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Abstract

In this paper, we consider a general problem of
semi-supervised preference learning, in which we
assume that we have the information of the extreme
cases and some ordered constraints, our goal is to
learn the unknown preferences of the other places.
Taking the potential housing place selection prob-
lem as an example, we have many candidate places
together with their associated information (e.g., po-
sition, environment), and we know some extreme
examples (i.e. several places are perfect for build-
ing a house, and several places are the worst that
cannot build a house there), and we know some
partially ordered constraints (i.e. for two places,
which place is better), then how can we judge the
preference of one potential place whose preference
is unknown beforehand? We propose a Bayesian
framework based on Gaussian process to tackle this
problem, from which we not only solve for the un-
known preferences, but also the hyperparameters
contained in our model.

1 Introduction

The problem of finding out the preferences of an individual
exists in many real world applications. For example, a real es-
tate developer evaluating the potential housing places, a cus-
tomer judges the value of a book, a user assess his/her inter-
ests to a movie. Clearly, evaluating the preferences of all the
individuals is quite time consuming and almost impossible.
Therefore the development of automatic preference predic-
tion (or preference learning) algorithms is an important and
valuable research topic.

In recent years, many preference learning algorithms have
been emerged in artificial intelligence [Doyle, 2004], ma-
chine learning [Bahamonde et al., 2004][Chu and Ghahra-
mani, 2005][Chu and Keerthi, 2007], data mining [Agarwal
et al., 2006][Yu, 2005] and information retrieval [Herbrich et
al., 1998][Nuray and Can, 2003][Xi et al., 2004][Zheng et
al., 2007] fields. Most of these algorithms takes preference
learning as a supervised learning problem, i.e., we are given
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a set of instances {xi}n
i=1 which are associated with a partial

or complete order relation. Our goal is to learn a “ranking
function” from whose data such that it can predict the ranks
of new testing instances. However, those type of methods
usually suffer from two main problems:

1. Generally training a model in a supervised way needs a
large amount of “labeled” data (i.e. the data with known
orders or preferences). However, in most of the real
world cases, we may only known partial order informa-
tion contained in the data set.

2. There are usually some free parameters contained in the
preference prediction model. How to tune those param-
eters automatically is a headache for most of the algo-
rithms. Generally these parameters are set empirically.

Based on the above considerations, in this paper, we in-
vestigate a novel problem called semi-supervised preference
learning (SSPL). In SSPL, we use both labeled (or ordered)
data and unlabeled (or unordered) data to train a preference
prediction model, that is because in most of the cases, unla-
beled data is far easier to obtain (e.g., by crawling the web).
These unlabeled data are invaluable resources and how to use
them to aid the classification (or regression) task has widely
been researched in semi-supervised learning field [Chapelle
et al., 2006], but the similar problem in preference learning
has rarely been touched. In SSPL, we consider the following
two types of supervised information

• Partially ordered information. This type of information
the same as in traditional preference learning algorithms.
We assume that we know some ordered information on
a small portion of data items.

• Extreme preferences. We also suppose that we know
some preference information on the extreme cases (i.e.,
the cases are extremely preferred or disliked by the user,
that is, the cases with the highest and lowest preference
scores). This type of information is also easy to obtain in
many applications. To demonstrate the effectiveness of
this type of information, we give an illustrative example
in Fig.1.

By incorporating those supervised information, we pro-
pose a Bayesian probabilistic kernel approach for preference
learning using Gaussian process in this paper. We impose a
Gaussian process prior distribution on the latent preference
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(a) True preferences (b) Predicted preferences

Figure 1: A toy example that illustrates the effectiveness of extreme examples, where the data points are denoted by filled
circles, and its color suggests its preference. The closer the color to red (blue), the more (less) the corresponding point is
preferred. (a) shows the true data preferences which is distributed as two half-moons with a noise point x5 in the middle, and
x1, x2, x3, x4 being extreme examples. The figure shows that the preference of x6 and x7 are the same. However, if only
given the pairwise constraints pref(x1) > pref(x6) > pref(x5) > pref(x4), we can get a preference distribution in (b), which
shows that pref(x6) > pref(x7), which is not correct.

prediction function, and employ an appropriate likelihood
function which is composed of two parts: one is a Gaussian
function which measures the prediction loss on extreme pref-
erences; the other is a generalized probit function measuring
the consistency of the predicted preferences and the known
ordered information. Moreover, the expectation propagation
(EP) technique [Minka, 2001] is adopted to automatically
tune the hyperparameters contained in the model. Finally we
apply our method to a practical housing potential application
problem which demonstrates the effectiveness of our method.

It is worthwhile to highlight several aspects of the proposed
approach here:

1. Our model is a semi-supervised model, which can make
use of more information compared to traditional super-
vised model. Moreover, the supervised model can be
regarded as a special case of our semi-supervised model
with all the data items having their relevant supervised
information.

2. Unlike in traditional supervised models where we need
to set the model parameters empirically, the model pa-
rameters can be self-adapted in our approach.

3. Unlike some traditional semi-supervised approach (e.g.,
[Zhou et al., 2004]) which can only predict the prefer-
ence of those “unlabeled” data, our method can be easily
extended to predict the preferences of new testing data
items.

The rest of this paper is organized as follows. In section 2
we will introduce our Bayesian inference framework in detail,
the experimental results on benchmark data sets will be intro-
duced in section 3. In section 4 we will introduce the back-
ground of a real world housing potential application problem,
and show the detailed procedure of how to apply our model
to solve the problem, and demonstrate the results, followed
by the conclusions in section 5.

2 Semi-supervised Preference Learning

Under a Bayesian Framework

Consider a set X of n distinct data items xi ∈ R
d, in which

XL = {xi}l
i=1 are the extreme cases and we know their

associated preferences in prior. Besides, we also have a
set of observed pairwise preference relations on data items
E = {(xu,xv)}, such that if (xu,xv) ∈ E , then f(xu) ≤
f(xv), which means that data item xu is less preferred than
xv , and f is the latent preference prediction function. For
example, in the housing potential place selection problem,
f(xu) ≤ f(xv) means it is more appropriate to build a house
on place xv than place xu.

Let O be the observations including XL and E , then
the posterior of the latent preference function vector f =
[f(x1), f(x2), · · · , f(xn)]� given the observation O is

P (f |O,X ) ∝ P (f |X )P (O|f) = P (f |X )P (XL|f)P (E|f) (1)

The term, p(f) is the prior. It enforces a smoothness con-
straint and depends upon the underlying data manifold. Sim-
ilar to the spirit of graph regularization [Zhu, 2005][Zhou
et al., 2004], we use similarity graphs and their transformed
Laplacian to induce priors on the preferences f . The second
and third term, p(XL|f) and p(E|f) are the likelihoods that
incorporate the prior information provided by the extreme ex-
amples and the data in E .

2.1 Gaussian Process Prior

The latent function values f(xi) are assumed to be a realiza-
tion of random variables in a zero-mean Gaussian Process,
then this Gaussian process can be fully specified by the co-
variance matrix. To define a proper covariance matrix, we
recall a basic principle in graph based methods [Zhu, 2005]:
the predicted data labels should be sufficiently smooth with
respect to the data graph. The smoothness of f with respect
to the data graph could be measured by

S(f) =
∑
ij

Kij

(
f(xi)√

dii

− f(xj)√
djj

)2

= f
�
Lf (2)
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where Kij is the value of the (i, j)-th element in the data ker-

nel matrix K ∈ R
n×n, L = I − D

−1/2
KD

−1/2 ∈ R
n×n is

the normalized graph Laplacian [Zhou et al., 2004]. D is the
diagonal degree matrix with the i-th element on its diagonal
line dii =

∑
j Kij . Then we can construct a data dependent

prior distribution of f as

P (f |X ) =
1

Zf

exp

(
−1

2
f
�
L̃f

)
(3)

where L̃ = L + ζI is the diagonal-jittered Laplacian matrix
which is positive definite with some constant ζ [Kapoor et
al., 2005], Zf is normalizing constant which makes P (f) a
probability distribution. Such a prior in fact encodes some
geometrical information of data distribution P (x) [Belkin et
al., 2006], e.g. if two data items xi and xj are close in the
intrinsic geometry of P (x), then the conditional distributions
of P (fi|xi) and P (fj |xj) should be similar, where fi denotes
the preference of xi.

2.2 Likelihood

The likelihood of the observations O = {XL, E} given the
latent function f should be composed of two parts, one part
measures the loss between the predictions and the actual pref-
erences (denoted by {yi}) of XL, the other measures the loss
between the predictions and E . The loss between f(xi) and
yi can be simply computed by a square function, therefore the
likelihood of {yi} given f can be evaluated as

P ({yi}|f) =

l∏
i=1

P (yi|fi) = exp

(
−1

2

l∑
i=1

(yi − fi)
2

)
(4)

Following [Chu and Ghahramani, 2005], the ideal noise-
free case for the likelihood of (u, v) ∈ E is

P ((uk, vk)|(fuk
, fvk

)) =

{
1, if fuk

� fvk

0, otherwise
(5)

In real world case, the preferences are usually contaminated
by some noise. If we assume such noise are a zero mean
Gaussians, then

P ((uk, vk)|(fuk
, fvk

))

=

∫∫
P (δuk

)P (δvk
)P ((uk, vk)|(fuk

+δuk
,fvk

+δvk
))dδuk

dδvk

=

∫∫
N(δuk

;0,ρ2)N(δvk
;0,ρ2)P ((uk,vk)|(fuk

+δuk
,fvk

+δvk
))dδuk

dδvk

= Φ(zk)

where zk =
fv

k
−fu

k√
2ρ

, and Φ(z) =
∫ z

−∞ N (δ; 0, 1)dδ. Note

that we use k to denote the entry index in E . Then the total
likelihood of E given f becomes

P (E|f) =
∏
k

Φ(zk) (6)

Therefore the total likelihood of the observations O given f

becomes

P (O|f) = P ({yi}|f)P (E|f)

= exp

(
−1

2

l∑
i=1

(yi − fi)
2

)∏
k

Φ(zk) (7)

2.3 Approximate Inference

In this paper, we use Expectation Propagation (EP) to obtain
a Gaussian approximation of the posterior P (f |O). Although,
the prior derived in section 2.1 is a Gaussian distribution, the
exact posterior is not a Gaussian due to the form of the like-
lihood. We use EP to approximate the posterior as a Gaus-
sian. EP has been previously used [3] to train a Bayes Point
Machine, where EP starts with a Gaussian prior over the clas-
sifiers and produces a Gaussian posterior. Our task is very
similar and we use the same algorithm. In our case, EP starts
with the prior defined in Eq.(3) and incorporates likelihood to
approximate the posterior P (f |O,X ) ∼ N (f̄ ,Σf ), where N
denotes a normal distribution.

2.4 Hyperparameter Learning

We apply an EM-EP style algorithm [Kim and Ghahra-
mani, 2006] to estimate the hyperparameters in our algo-
rithm, which is also referred to as evidence maximization
[Kapoor et al., 2005]. Denote the parameters of the kernel
as ΘK , then the parameters contained in our algorithm are
Θ = {ΘK , ζ, ρ}. Under the EM-EP framework, in the E-step
of the EM algorithm, we use EP to approximate the posterior
q(f); in the M-step, we maximize the following lower bound
according to the Jensen’s inequality

F =

∫
f

q(f) log
P (f |X , Θ)P (O|f)

q(f)
(8)

= −
∫
f

q(f) log q(f) +

∫
f

q(f) logN (f ;0, L̃
−1

)

+
1

2

l∑
i=1

∫
fi

q(fi)(fi − yi)
2

+
∑

k

∫∫
fu

k
,fv

k

q(fuk
, fvk

) log Φ(zk)

The EM procedure alternates between the E-step and the
M-step until convergence.

• E-Step. Given the current parameters Θi, approximate
the posterior q(f) ∼ N (f̄ , Σf ) by EP.

• M-Step. Update

Θi+1 = arg max
Θ

∫
f

q(f) log
P (f |X , Θ)P (O|f)

q(f)
(9)

In the M-step the maximization with respect to the Θ cannot
be computed in a closed form, but can be solved using gradi-
ent descent. The gradients of the lower bound with respect to
the parameters are as follows:

∂F
∂ΘK

=
1

2

(
tr

(
L̃
−1 ∂L

∂ΘK

)
− f̄

� ∂L

∂ΘK
f̄ − tr

(
∂L

∂ΘK

))
(10)

∂F
∂ζ

=
1

2

(
tr
(
L̃
−1
)
− f̄

�
f̄ − tr (Σf )

)
(11)

∂F
∂ρ

= −
∫
fk

a
�
fk exp

(
−μ

�

k
aa

�

4ρ2 (2fk − μk)
)

2ρ2
√

π
∣∣∣I + Σk

aa�

2ρ2

∣∣∣1/2

Φ(zk)

(12)

·N
(

fk; μk,

(
Σk +

aa
�

2ρ2

)−1
)

dfk
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where in the last equation, fk = [fvk
, fuk

]�, a = [−1, 1]�,

μk = Bk f̄ , and Σk = BkΣfB
�
k and Bk = [e�uk

, e�vk
]� ∈

R
2×n and euk

, evk
∈ R

1×n are indicator vectors for uk and
vk with all their elements being 0 except for the uk-th (or vk-
th) element being 1. This complicated integration can be ap-
proximated by Gaussian quadrature or Romberg integration
at some appropriate accuracy.

2.5 Induction for Out-of-Sample Data

We denote the optimal parameter setting inferred from the
EM-EP procedure to be Θ∗. For a new coming case x, its
latent preference value fx together with the latent preference
vector f ∈ R

n×1 of the training samples follows a joint mul-
tivariate Gaussian prior, i.e.,[

f

fx

]
∼ N

[(
0
0

)
,

(
Σ k

k
� k(x,x)

)]
(13)

where k = [k(x,x1), k(x,x2), · · · , k(x,xn)]� and k(·, ·) is

some pre-defined kernel function, where Σ = L̃
−1

. The con-
ditional distribution of fx given f is also a Gaussian, denoted
as P (fx|f , Θ∗), with mean f

�Σ−1
k and variance k(x,x) −

k
�Σ−1

k. The predictive distribution of P (fx|O,X , Θ∗) can
be computed as an integral over the f -space, i.e.,

P (fx|O,X , Θ∗) =

∫
P (fx|f , Θ∗)P (f |O,X , Θ∗)df (14)

where P (f |O,X , Θ∗) is a Gaussian posterior distribution
of f approximated by the EM-EP procedure, then the pre-
dictive distribution (14) can be simplified as a Gaussian
N (fx; μx, σ2

x) with

μx = k
�Σ−1

f
f̄ (15)

σ2
x = k(x,x) − k

�Σ−1

f
k (16)

3 Experiments on Benchmark Data Sets

In this section, we will present the results of applying our
algorithm to several benchmark data sets.

3.1 Data Sets

We test the performance of our algorithm on five benchmark
data sets downloaded from http://www.liacc.up.

pt/˜ltorgo/Regression/DataSets.html, whose
target values were discretized into ordinal quantities using
equal-length binning. These bins divide the range of tar-
get values into a given number of intervals that are of same
length. The resulting rank values are ordered, representing
these intervals of the original metric quantities. Table 1 sum-
marizes the basic characteristics of those data sets, where
“Size” denotes the number of instances in the data set; “Di-
mension” indicates the dimensionality of the data points; “#
Training” is the number of instances used for training; “#
Testing” is the number of instances used for testing.

3.2 Methods for Comparison

Beside our method, we also implemented some other com-
petitive methods for comparison including

Table 1: Description of the data sets.
Data Sets Size Dimension # Training # Testing

Diabetes 2 43 30 13

BreastCancer 32 194 130 64

Pyrimidines 74 27 50 24

Trizazines 186 60 100 86

MachineCPU 209 6 150 59

BostonHouse 506 13 300 206

• SVM. This is a support vector method for ranking
[Shashua and Levin, 2003]. 5-fold cross validation
was used to determine the optimal values of model
parameters (including the width of the Gaussian ker-
nel and the regularization parameter), and the test er-
ror was obtained using the optimal model parameters
for each formulation. The initial search was done on
a 7 × 7 coarse grid linearly spaced by 1.0 in the region
{(log10 C, log10 σ)| − 2 ≤ log10 ≤ 4,−3 ≤ log10 σ ≤
3}, followed by a fine search on a 9 × 9 uniform grid
linearly spaced by 0.2 in the (log10 C, log10 σ) space.

• GPPL. This is the Gaussian process preference learning
(GPPL) method in [Chu and Ghahramani, 2005]. The
implementation is based on the code http://www.

gatsby.ucl.ac.uk/˜chuwei/plgp.htm,
where gradient methods have been employed to maxi-
mize the approximated evidence for model adaptation
with the initial values of the Gaussian kernel width
κ and the noise ρ to be 1 and 1/d, d is the data
dimensionality.

• GPOR. This is the Gaussian process ordinal regression
method implemented using the EP algorithm as in [Chu
and Ghahramani, 2004]. The implementation code is
downloaded from http://www.gatsby.ucl.ac.

uk/˜chuwei/ordinalregression.html.

• SVOR. This is the support vector ordinal regression
method implemented the same as in [Chu and Keerthi,
2007], where we use implicit constraints and the code is
downloaded from http://www.gatsby.ucl.ac.

uk/˜chuwei/svor.htm.

For the GPPL method, we generate all the pairwise con-
straints from the training data, and for our semi-supervised
preference learning (SSPL) method, we further provide the
preferences of the extreme cases in the training set. The
experimental results, including the mean absolute error and
standard deviation, over 20 independent runs are summarized
in Table 2. From the table we can clearly see the advantage
of our method.

4 Application in Housing Potential Selection

In this section, we present a novel application of our algo-
rithm in computer aided housing potential estimation and lo-
cation recommendation system. Such an application is impor-
tant since nowadays, facilities or outlets (e.g. bank branches,
retail stores, automobile dealers, etc) are crucial for people’s
daily lives. However, it is usually expensive and time con-
suming for a company to evaluate the suitability of the facil-
ity site locations and optimize the site network to serve more
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Table 2: Experimental results on benchmark data sets.
SVM GPPL GPOR SVOR SSPL

Diabetes 0.7462±0.1414 0.6763±0.1508 0.6654±0.1373 0.6658±0.1439 0.6318±0.1247

Breast Cancer 1.0031±0.0727 1.0055±0.0868 1.0141±0.0932 1.1243±0.1077 0.8796±0.0754

Pyrimidines 0.4500±0.1136 0.4096±0.1206 0.3917±0.0745 0.6945±0.2032 0.3544±0.1420

Triazines 0.6977±0.0259 0.6783±0.0198 0.6878±0.0295 0.7033±0.0276 0.6248±0.0193

MachineCPU 0.1915±0.0423 0.1793±0.0562 0.1856±0.0424 0.2136±0.1033 0.1536±0.0317

Boston House 0.2672±0.0190 0.2763±0.0314 0.2585±0.0200 0.2887±0.0198 0.1934±0.0156

customers. The most commonly adopted method is to hire
or ask for the business consultants to write some evaluation
reports on estimating whether there is big value at a location
for housing. Generally consultants should investigate several
factors around the housing location within a million square
meters including (but not limited to)

• The commercial services sites such as shopping centers,
banks, supermarkets, carnies, amusement parks, etc.

• The social service sites such as hospitals, hotels, kinder-
gartens, schools, colleges, etc.

• The traffic conveniences such as bus and subway sta-
tions, or even the railway and air stations.

• Other facilities such as bars and restaurants.

As an example, we show a map of housing locations along
with their impact factors in Fig. 2, where different symbols
represent different factors. In the figure there are totally 47
housing potential locations plotted.

After collecting all the relevant information above, the con-
sultants need to integrate them together by assigning different
weights to different factors and finally give a overall estima-
tion of the suitability of a place. However, this may not be a
good strategy since (1) the number of factors that may affect
the suitability of a place could be very large, which makes
the determination of their weights a hard and time consum-
ing task; (2) the weights are usually determined manually
by the consultants according to their professional experience.
Therefore the construction of a mathematical model for eval-
uating the suitability of each location automatically is a prob-
lem worthy of researching due to its practical requirements.

Unfortunately, it is difficult to construct a good location
evaluation model because

1. We usually do not know the exact mechanism of eval-
uating those locations. As stated before, in most cases
we should consider multiple factors simultaneously to
evaluate whether a location is good or bad, e.g., in bank-
ing, we should consider deposit, loan, financial service
revenue, cost, etc. Since different factors have different
descriptions and scales, it is difficult to model those fac-
tors into a single objective function to be optimized.

2. We usually do not have enough historical rating data of
evaluating the housing locations, which makes training
a proper model for evaluating new places very hard and
unreliable.

Based on the above considerations, the model proposed in
this paper could be very suitable for solving the housing lo-
cation evaluation problem since (1) Usually the information

Figure 2: An example of map with housing locations and their
impact factors. Factors around the housing location within a
million square meters should be considered features for rank-
ing.

of extreme cases are easy to obtain since the extremely good
or bad locations are treated as examples to guide the consul-
tants for their evaluations; (2) Our model need not to know
the exact preferences (ratings) of each location, but only the
ordered relationships between some of the pairwise locations,
which is much easier to work out by consulting some experts;
(3) Our model is semi-supervised, which means that we need
not to collect a large amount of historical rating data, gener-
ally a small portion of them is enough; (4) Our model can
tune the model parameters adaptively according to the data
distributions, so the users need not to worry about how to set
the optimal parameters related to different factors.

In our experiments, we just adopted the housing location
distribution map shown in Fig.2 as our data set. Therefore
there are totally 49 potential housing locations. For each loca-
tion, we construct a 32 dimensional vector which can summa-
rize the factors that may affect the final evaluation of the suit-
ability of itself1. We label four locations as extremely good
places for housing and four locations as extremely bad places
for housing. For the other 41 locations, we randomly generate
20 pairwise ordered constraints, and this process is repeated
20 times. To demonstrate the superiority of our method, we

1The vector is summarized in the following way. We first extract
32 factors (facilities) which may affect the final suitability evalua-
tions of the housing potential locations. For each vector, the value
on one dimension is the number of its corresponding facility.
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Table 3: Experimental results of different methods on the
housing potential location estimation task

SSDML GPPL BSSPL

AUROC 0.7805 0.7934 0.8336

AUROCCH 0.8326 0.8533 0.8848

also conducted two competitive approaches:

• The semi-supervised distance metric learning (SSDML)
method [20], which does not make use of the ordered
constraints.

• The Gaussian process preference learning (GPPL)
method [Chu and Ghahramani, 2005], which cannot take
the information on extreme cases into account.

Finally, to compare the performances of those different algo-
rithms, we use the areas under the receiver operating charac-
teristic ROC curve (AUROC) and convex hull of ROC curve
(AUROCCH) as our criterions2. The final results are summa-
rized in Table 3 (note that all the values in the table are aver-
aged over 20 independent runs), from which we can clearly
observe that our method can perform significantly better than
the other two methods for this task.

5 Conclusions

In this paper, we propose a novel semi-supervised preference
learning method using Gaussian process, where we assume
that we are given a set of pairwise ordered constraints to-
gether with some extreme examples. We propose an EM-EP
algorithm to learn the hyperparameters in our algorithm. Fi-
nally the experimental results on both benchmark data sets
and real world housing potential place estimation are pre-
sented to show the effectiveness of our method.
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