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Abstract

Most of the existing metric learning methods are
accomplished by exploiting pairwise constraints
over the labeled data and frequently suffer from
the insufficiency of training examples. To learn
a robust distance metric from few labeled exam-
ples, prior knowledge from unlabeled examples as
well as the metrics previously derived from auxil-
iary data sets can be useful. In this paper, we pro-
pose to leverage such auxiliary knowledge to as-
sist distance metric learning, which is formulated
following the regularized loss minimization prin-
ciple. Two algorithms are derived on the basis of
manifold regularization and log-determinant diver-
gence regularization technique, respectively, which
can simultaneously exploit label information (i.e.,
the pairwise constraints over labeled data), unla-
beled examples, and the metrics derived from aux-
iliary data sets. The proposed methods directly ma-
nipulate the auxiliary metrics and require no raw
examples from the auxiliary data sets, which make
them efficient and flexible. We conduct extensive
evaluations to compare our approaches with a num-
ber of competing approaches on face recognition
task. The experimental results show that our ap-
proaches can derive reliable distance metrics from
limited training examples and thus are superior in
terms of accuracy and labeling efforts.

1 Introduction

A lot of machine learning and pattern recognition methods,
such as clustering, classification, and regression approaches,
involve the use of a distance metric over the input feature
space. The performance of these methods often depends
highly on the choose of metric. Instead of determining a met-
ric manually, a promising approach is to learn an appropriate
metric from data automatically. Distance metric learning has
become an emerging topic in which the goal is to induce a
powerful distance metric from labeled examples. The dis-
tance metric is found by keeping “similar” objects close to-
gether while separating “dissimilar” ones. In recent years,
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a number of metric learning methods have been developed,
which have shown to perform well when sufficient training
data are available. However, in many real-world applications,
training examples are very few, and in which the performance
of these methods may significantly degrade due to the “over-
fitting” problem [Hoi et al., 2008][Yang and Jin, 2006].

To derive reliable distance metric from the few labeled
examples, one solution is to leverage auxiliary knowledge
sources to assist distance metric learning, such as the struc-
ture information provided by the abundant unlabeled exam-
ples [Hoi et al., 2008] and the knowledge derived from aux-
iliary data (e.g., the distance metrics learned from auxiliary
data). Different from labeled data, unlabeled data are typi-
cally widely available, and existing studies have shown that
this knowledge can be helpful in distance metric learning
[Hoi et al., 2008]. Here “auxiliary data” means the data that
are collected from different sources and different from the
target data in distribution. Such auxiliary data is easy to be
obtained in practice and has proved useful in various applica-
tions [Pan et al., 2008] [Gupta and Ratinov, 2008] [Talvi-
tie and Singh, 2007] [Mansour et al., 2007] [Satpal and
Sarawagi, 2007].

However, directly applying the metric learned from aux-
iliary examples may not perform well since it might be bi-
ased to the distribution of the auxiliary data. Two straightfor-
ward approaches for leveraging the auxiliary data are : (1) to
construct an “ensemble” combining the distance metric de-
rived independently from the limited training data and the la-
beled auxiliary examples; and (2) to learn an “aggregated”
distance metric from the combination of the limited labeled
examples and auxiliary data. However, these methods may
not work well mainly due to the distribution difference be-
tween the target and the auxiliary data. Moreover, learning
an “aggregated” metric is typically expensive because the size
of auxiliary data is usually large. Thus there is a need for a
more efficient and effective approach for exploiting auxiliary
knowledge to assist distance metric learning.

In this paper, we develop two novel algorithms for learn-
ing distance metric from only a small amount of labeled ex-
amples by simultaneously exploiting abundant unlabeled ex-
amples, as well as incorporating available prior knowledge
from auxiliary data. Specifically, the distance metric learn-
ing is formulated as a regularized loss minimization problem.
Two metric learning approaches are developed on the basis of
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manifold regularization and log-determinant divergence regu-
larization technique, respectively, which can handle multiple
knowledge, namely leveraging multiple auxiliary knowledge
simultaneously to assist metric learning from few labeled ex-
amples. The weights of the auxiliary knowledge are opti-
mized automatically to reflect the utility of these knowledge.
We apply the proposed methods to face recognition task. The
experimental results show that our methods can construct re-
liable distance metric and do significantly improve the perfor-
mance when training data are limited.

The rest of this paper is organized as follows. We review
related work in Section 2. Section 3 describes the proposed
distance metric learning methods. Experimental results are
reported in Section 4, followed by concluding remarks in Sec-
tion 5.

2 Related Work

Our work is closely related to the previous studies on super-
vised distance metric learning [Yang and Jin, 2006] [Yang,
2007]. Most existing methods learn a distance metric from
side information that is presented in a set of pairwise con-
straints: equivalence constrains that include pairs of “simi-
lar” examples and inequivalence constraints for “dissimilar”
examples. The optimal distance metric is derived by keep-
ing “similar” examples close and enforcing the “dissimilar”
examples well separated. We briefly review some representa-
tive work here.

In recent years, a number of algorithms have been pro-
posed for supervised distance metric learning. [Bar-Hillel et
al., 2005] proposed Relevant Components Analysis (RCA)
method to learn a linear transformation from the equiva-
lence constrains, which can be used directly to compute the
distance between two examples. Disciminative Component
Analysis (DCA) and Kernel DCA [Hoi et al., 2006] im-
proved RCA by exploiting negative constraints and aim to
capture nonlinear relationships using contextual information.
[Schultz and Joachims, 2003] extended the support vector
machine to distance metric learning by encoding the pair-
wise constraints into a set of linear inequalities. [Xing et al.,
2003] formulated distance metric learning as a constrained
convex programming problem by minimizing the distance be-
tween the data points in the same classes under the constraint
that the data points from different classes are well separated.
Neighborhood Component Analysis (NCA) [Goldberger et
al., 2004] learned a distance metric by extending the nearest
neighbor classifier. [Weinberger et al., 2006] proposed the
maximum-margin nearest neighbor (LMNN) method that ex-
tends NCA through a maximum margin framework. [Glober-
son and Roweis, 2006] learned a Mahalanobis distance by
collapsing examples in the same class to a single point and
keeping examples from different classes far away. [Davis et
al., 2007] formulated distance metric learning as a Bregman
optimization problem. [Hillel and Weinshall, 2007] defined
the similarity as the gain in coding length by shifting from
pairwise independent encoding to joint encoding. [Yang and
Jin, 2007] presented a Bayesian framework for distance met-
ric learning that estimates a posterior distribution for the dis-
tance metric from labeled pairwise constraints. [Yeung et al.,

2007] proposed a nonlinear metric learning method based on
the kernel approach. [Alipanahi et al., 2008] show a strong
relationship between distance metric learning methods and
Fisher Discriminant Analysis (FDA). [Hoi et al., 2008] pro-
posed a semi-supervised distance metric learning method that
integrates both labeled and unlabeled examples.

3 Distance Metric Learning with Auxiliary

Knowledge

3.1 Problem Set-UP

Let C = {x1, x2, · · · , xN} denote a collection of N data
points, where xi ∈ R

d is the d dimensional feature vec-
tor. For the labeled examples in C, two sets of pairwise
constraints are available,which are denoted by S and D,
respectively.

S = {(xi, xj |xi andxj are labeled to be similar}
D = {(xi, xj |xi andxj are labeled to be dissimilar},

where S is the set of similar pairwise constraints, and
D is the set of dissimilar pairwise constraints.

For any two data points xi and xj , a Mahalabobis distance
between them can be expressed as:

dM(xi, xj) = ‖xi − xj‖M
=

√
(xi − xj)T M(xi − xj),

(1)
where M ∈ R

d×d is the Mahalabobis metric, a symmetric
matrix of size d × d. In general, M must be positive smei-
definite (M � 0) to satisfy the properties of metric, i.e., non-
negativity and triangle inequality. When M is equal to the
identity matrix I, the distance in Eq.(1) reduces to the Eu-
clidean distance.

Many recent studies on distance metric learning focus on
learning the Mahalabois matric M by leveraging the similar
and dissmilar pairwise relations in S and D. However, in
many real-world scenario, the labeled examples are usually
insufficient. As a result, the typical metric learning methods
may suffer from the “overfitting” problem and can not pro-
vide reliable distance metric. On the other hand, the abun-
dant unlabeled data add some auxiliary knowledge, i.e., the
previously learned metrics from auxiliary data, are typically
available and beneficial to the metric learning task. There-
fore, we propose to learn a robust metric under the assistance
of these auxiliary metrics and the abundant unlabeled data in
C. Let M = {M1,M2, · · · ,MK} denote the set of K avail-
able auxiliary metrics Mi ∈ R

d×d. Our goal is to find an
optimal distance metric from the data collection C, the sets of
pairwise constraints S and D, and the set of auxiliary metrics
M. To achieve this goal, two novel distance metric learning
algorithms are developed in the following subsections.

3.2 Our Approach

Given the above information C, S, D, and M, we can formu-
late the distance metric learning problem into the following
optimization framework:

M∗ = min
M

f(M, C,S,D,M), s.t.M � 0, (2)
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where f is some objective function defined over the given
data and M∗ is the desired distance metric. The key to find
the optimal distance metric is to formulate a proper objec-
tive function f . Following the regularized loss minimization
principle, we can define f as a regularized loss function as:

f(M,S,D, C,M) = L(M,S,D) + R(M, C,M), (3)

where L(·) is a loss function defined on the pairwise con-
straints while R(·) is the regularization term that takes ad-
vantage of unlabeled data and auxiliary knowledge to prevent
“overfitting” and enhance the generalization and robustness
of the distance metric.

Eq.(3) provides a generic solution for learning robust met-
ric from limited training data by exploiting auxiliary knowl-
edge and unlabeled data. This solution offers great flexibil-
ity and efficiency, because it directly manipulates the previ-
ously learned metric as an abstraction of the auxiliary data
and requires no raw auxiliary data. This also makes it ap-
plicable even when the raw data are not accessible. From
this generic solution, one can derive concrete algorithm by
choosing certain loss functions L(·) and regularization func-
tion R(·). While the choices are virtually numerous, we dis-
cuss two specific algorithms here.

Loss Function

One common principle for metric learning is to keep the “sim-
ilar” data points close and separate the “dissimilar” ones. Fol-
lowing this principle, the loss function L(·) should be de-
fined in the way such that the minimization of the loss func-
tion will result in minimizing the distances between the data
points with similar constraints and maximizing the distances
between the data points with dissimilar constraints. We adopt
the sum of squared distances expression for defining the loss
function in terms of its effectiveness and efficiency:

L(M,S,D)

= ηs

∑
(xi,xj)∈S

‖xi − xj‖
2
M

− ηd

∑
(xi,xj)∈D

‖xi − xj‖
2
M

= ηs

∑
(xi,xj)∈S

(xi − xj)
T M(xi − xj)

−ηd

∑
(xi,xj)∈D

(xi − xj)
TM(xi − xj)

= ηs

∑
(xi,xj)∈S

tr
(
(xi − xj)(xi − xj)

T M
)

−ηd

∑
(xi,xj)∈D

tr
(
(xi − xj)(xi − xj)

TM
)

= ηstr (S · M) − ηdtr (D · M)
(4)

where tr(·) means the trace operation on matrix, ηs and
ηd are two trading-off parameters balancing the similar and
dissimilar constraints, and

S =
∑

(xi,xj)∈S

(xi − xj)(xi − xj)
T

D =
∑

(xi,xj)∈D

(xi − xj)(xi − xj)
T

Next, we move our effort to define proper regularization
function R(·).

Log-Determinant Regularization Function

As aforementioned, the training data are usually limited
in practice and the available auxiliary knowledge (i.e., the
auxiliary metrics M) can be utilized to assist the distance
metric learning. To encode M into f , we resolve to the
regularization function R(·), which is a key to prevent
“overfitting” and enhance generalization and robustness
of the learned metric. We define R(·) in the way such
that the minimization of R(·) will result in minimizing the
divergence between the target metric M and the auxiliary
metric Mk ∈ M. In other words, we aim to regularize M as
close as possible to the auxiliary distance metrics. Here we
adopt Bregman divergence [Davis et al., 2007] to measure
the difference between M and Mk as:

Dg(M||Mk) = g(M) − g(Mk) − 〈∇g(Mk),M − Mk〉 ,

where g(·) is a strict convex and continuously differen-
tiable function. We define g(·) as −logdet(·) and get the
log-determinant divergence between M and Mk:

Dg(M||Mk) = tr(M−1
k M) − log detM, (5)

where we ignore the constant term regarding Mk.

Based on Eq.(5), we formulate R(·) as a combination of the
divergence between M and each auxiliary knowledge Mk:

R(M, C,M) =
K∑

k=1

μkDg(M||Mk)

=
K∑

k=1

μk

(
tr(M−1

k M) − log detM
)
,

(6)

Substituting Eq.(4) and Eq.(6) into Eq.(3), we can get
the concrete algorithm named L-DML (i.e., Log-determinant
regularized Distance Metric Learning):

M∗ = min
M

K∑
k=1

μk

(
tr(M−1

k M)
)
− log detM

+ ηstr (S · M) − ηdtr (D · M) + γ ‖μ‖
2

s.t.M � 0,
K∑

k=1

μk = 1, μk ≥ 0, k = 1, 2, · · · , K,

(7)

where μ = {μk}
K
k=1 are the weights that reflect the utility of

the auxiliary metrics, ‖μ‖2
is the L-2 norm of the weights

and γ is a scalar. The new regularizer ‖μ‖
2

is adopted to
penalize large weights on auxiliary metrics, and it thus pre-
vents “overfitting” on the auxiliary knowledge. How to deter-
mine the weights {μk}

K
k=1 is a problem, given the difficulty

of knowing each auxiliary metric’s utility to the target metric.
To overcome this problem, L-DML is motivated to learn the
weights {μk}

K
k=1 automatically and simultaneously with the

target metric M. The solution will be discussed later.

Manifold Regularization Function

The aforementioned L-DML algorithm has leveraged the
auxiliary metrics on the basis of log-determinant regulariza-
tion technique. However, it does not take advantage of any
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information of unlabeled data which can be useful for dis-
tance metric learning, especially when labeled data are lim-
ited. Therefore, we put effort to define a new regularizer
such that it can simultaneously encode the auxiliary metrics
M = {Mk}

K
k=1 and the unlabeled examples in the data col-

lection C. We define the new regularization term following
manifold regularization principle.

Given auxiliary metric Mk, the distance between two
data points xi and xj under Mk can be calculated as

dMk
(xi, xj) =

√
(xi − xj)TMk(xi − xj). Based on

such distance measure, a data adjacency graph Wk ∈
R

N×N can be derived from the data collection C, wherein
each element Wk(i, j) is the edge weight between two
samples xi and xj . Considering the target metric
M, the distance between xi and xj is dM(xi, xj) =√

(xi − xj)T M(xi − xj) that can be further written as

dM(xi, xj) =
√

(xi − xj)TPPT(xi − xj) with P ∈ R
d×m

is some corresponding linear mapping and M = PPT. We
can find that learning of M is equivalent to the learning of a
linear projective mapping P in the feature space. Following
the manifold regularization principle, we formulate the regu-
larizer in the way such that the minimization of the regular-
izer will result in making the linear projective mapping being
smooth over the data adjacency graph. Mathematically, we
write the regularizer as:

Rk(M, C,Mk)

= 1
2

N∑
i,j=1

‖Pxi − Pxj‖
2
Wk(i, j)

=
m∑

l=1

pT
l X(Dk − Wk)XT pl =

m∑
l=1

pT
l XLkX

Tpl

= tr(XLkX
T PPT ) = tr(XLkX

TM),

(8)

where Lk is the graph Laplacian defined as Dk −Wk, Dk ∈

R
N×N is a diagonal matrix with Dk(i, i) =

∑N

i=1 Wk(i, j),
and pl is the l-th column of matrix P

Based on Eq.(8), we can define the regularization term R(·)
as the combination of Rk(·) to incorporate all the auxiliary
metrics and unlabeled data information.

R(M, C,M) =

K∑
k=1

αktr(XLkX
T M) (9)

Substituting the loss function in Eq.(4) and the regularizer
in Eq.(9) into Eq.(3), we can get the following algorithm.
We name it as M-DML (i.e., Manifold regularized Distance
Metric Learning) algorithm.

M∗ = min
M

K∑
k=1

αktr(XLkX
T M)

+ ηstr (S ·M) − ηdtr (D ·M) + β ‖α‖2

s.t.M � 0,
K∑

k=1

αk = 1, αk ≥ 0, k = 1, 2, · · · , K

(10)

where α = {αk}
K
k=1 are the weights that reflect the utility of

the auxiliary metrics, β is a scalar, and regularizer ‖α‖
2

is

the L-2 norm of the weights {αk}
K
k=1 that prevents “overfit-

ting” on auxiliary metrics. We can find that the LRDML al-
gorithm in [Hoi et al., 2008] is a special case of our M-DML
method. Specifically, M-DML will reduce to LRDML when
only Euclidian metric is available as the auxiliary metric, i.e.,
M = {I}.

3.3 Learning by Alternating Optimization

Up to now we have shown that multiple auxiliary metrics, un-
labeled data, and the pairwise constraints on labeled examples
can be integrated into a regularized loss minimization frame-
work. Two distance metric learning algorithms L-DML and
M-DML have been developed by exploiting log-determinant
and manifold regularization technique, respectively. Now we
discuss the solution of them.

We first consider M-DML. Equation (10) is a standard
formulation of Semidefinite Programs (SDP) [Stephen and
Lieven, 2003] under any fixed α and can be solved effi-
ciently using existing convex optimization packages, such as
SeDuMi [Sturm, 1999]. However, α is crucial to the per-
formance of M-DML. Since the utility may vary intensively
among different auxiliary metrics, α should vary as well as
according to their utility. Thus M-DML is motivated to learn
both the distance metric M and the linear combination coef-
ficients α simultaneously. We can realize the joint learning
of M and α by adopting the alternating optimization tech-
nique to solve Eq.(10) in an iterative manner. Specifically, we
solve M-DML as follows: solving Eq.(10) with respect to M
with fixed α; then optimizing Eq.(10) with respect to α with
M taking the value obtained before; and alternatively iterat-
ing the above two steps until the decrement of the objective
function is zero. This process will converge to the optimal
solution since the objective function is convex to both M and
α. Analogously, the L-DML method can also be solved via
alternating optimization.

4 Experiments

In this section, we investigate the performance of the pro-
posed L-DML and M-DML methods for face recognition.

4.1 Data Sets

We employ four face image data sets in our experiments:
ORL [Samaria and Harter, 1994], Yale [Belhumeur et al.,
1997], Extended Yale-B [Georghiades et al., 2001], and CMU
PIE [Sim et al., 2003] collections. The ORL data set contains
40 distinct human subjects and each subject has ten gray im-
ages. The Yale corpus consists of 165 gray images of 15 sub-
jects and there are 11 images per person. The Extended Yale-
B data set contains 161,289 gray images of 38 human subjects
under nine poses and 64 illumination conditions. We choose
the frontal pose and use all the images under different illumi-
nation, thus there are 64 images for each person. The CMU
PIE corpus contains 41,368 images of 69 subjects under 13
different poses, 43 different illumination conditions, and with
four different expressions. We choose ten subjects under two
near frontal poses and all the images under different illumina-
tions and expressions. Thus there are 68 images per subject
and 680 images in total. For computational efficiency, all the
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face images are manually aligned and cropped. The size of
each cropped image is 20 × 20 pixels with 256 gray levels
per pixel. The feature (pixel values) are then normalized to
[0,1].

4.2 Experimental Setting and Results

Among the four data collections, we choose ORL, Yale and
CMU PIE as the auxiliary data sets and Extended Yale-B as
the target data. We learn the auxiliary metrics using Rele-
vance Component Analysis (RCA) [Bar-Hillel et al., 2005]

from ORL, Yale, and CMU PIE data. Then we randomly se-
lect t images per subject from Extended Yale-B data set with
the labels to form the training data and the remaining images
are considered to be the test examples. We gradually increase
t (t = 2, 4, 6, 8, 10), and for each t we perform ten trials and
then compute the average performance. The tradeoff param-
eters are empirically set as: ηd and γ (β) are about one-forth
and one-eighth of ηs, respectively.

For comparison purpose, we also evaluate seven existing
methods for recognizing the face images in target data: Eu-
clidean distance (EU), Xing’s method (Xing) [Xing et al.,
2003], RCA [Bar-Hillel et al., 2005], DCA [Hoi et al., 2006],
NCA [Goldberger et al., 2004], LMNN [Weinberger et al.,
2006], and LRDML [Hoi et al., 2008]. Each of them is ap-
plied in the following four ways.

• “Target” (Tar): Learn the distance metric from target
data.

• “Auxiliary” (Aux): Learn the distance metrics from la-
beled auxiliary data.

• “Aggregate” (Agg): Learn the distance metrics from the
combination of target and auxiliary data.

• “Ensemble” (Ens): Construct an “ensemble” combining
the distance metrics derived independently from target
and auxiliary data.

The semi-supervised metric learning method LRDML has not
been applied in “Auxiliary” and “Ensemble” ways since the
auxiliary data are fully-labeled and thus no unlabeled exam-
ple is available.

We treat face recognition as a multi-class classification
problem and use the nearest neighborhood classifier to per-
form the classification. Table 1 provides the performance of
all the approaches. We only show the average performance
over all t due to the lack of space. From the results, we
can find that, by effectively leveraging auxiliary knowledge,
the proposed L-DML method outperforms all the existing ap-
proaches. By exploiting auxiliary knowledge and unlabeled
data at the same time, M-DML achieves the best overall per-
formance. Fig. (1) shows the detailed performance of L-
DML and M-DML vary with the size of training data. For
comparison purpose, the performance of LRDML, which is
a semi-supervised method, and LMNN, which achieves the
best performance among existing supervised methods, are
also illustrated in Fig.(1). From the results, it can be found
that L-DML and M-DML can achieve better performance
than LMNN and LRDML with the same number of training
examples. From another perspective, the proposed methods
need much less training data to reach the same performance
than the existing approaches.

Table 1: Performance of two proposed methods, i.e., L-DML and
M-DML, and seven existing approaches in terms of the average ac-
curacy over all the t.

Approach Experimental Setting

Tar Aux Agg Ens

EU 41.9 41.9 41.9 41.9
Xing 44.3 49.7 52.2 46.1
RCA 46.7 51.9 58.2 49.6
DCA 48.3 50.5 57.9 47.4
NCA 53.6 55.1 61.4 51.8
LMNN 56.5 60.8 63.4 59.2
LRDML 61.1 – 67.9 –

L-DML 69.3

M-DML 75.4

Table 2: Performance comparison between using multiple auxil-
iary knowledge and using single auxiliary knowledge.

Approach Auxiliary Data

ORL Yale CMU PIE Uniform Automatic
Weighting Weighting

L-DML 66.2 61.6 65.3 63.8 69.3
M-DML 72.4 68.1 70.5 70.9 75.4

We further investigate the performance comparison be-
tween utilizing multiple auxiliary metrics and single auxiliary
metric. Table 2 provides the results of L-DML and M-DML
when they exploit multiple auxiliary metrics and each indi-
vidual auxiliary metric. We also illustrate the results of L-
DML and M-DML that adopt uniform weights, i.e., assign
equal weights to all the three auxiliary metrics (see Eq.(7) and
Eq.(10). From the results we can clearly see that exploiting
the three auxiliary metrics leads to better results than only us-
ing each individual auxiliary metric. We can also see that our
automatic weight learning approach outperforms the method
of adopting uniform weights. This indicates that the proposed
L-DML and M-DML are able to weight auxiliary knowledge
properly.

5 Conclusions

We have developed two novel approaches for learning reliable
distance metric from limited training data by exploiting aux-
iliary knowledge. These approaches are efficient and flexible
as they directly utilize the metrics learned from the auxiliary
data and require no raw auxiliary examples. Moreover, the
proposed methods can effectively take advantage of multiple
auxiliary metrics. We apply the proposed approaches to face
recognition and compare them with various existing methods.
The results show that our methods are more effective than the
state-of-art methods for learning robust distance metric from
few labeled examples.
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