would want to type next. Depending on the
attributes of the context, such as time of day, current work-
ing directory, and recently performed actions, the system may
predict that the next command will be “make”, or “latex pa-
per.tex”, or “cd courses”, and so on. The user interface can
depend on the particularities of the task. For instance, as ex-
plained in [Korvemaker and Greiner, 2000], the top five pre-
dictions of the system can be tied to the function keys F1
through F5. If the user notices the correct command sug-
gested (e.g., on the top bar of the window), a single key press
executes the whole action. An alternative mode could be
autocompletion. These possibilities can nicely complement
other Unix facilities that aid in typing commands. We note

1457

that while our experiments are in the Unix domain, the ap-
proach is general, and similar problems arise in other desktop
interaction contexts. For instance, in the Windows domain,
the problem can be predicting the next directory to which or
from which the user will choose to save an email attachment
or load a file [Bao et al., 2006]. Other domains include de-
vices with a limited interface, such as cell phones.

Challenges. The prediction problem entails several chal-
lenges, including (1) high dimensionality and in particular
many classes, i.e., many possible candidates to predict, in ad-
dition to many features, (2) space and time efficiency, and
(3) nonstationarity, as a user’s task can change several times
a day, and projects can change and evolve over longer peri-
ods. We seek algorithms that can capture context well. This
means the effective aggregation of the predictions of a rich
set of features (predictors). We apply recently developed in-
dexing algorithms to this task [Madani and Connor, 2008;
Madani and Huang, 2008]. A core aspect that distinguishes
our approach is viewing the task as a many-class learning
problem (multiclass learning with numerous classes: 100s,
1000s, ---). The different number of items to predict, en-
tire commands or the parameter portion and so on, ranges in
hundreds in our experiments. Furthermore, the set of classes
is not known a priori and grows over time. Efficiency is
paramount in this domain: the system must quickly respond
while remaining adaptive. The algorithms we describe are ef-
ficient both in space consumption and in time. As we will
see, the prediction problem is significantly nonstationary. In
this paper, we evaluate the many-class algorithms in a non-
stationary setting for the first time, as opposed to the more
common stationary or batch setting. Due to nonstationarity,
an important question is whether a learner has sufficient time,
i.e., adaptation period, to be able to learn effective aggrega-
tion of the many features. If a prediction task exhibits too
much nonstationarity, aka concept drift, the learner may not
have enough time to learn the effective associations between
the features and classes. Indeed [Korvemaker and Greiner,
20001, after trying a number of context attributes to improve
prediction over using a basic method (as we explain), and
failing to improve accuracy, conclude that all the prediction
signal may have been gleaned. Yet, we show that via using
improved learning techniques we can gain substantially (an
average of 4% to 5% in absolute accuracy improvement, or
about 10% relative, over 168 users). We also experiment with



other learners and find that the one-versus-rest linear SVM
has very poor accuracy in this task.

Paper Organization. The next section describes the prob-
lem domain, choice of features, algorithms, and evaluation
methods. Section 3 presents a variety of experiments and
comparisons. Section 4 discusses related work, and Section 5
concludes with future work. An expanded version of this
work including further experiments is in preparation.

2 Preliminaries

Our setting is standard multiclass supervised learning, but
with many classes and nonstationarity. A learning problem
consists of a sequence of instances, each training instance
specified by a vector of feature values, x, and the class that
the instance belongs to ¥, (the positive class). We use z to
refer to the instance itself as well. Given an instance, a nega-
tive class is any class ¢ # y,. x¢ denotes the value of feature
f in the vector x. We enforce that xy > 0. If zy > 0, we
say feature f is active in instance x, and denote this aspect by
f € . The number of active features in z is denoted by |x|.

2.1 Data sets and Tasks. Our experiments are performed
on a data set collected by Greenberg on Unix usage [Green-
berg, 1988]. This data set is fairly large, collected on 168
users with four types of backgrounds (52 computer scientists,
36 expert programmers, 55 novice programmers, and 25 non
programmers) over 2 to 6 months. This data set also allows
us to compare to previous published results.

We use the terminology of [Korvemaker and Greiner,
2000]: a (full) command is the entirety of what is entered,
this includes the “stub”, meaning the executable or action
part, and possibly options and parameters (file and directory
names). Thus, in “Is -1 home”, “Is” is the stub part, “home” is
the parameter, and the command is “Is -1 home”. We will fo-
cus on the task of learning to predict the (full) commands, as
in [Korvemaker and Greiner, 2000]. For this task, the number
of unique classes (commands) on average per user was 469.
As one may expect, this average was highest for computer
scientists as a group (around 700 on average), next was ex-
perienced programmers (500), and novice programmers and
non programmers had about the same (300). It was found
that computer scientists were the hardest to predict as a group
[Korvemaker and Greiner, 2000]. As in [Korvemaker and
Greiner, 2000], over all the users, we obtain 303,628 episodes
(commands entered).

2.2 The Choice of Features and Representation. We
used the following feature types, which we break into two
broad categories. Action features reflect what the user has
done recently. We used the commands typed at times ¢ — 1
and t—2,! as well as only the stub and only parameter portions
of the command, at time ¢ — 1. Further history did not change
overall accuracy significantly. We also found the start-session
feature useful (each user’s log is broken into many sessions in
which the user begins the session, and after some interaction,
exits the session). The start-session feature was treated like
other action features. Thus, immediately after starting a ses-
sion, the start-session feature would be the “command” taken

' As separate features, i.c., even if the same command was typed
again, it has a different feature id for times ¢ — 1 and ¢ — 2.

1458

at time ¢ — 1 and after one command entered, it would be the
command taken at time ¢t — 2.

The other type of features may be called state features, i.e.,
those that reflect the “state” the user or the system is in. State
features do not change as quickly as action features. We used
the current working directory as one state feature. Impor-
tantly, we also used a “default” or an always-active-feature, a
feature with value of 1 in every episode and that would be up-
dated in every update (but not necessarily in every episode as
we explain). This feature has an effect similar to the “LIFO”
strategy (see Section 2.4). Episodes have less than 10 fea-
tures active on average. The very first episode of a user has
three features active: the always-active feature, start session
feature, and a feature indicating that the last command had no
parameter (the “NULL” parameter).?

We did not attempt to predict the start of session nor the
exiting action. The recorded logs also indicated whether an
error occurred. A significant portion of the commands led
to errors such as mistyped commands (about 5% macro av-
eraged over users). We did not treat them differently. These
decisions allowed to us to compare to the results of [Korve-
maker and Greiner, 2000].

2.3 Online Evaluation. All the methods we evaluate out-
put a ranking of their predictions. As in [Korvemaker and
Greiner, 2000; Davison and Hirsh, 1998], unless specified
otherwise, we report on the cumulative online accuracy (rank-
ing) performances R; and Rj5, computed for each user, then
averaged over all the 168 users (macro averaged). I?; perfor-
mance on a given user is simply standard accuracy or one
minus zero-one error, and Ry is accuracy in top five pre-
dictions. For this evaluation, for each user, the sequence
of episodes (instances or commands) is given in the order
they were typed. Formally, given a ranking, let k, be the
rank of the positive class y,, for the i-th instance z; in the
sequence (k, is infinite if y,, is not in the ranking). Let
Kk,, < k} = 1iff k;, < k, and O otherwise (Iverson
bracket). Then Ry (R; or Ry) for a given user with M in-
stances is

1

Ri= 7 > Hka, <k}

1<i<M

1)

On each instance, first the system is evaluated (predicts us-
ing the features of the instance), then the system trains on
that instance (the true class is revealed). The algorithms we
present in Section 2.4 perform a simple efficient prediction
and possible update on each instance. We note that the sys-
tem always fails on the first instance, and more generally on
any instance for which the true class has not been seen be-
fore. As in [Korvemaker and Greiner, 2000], such instances
are included in the evaluation. On average per user, about
17% of commands are not seen before. This number goes to
over 25% for parameter portion of commands, and down to
6% for stubs. We also compare to MaxEnt and linear one-
versus-rest SVMs in a more traditional stationary or “batch”
setting, on a subset of the users, as explained in Sec. 3.5.

2We could also have added the home directory.



2.4 Algorithms. The main learning algorithm that we pro-
pose for the prediction task, shown Figure 1, employs expo-
nential moving average updating, and we refer to it as EMA
(“Emma”). On every instance, the algorithm first predicts the
class (in our task, the user’s next command line) and, if a mar-
gin threshold is not met, updates the prediction connections
of the active features. EMA is an online learning algorithm
which learns a nonnegative weight matrix. Assume the fea-
tures correspond to the rows, the classes correspond to the
columns, and a matrix entry wy . (entry in row f, column c),
corresponds to the prediction weight from feature f to class c.
The property that makes learning and classification efficient
in the face of many classes, distinguishing the approach from
other learning methods, is that the matrix is kept row-sparse
(most entries in every row are kept at zero and are not explic-
itly represented). Next, we briefly explain the algorithm and
our implementation further.

Each feature keeps track of its list of connections to a rel-
atively small subset of the classes (a row in the weight ma-
trix). The first time a feature is seen, in some episode, it
is not connected to any class (its connections list is empty,
and all its connection weights are implicitly 0). The predic-
tion connections of each feature is implemented via a dy-
namic linked list. Updates are kept efficient as each ac-
tive feature resets weights that fall below a threshold w,,y,
to zero, which results in removing the corresponding con-
nection entry from the list. In our experiments, Wi, 1S
set to 0.01; thus, in case of a single class per instance and
Boolean feature values, the maximum out-degree of a fea-
ture (the list size), denoted d, would be 100. Both prediction
and updating on an instance x take time O(d|z|log(d|x])).
We call the learned representation an index, i.e., a mapping
that connects each feature to a relatively small subset of the
classes (the features “index” the classes). There are other
possibilities for index learning [Madani and Huang, 2008;
Madani and Connor, 2008], although EMA may be the best
for nonstationary situations. Several properties of EMA are
explored in [Madani and Huang, 2008]. It was shown that
EMA updating is equivalent to a quadratic loss minimization
for each feature, and a formulation for numeric feature values,
as given in Figure 1, was derived. An update is performed
only if a margin threshold &, is not met (a kind of mistake-
driven updating). This leads to down weighing the votes (pre-
dictions) of redundant features thus more effective aggrega-
tion of features’ predictions, and ultimately better generaliza-
tion [Madani and Connor, 2008]. In Section 3 we explore the
effects of the various parameters such as the learning rate (/3),
the margin threshold (§,,), and the choice of features. EMA
was not evaluated for nonstationary tasks.

We compare EMA against the method used in [Korve-
maker and Greiner, 2000]. In that work, effectively a very re-
stricted version of EMA updating was deployed, which was
referred to as the alpha updating rule at the time, or AUR.
AUR could also be viewed as a “nonstationary bigram” tech-
nique (stationary n-gram techniques are used in statistical lan-
guage modeling, e.g., [Rosenfeld, 2000]). A similar strategy
was used in [Davison and Hirsh, 1998], but for the task of
stub prediction. In AUR, only the last command is used as
a predictor, with one exception: if that command does not

EMA(z, Yz, 85 0ms Wmin)
1. Ve, s — > fex Trwi,c // Score the connected classes
2. 8y «— Sy, — Scr, Where s/ «— maxc.,, Sc // compute margin
3.if (6= < dm), then Vf € z do: // If margin not met, update
/I All active features’ connections are first decayed, then
// the connections to the true class is boosted
31Ve, wye — (1 —23B)wyse H0<zp <1
32wy y, — wyy, + x50/ Boost connection to true class
3.3If wy,c < Wmin, then// drop tiny weights
wy¢ . < 0// remove from list of connections

Figure 1: The EMA (“Emma”) learning algorithm, which uses ex-
ponential moving average updating and a margin threshold. 3 is a
learning rate or a “boost” amount, 0 < 8 < 1, zy is the “activ-
ity” level of active feature f, 0 < xy < 1, and wy . denotes the
connection weight from feature f to class c. The end effect after an
update is that the weight of the connection of feature f to the posi-
tive class, wy 4, , is strengthened. Other connections are weakened
and possibly zeroed (dropped from feature’s connections list).

R1 R5 Rlsq R5-1k
LIFO | 0.075 £0.05 | 0.42 £0.15 | 0.07 £0.04 | 0.40 £0.15
AUR | 0.28 £0.12 | 047 £0.14 | 0.28 £0.12 | 0.47 £0.14
EMA | 0.30+£0.11 | 0.51 £0.13 | 0.30 £0.11 | 0.52 £0.13

Table 1: Accuracies, (macro) averaged over users, on full command
prediction (EMA: 3 = 0.15, 6, = 0.15, Wimin, = 0.01).R1>1% and
R5+ 1) are averages on users with no less than 1000 episodes.

give at least five predictions, a default predictor is used to
fill in the remaining of the five slots. Whenever a command
appears as a feature, it is updated, and the default predictor
is updated in every episode (using exponential moving aver-
age). Thus, the differences with our presentation of EMA are
that we use multiple features and aggregate their votes (their
method did not sum, only merge the predictions if need be),
we update in a mistake-driven manner (in particular we use a
margin threshold), we drop weak edges for efficiency, and we
> normalize the feature vectors.

We also compare against a last-in-first-out strategy, or
LIFO. LIFO keeps track of the last (most recent) five unique
commands and reports them in that order, i.e., in reverse
chronological, so that the command at time t-1 is top ranked.’

3 Experiments

In this section, we first report on accuracies and comparisons
to AUR and LIFO. We then present experiments on effects
of parameter choices on EMA, feature utilities, context (di-
rectory) change, nonstationarity and the need for continued
learning, and comparisons to other methods.

Table 1 shows the performance comparisons between
LIFO, AUR, and EMA. For all these methods, an entire eval-
uation on all 168 users takes less than 2 minutes on a lap-

3 Another similar baseline is reporting the five most frequent
commands seen so far. As [Korvemaker and Greiner, 2000] show,
that strategy performs substantially worse than LIFO (several per-
centage points below in accuracy), underscoring the nonstationarity
aspect.

1459



-+ ' j j users with less than 1000 '+
users with at least 1000
o
4
0.06 | 4 B
4
4ot "
« ooal % + 4= i
E s + +
T et » i +  +
L2 4 s
= + FE F + s
L ooz < F L =T < 4
=
w + S +
s N N o - +
& o P
+ +
+ i ¥ -
-+ +y
0.02 | 4
-+
0.0 L . . . . .
0.1 0.2 0.3 0.4 0.5 0.6
R1 for AUR
0.1 T T T
users with less than 1000  +
users with at least 1000
o
0.08 4 4 -
4
4
0.06 | <X -+ 4
. *
H + o
= <+
S ooar e T SO + Bl
o« -+ Ra -+ —+
Z - . + + + 3
T ooz + + R A
° + 4+ . + . + :f e
2 + 7+ +
o +
+
—+ -+ +
0.02 | + 4
0.04 . . . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8

RS5 for AUR

Figure 2: The spread of performance over users. For each user, the
x-axis is the performance of AUR (R1 or RY), the y-axis is the differ-
ence (subtraction) from EMA’s (above 0 means higher performance
for EMA).

top. We observe that the effective aggregation of predictors
(or capturing more context) can lead to a substantial boost
in accuracy, in particular in R5. The performance on users
with more than 1000 instances appears to lead to some im-
provement for EMA (but not for AUR), over those users with
fewer than 1000. We note that Korvemaker and Greiner tried
a number of ways and features to improve on AUR, but their
methods did not lead to a performance gain [Korvemaker and
Greiner, 2000]. In Figure 2, the performance on each user is
depicted by a point where the x-coordinateis R1 (or R5) using
AUR, and the y-coordinate is that same value subtracted from
R1 (or R5) obtained using EMA. We observe that R5 values
in particular are significantly improved using EMA, and the
improvements tend to be higher (in absolute as well as rela-
tive value) with lower absolute value of the performance. The
values for users with fewer than 1000 instances shows some-
what higher spread, as may be expected. We compared the
number of wins, when results on the same user are paired,
and performed a sign test. On R1, EMA wins over AUR on
141 of the users, loses on 26 users, and ties on 1 (Figure 2).
On R5, winning is more robust: EMA wins in 162 cases and
loses in 6. Both comparisons are significant with over 99.9%
confidence (P value is < 0.001).

Discussion of Accuracies. Though we have observed sub-
stantial improvements, the overall performance on Rs may
seem still somewhat low, raising the question of the utility
of the methods. In general, prediction accuracy in similar
tasks such as statistical language modeling, where there are
many classes, is low, and researchers use smoother measure

0.512

BETA=0.05 ——
BETA=0.15
0.51 | BETA=0.25 ----3----

0.508 |- -
0.506 |- -
0.504 |- B . .|
0.5023¢ R

0.5 -
0.498 —X\ B
0.496 | \F . q

0.494 [ 1
B

RS

0.492
o

. . . .
0.1 0.2 0.3 0.4 05
margin

Figure 3: Plots of RS performance (macro average over users) as a
function of choices for margin threshold and the learning rate.

such as perplexity to measure improvements (e.g., [Rosen-
feld, 2000]). We also note that our accuracy is an all-or-
nothing measure, and to replicate and compare to previous
results, we included the instances that corresponded to user
errors. Furthermore, for around 20% of instances, the class
was not observed before (Sections 2.2 and 2.3). We note also
that RS performance on stub prediction or parameter predic-
tion alone was higher, exceeding 70%. Prediction for auto
completion or a piecemeal prediction strategy could prove
more useful (e.g., first predict the stub, and after the intended
stub is obtained, predict the parameter(s)).

3.1 Ablation Experiments on EMA. Figure 3 shows
(macro) average R5 performance as a function of learning
rate and margin. We notice the performances are fairly close:
the algorithm is not heavily dependent on the parameters. It
is also interesting to note that relatively high learning rates
of 0.1 and above give the best or very good results here. In
previous studies in text categorization [Madani and Huang,
2008], lower learning rates (of 0.05 or 0.01 and below) gave
the best results. When we compare the best overall RS aver-
age for learning rate of 0.15 versus 0.05, we obtain 120 wins
(for learning rate of 0.15), 41 losses and 7 ties (where the
average is I?5 of 0.51 for learning rate of 0.15 and 0.50 for
learning rate of 0.05). As might be expected, the best results
are obtained when the margin (threshold) is not at the ex-
tremes of O (pure mistake-driven or “lazy” updating) or very
high (always update). If we include more features, such as
stub and parameters from time ¢ — 2 or features from ear-
lier time points, tending to increase redundancy and uninfor-
mativeness, performance somewhat degrades (the average re-
mains 0.5 or around it), and the selection of margin becomes
more important. It may be possible to adjust (learn) the learn-
ing rate or margin over time as a function of user behavior for
improved performance.

With the default parameters of 0.15 for both learning rate
and margin, we raised the minimum weight threshold w,,,,
to 0.05 and 0.1 (from default of 0.01), and respectively ob-
tained R5 of 0.509 (small degradation) and 0.45 (substantial
degradation).

3.2 Feature Utilities. In the results given here, the default
parameters (3 = 0.15,6,, = 0.15) are used and all features

1460



NTINUE LEARNING
RNIN T = 2000

col
STOP LEAI

STOP LEARNING AT 1500

STOP AT 1000

LIFO

RS

1000 2000 3000 5000 6000 7000

CONTINUE LEARNING (EMA)
STOP LEARNING AT t=2000

RS

1000

2000 3000 5000 6000 7000 8000

Figure 4: The need for sustained learning: Performance plots (R5
for scientist 52) EMA and LIFO, as well as a few cases in which
EMA learning is stopped after a certain episode (1000, 1500, and
2000) (top: cumulative performance, bottom: moving averages of
RS with 3 of 0.01). Continued learning is required to sustain pre-
diction performance.

Rlcd | R5cd | Rlno | R5no
LIFO | 0.002 | 0.37 | 0.037 | 0.26
EMA | 043 0.56 0.19 0.38

Table 2: Example of performance after a possible context change:
R1 and R5 accuracies on instances immediately after directory
changes (R1cd and R5cd), and otherwise (no directory change, R1no
and R5no) for scientist 36. Out of just over 12k episodes, this
user had 1285 many “directory-changed” episodes. Performance of
EMA increases substantially under “directory-changed”.

are available (Sect. 2.2) except for those that we explicitly
say we remove. The performance is fairly robust to removal
of various feature types: the remaining feature types tend to
compensate. All the features tend to help the average perfor-
mance somewhat. Removing the stub or the (full) command
at time ¢ — 1 yields the largest drop in performance, leading
to just over 0.50 average Rs. If we remove both, we get an
R5 = 0.486. The other features in order of importance are
current directory, always active, start session, and parameter
at time ¢ — 1. Removing any such type of feature results in
degradation of about 0.005 (from the maximum of just over
0.51).

3.3 Accuracy when Context Changes. A promise of the
learning approach is to robustly continue predicting after a
context change, such as a change in task/project (as long as
the context has been experienced before). A rough candidate
for context change is when the directory changes. On a few
users, we measured the accuracies immediately after the cur-
rent directory changes, and compared to when it doesn’t (ma-
jority of instances). We observed the pattern given in Table

SVM | EMA | MaxEnt | EMAonline
R1 | 0.01 | 0.210 0.236 0.284
R5 | 0.215 | 0.404 0.423 0.514

1461

Table 3: Comparisons between EMA, one-versus-rest linear SVM,
and MaxEnt, on 21 selected users who had at least 1000 episodes.
The first 80% was used for training, remaining 20% for test, except
for the last column, where EMA was allowed to update on every test
instance after it predicted (as described in Sect. 2.3).

2. For EMA, the performance improves substantially when
the directory changes, while for LIFO, R1 degrades, and RS
does not improve as much. The degradation of R1 for LIFO
is understandable: the last command (change directory) is
seldom repeated immediately. A majority of the immediate
actions (from roughly 1300 such, 10% of total) are ’Is’, but
some other successful top predictions of EMA include ’fg’
and ’emacs’ (we observed the user mistyped ‘emac’ in one
case, but the correct “emacs” had been predicted).

3.4 Nonstationarity and the Need for Continued Adap-
tation. Figure 4 shows R performances as a function of time
for scientist 52, for whom we have about 8000 total episodes.
While the learning curve seems to reach local maxima at say
around 1000 to 2000, we see the need for continued learning
to sustain the performance: if we stop the learning, the per-
formance curve takes a downward turn. The system’s perfor-
mance eventually degrades to below that of LIFO if learning
is stopped.

3.5 Comparisons with other Methods. Davison and
Hirsh [Davison and Hirsh, 1998] showed that their AUR rule
for stub prediction (using the predictions of the previous stub)
outperformed batch learning algorithms such as decision trees
and naive Bayes as well as stationary variants of AUR (stan-
dard bigram method) on their task. EMA outperforms AUR
on stub prediction as well (about 3% improvement in RY).

We also compared performance (on full command, as be-
fore) to one-versus-rest training of linear SVM classifiers
[Chang and Lin, 2001], and MaxEnt, which is a multiclass
learner [Manning and Klein, 2003]. We chose 21 users with
a thousand or more instances. For each user, the first 80% of
episodes are kept for training, the remaining for test (chrono-
logical splits). SVM and MaxEnt employ batch optimiza-
tion techniques and are considerably slower: per user, SVM
training takes close to a minute, while MaxEnt takes over 15
minutes*, while complete EMA evaluation on all the 21 users
takes under 20 seconds (we ran EMA for a single-pass). The
accuracies are given in Table 3. One-versus-rest SVM trails
substantially (although we used many regularization param-
eters, C € {0.5,1,5,10,---}, and are reporting the best).
MaxEnt does better than EMA, suggesting there may be room
for improvement. However we note that if we let EMA con-
tinually update on remaining 20% (last column), it does best.
We note that, besides the inefficiency drawbacks, MaxEnt is
likely to underperform in the online evaluation scheme, as
it is inherently a batch technique. We have also compared
EMA to other online indexing variants (e.g., OOZ [Madani

“There may be faster implementations available for MaxEnt and
SVM. In particular, for linear SVMs substantially faster algorithms
are available.



and Huang, 2008]) and other online techniques, such as mul-
ticlass perceptron [Crammer and Singer, 2003]. EMA has
performed best in accuracy, possibly due to its better bias for
nonstionarity. These observations, along with many other ex-
periments, are presented in the longer technical report version
of this paper (in preparation).

4 Related Work

Modeling user activities on the desktop has been an active
topic of research in the Al and user modeling community. It
is generally accepted that good predictive models of user ac-
tivities play a central part in building an intelligent adaptive
interface that can potentially help to increase user productiv-
ity. The availability of the UNIX data [Greenberg, 1988] has
led to a number of efforts in building predictive models of
the data as well as facilitated direct and objective compar-
isons among different algorithms [Davison and Hirsh, 1998;
Korvemaker and Greiner, 2000]. These authors have also ob-
served the issue of nonstationarity in the data. For the re-
lated task of automated email foldering, see also [Segal and
Kephart, 2000] on the importance of incremental learning,
and [Bekkerman and McCallum, 2004] on the importance of
taking account of the nonstationarities in evaluation. Work
in modeling user interactions with Windows can be traced to
the LookOut system [Horvitz, 19991, which can observe user
email and calendar activities and attempt to learn a model of
calendar-related emails. More recent work in this area in-
cludes the TaskTracer system [Dragunov et al., 2005] and
BusyBody system [Kapoor and Horvitz, 2007]. These sys-
tems can capture a wide range of Windows and application
events. The recorded events have been used for training var-
ious prediction tasks such as folder prediction [Bao et al.,
20061, task-switch prediction [Shen er al., 2006] and user
business [Kapoor and Horvitz, 2007], although some amount
of explicit user feedback has been required at times (such as
specifying the current user tasks).

EMA is an index learning method, and index learning was
proposed to address the challenges of learning under many
classes. There exist numerous methods for multiclass learn-
ing, such as nearest neighbors, decision trees, naive Bayes,
multiclass SVMs, and MaxEnt (see e.g., [Hastie er al., 2001;
Manning and Klein, 2003; Crammer and Singer, 2003]). The
issue of space and time efficiency when facing many classes
had not been the focus of past work. See [Madani and Con-
nor, 2008; Madani and Huang, 2008] for further discussions
of the relations of indexing to other learning approaches as
well as empirical comparisons.

5 Summary and Future Work

We presented a simple efficient learning technique to effec-
tively aggregate the predictions of features when there are
many possible classes to predict and in a nonstationary set-
ting. The approach is promising in other rich human com-
puter interaction scenarios. We hope to further advance the
algorithms as well as explore applications.

Acknowledgments. This material is based upon work supported by

the Defense Advanced Research Projects Agency (DARPA) under
Contract No. FA8750-07-D-0185/0004, in the context of research

1462

on an adaptive cognitive system (CALO), under DARPA’s PAL (Per-
ceptive Assistant that Learns) program. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of DARPA or
the Air Force Research Laboratory.

References

[Bao et al., 2006] X. Bao, J. Herlocker, and T. Dietterich. Fewer
clicks and less frustration: Reducing the cost of reaching the right
folder. In 1UI, 2006.

[Bekkerman and McCallum, 2004] R. Bekkerman and A. McCal-
lum. Automatic categorization of email into folders: benchmark
experiments on Enron and SRI corpora. Technical report, Tech-
nical Report IR-418. CIIR, UMass, 2004.

[Chang and Lin, 2001] C. C. Chang and C. J. Lin. LIBSVM: a li-
brary for support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ " cjlin/libsvm.

[Crammer and Singer, 2003] K. Crammer and Y. Singer. A family
of additive online algorithms for category ranking. Jouornal of
Machine Learning Research, 3:1025-1058, 2003.

[Davison and Hirsh, 1998] B. D. Davison and H. Hirsh. Predicting
sequences of user actions. In AAAI-98/ICML’98 Workshop on
Predicting the Future: Al Approaches to Time Series Analysis,
1998.

[Dragunov et al., 2005] A. Dragunov, T. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, and J. Herlocker. Tasktracer: a desktop
environment to support multi-tasking knowledge workers. In IUI,
pages 75-82, New York, NY, USA, 2005. ACM.

[Greenberg, 1988] S. Greenberg. Using Unix: collected traces of
168 users. Technical report, University of Calgary, Alberta, 1988.

[Hastie et al., 2001] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer-Verlag, 2001.

[Horvitz, 1999] Eric Horvitz. Principles of mixed-initiative user in-
terfaces. In ACM CHI, 1999.

[Kapoor and Horvitz, 2007] A. Kapoor and E. Horvitz. Princi-
ples of lifelong learning for predictive user modeling. In
Proc. Eleventh Conference on User Modeling (UM 2007), 2007.

[Korvemaker and Greiner, 2000] B. Korvemaker and R. Greiner.
Predicting UNIX command lines: Adjusting to user patterns. In
AAAI/IAALL 2000.

[Madani and Connor, 2008] O. Madani and M. Connor. Large-
scale many-class learning. In SIAM Conference on Data Mining,
2008.

[Madani and Huang, 2008] O. Madani and J. Huang. On updates
that constrain the number of connections of features during learn-
ing. In ACM KDD, 2008.

[Manning and Klein, 2003] C. Manning and D. Klein. Opfimiza-
tion, Maxent Models, and Conditional Estimation without Magic.
Tutorial at HLT-NAACL and ACL, 2003.

[Rosenfeld, 2000] R. Rosenfeld. Two decades of statistical lan-
guage modeling: Where do we go from here? IEEE, 88(8), 2000.

[Segal and Kephart, 2000] R. B. Segal and J. O. Kephart. Incre-
mental learning in SwiftFile. In ICML, 2000.

[Shen et al., 2006] J. Shen, L. Li, T. Dietterich, and J. Herlocker. A
hybrid learning system for recognizing user tasks from desktop
activities and email messages. In IUI, 2006.



