
Multi-Class Classifiers and Their Underlying Shared Structure

Volkan Vural ∗†, Glenn Fung ‡, Romer Rosales ‡ and Jennifer G. Dy †
† Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA

‡ Computer Aided Diagnosis and Therapy, Siemens Medical Solutions, Malvern, PA, USA

Abstract

Multi-class problems have a richer structure than
binary classification problems. Thus, they can po-
tentially improve their performance by exploiting
the relationship among class labels. While for the
purposes of providing an automated classification
result this class structure does not need to be explic-
itly unveiled, for human level analysis or interpreta-
tion this is valuable. We develop a multi-class large
margin classifier that extracts and takes advantage
of class relationships. We provide a bi-convex for-
mulation that explicitly learns a matrix that cap-
tures these class relationships and is de-coupled
from the feature weights. Our representation can
take advantage of the class structure to compress
the model by reducing the number of classifiers em-
ployed, maintaining high accuracy even with large
compression. In addition, we present an efficient
formulation in terms of speed and memory.

1 Introduction

Multi-class problems often have a much richer structure than
binary classification problems. This (expected) property is a
direct consequence of the varying levels of relationships that
may exist among the different classes, not available by na-
ture in binary classification. Thus, it is of no surprise that
multi-class classifiers could improve their performance by ex-
ploiting the relationship among class labels. While for the
purposes of providing an automated classification result this
class structure does not need to be explicitly unveiled, for (hu-
man level) analysis or interpretation purposes, an explicit rep-
resentation of this structure or these class relationships can be
extremely valuable.

As a simple example, consider the case for a given prob-
lem, when inputs that are likely to be in class k1 are also likely
to be in class k2 but very unlikely to be in class k3. The abil-
ity to provide such explicit relationship information can be
helpful in many domains. Similarly, the decision function for
determining class k1 can benefit from the decision functions
learned from k2 and k3 - a form of transfer learning. This is
helpful specially when training samples are limited.

∗Corresponding author.Email: vvural@ece.neu.edu

We summarize the contributions of this paper as follows:

• We develop a multi-class large margin classifier that
takes advantage of class relationships and at the same
time automatically extracts these relationships. We pro-
vide a formulation that explicitly learns a matrix that
captures these class relationships de-coupled from the
feature weights. This provides a flexible model that can
take advantage of the available knowledge.

• We provide a formulation to the above problem that
leads to a bi-convex optimization problem that rapidly
converges to good local solutions[Al-Khayyal and Falk,
1983; Bezdek and Hathaway, 2003]. Furthermore, we
present a modified version of our general formulation
that uses a novel regularization term and that is efficient
in both time and memory. This approach is comparable
to the fastest multi-class learning methods, and is much
faster than approaches that attempt to learn a comparable
number of parameters for multi-class classification.

• Our representation can take advantage of the class struc-
ture to compress the model by reducing the number of
classifiers (weight vectors) and, as shown in the experi-
mental results, maintain accuracy even with large model
compression (controllable by the user).

• Our experiments show that our method is competitive
and more consistent than state-of-the-art methods. It of-
ten has a lower test error than competing approaches, in
particular when training data is scarce.

2 Related Work

Two types of approaches are generally followed for address-
ing multi-class problems: one type reduces the multi-class
problem to a set of binary classification problems, while the
second type re-casts the binary objective function to a multi-
category problem. Variations of the first approach include:
(a) constructing binary classifiers for every pair of classes
(one-vs-one method), and (b) constructing binary classifiers
for differentiating every class against the rest (one-vs-rest
method) [Friedman, 1996; Platt et al., 2000]. The results of
these binary classifiers can be combined in various ways (see
[Allwein et al., 2000]).

We focus on the second, where the multi-class problem is
cast as a single optimization problem [Weston and Watkins,

1267



1999; Bredensteiner and Bennett, 1999]. This is appealing
because the problem can be represented compactly, and it
more clearly defines the optimal classifier for the K-class
problem; basically, all classes are handled simultaneously.
One of its main drawbacks is that the problem size/time com-
plexity grows impractically fast. Thus, current research has
focused on algorithm efficiency [Crammer and Singer, 2001;
Tsochantaridis et al., 2005; Bordes et al., 2007].

The approach taken in [Crammer and Singer, 2001] con-
sisted of breaking the large resulting optimization problem
into smaller ones, taking advantage of sequential optimiza-
tion ideas [Platt, 1999]. However, in general the derivatives
are of size O(m2K2), for m data points and K classes,
and thus this approach does not scale well. In [Tsochan-
taridis et al., 2005] this problem was circumvented by em-
ploying the cutting plane algorithm requiring only a par-
tial gradient computation. A stochastic gradient step is fur-
ther employed in [Bordes et al., 2007], where various im-
plementations were compared with the following results: for
the problem sizes/implementations considered, the method in
[Crammer and Singer, 2001] was the fastest, but it had by
far the most memory requirements. The two other methods
[Tsochantaridis et al., 2005; Bordes et al., 2007] had similar
memory requirements.

Despite these important developments, we note two im-
portant shortcomings: (1) the solution does not provide the
means to uncover the relationship between the classes or
more importantly to incorporate domain knowledge about
these relationships, and (2) there is no clear way to more di-
rectly relate the weight vectors associated with each class.
The first shortcoming is more related to model interpretabil-
ity and knowledge incorporation, while the second is related
to the flexibility of the approach (e.g., to learn weight vectors
with specific, desirable properties).

The first issue was partly addressed in [Amit et al., 2007]

where a class relationship matrix is explicitly incorporated
into the problem, in addition to the usual weight matrix. How-
ever, this method is limited to regularization based on the sum
of the Frobenious norms of these matrices. As shown in their
work, this is equivalent to a trace-norm regularization of the
product of these two matrices (a convex problem). As a con-
sequence of the above limitation, it is not clear how addi-
tional information can be incorporated into the relationship
and weight matrix. In this paper, we address these shortcom-
ings and present a formulation that, in addition to being ef-
ficient, allows for a better control of the solution space both
in terms of the class relationship matrix and the weight ma-
trix. We note that the same notion of hidden features motivat-
ing [Amit et al., 2007] is handled by the current formulation;
however we concentrate on viewing this as representing the
class structure.

3 General Formulation

Before we introduce our method, let us define the notation
we use in this paper. The notation A ∈ Rm×n signifies a real
m× n matrix. For such a matrix, A′ denotes the transpose of
A and Ai the i-th row of A. All vectors are column vectors.
For x ∈ Rn, ‖x‖p denotes the p-norm, p = 1, 2,∞. A vec-

tor of ones and a vector of zeros in a real space of arbitrary
dimensionality are denoted by e and 0 respectively. Thus, for
e ∈ Rm and y ∈ Rm, e′y is the sum of the components of y.
We can change the notation of a separating hyperplane from
f(x̃) = w̃′x̃− γ to f(x) = x′w, by concatenating a −1 com-
ponent to the end of the datapoint vector, i.e. x = [x̃,−1].
Here the new parameter w will be w = [w̃, γ].

Let m be the total number of training points and K be
the number of classes. The matrix M will be used to rep-
resent numerical relationships (linear combinations) among
the different classifiers used for a given problem. In some
cases (as shown later), M can be seen as an indicative of
the relation among classes which are not usually consid-
ered when learning large margin multiclass classifiers (one-
vs-rest, one-vs-one, etc.). In more recent papers, a simpli-
fied version of the inter-class correlation matrix M is prede-
fined by the user [Lee et al., 2004] or not considered explic-
itly [Crammer and Singer, 2001; Tsochantaridis et al., 2005;
Bordes et al., 2007], separated from the class weight vec-
tor/matrix.

The idea behind our algorithm is to learn and consider the
implicit underlying relationships among the b base classifiers
we want to learn (depending on the chosen model) in order
to improve performance. Note that the dimensions of the ma-
trix M (b × p, number of base classifiers by number of final
classifiers) are strongly related to the chosen model for mul-
ticlass classification. For example, when a paradigm similar
to the one-vs-rest method is considered, p = K and b < p,
if we chose b = p = K , M is a K × K square matrix.
This is, we are going to learn K classifiers, each one trying
to separate each class from the rest, but they are going to be
learned jointly (interacting with each other and sharing infor-
mation through M ) instead of separately as is the case with
the standard one-vs-rest method. Similarly, when the one-vs-
one method is applied, p = K(K − 1)/2 and b the number
of base classifiers can be any number large enough b ≤ p. If
b = p = K(K − 1)/2 and M = I (fixed), the result is the
exact one-vs-one method, however learning M will enforce
sharing the information among classifiers and it will help im-
prove performance. One of the main advantages of this pro-
posed method is the possibility of using a smaller number of
base classifiers than final classifiers (case b < p). This will
result in a more compact representation of the models with
less parameters to learn and hence less prone to overfitting,
specially when the data is scarce.

Let Al represent the training data used to train the lth clas-
sifier where l = 1, . . . , p. For one-vs-rest, Al = A for every
l. However, for the one-vs-one approach Al will represent the
training data for one of the p combinations, i.e. a matrix that
consists of the training points from the ith and the jth classes
i, j ∈ (1, . . . , K). Dl will signify a diagonal matrix with la-
bels (1 or −1) on the diagonals. The way we assign labels to
training points depends on the approach we implement. For
instance, for a one-vs-rest setting the labels corresponding to
the data points in class l will be 1, whereas the labels for the
rest of the data points will be −1. Let W ∈ Rn×b be a matrix
containing the b base classifiers and M l be the column l of
the matrix M ∈ Rb×p. Similarly to [Fung and Mangasarian,
2001], we can define the set of constraints to separate Al with

1268



respect to the labeling defined in Dl as:

DlAlWM l + yl = e
Using these constraints, the problem becomes:

min
(W,M)

∑p

l=1 μ‖e − DlAlWM l‖2
2 + ‖W‖

2
F + ν ‖M‖

2
F ,

(1)

where ‖W‖
2
F and ‖M‖

2
F are the regularization terms for W

and M respectively, and the pair (μ, ν) control the trade-off
between accuracy and generalization.

We can solve Eq. (1) in a bi-convex fashion such that when
W is given then we solve the following problem to obtain M :

min
(M)

∑p

l=1 μ‖e − DlAlWM l‖2
2 + ν ‖M‖

2
F (2)

When M is given, on the other hand, just note that

AlWM l = ÂlŴ , where Âl = [M1,lA
l, . . . , Mb,lA

l] and

Ŵ = [W1, . . . , Wb]
′. Using the new notations, we can solve

the following problem to obtain W :

min
(Ŵ )

∑p

l=1 μ‖e − DlÂlŴ‖2
2 +

∥∥∥Ŵ
∥∥∥2

2
(3)

We can summarize the bi-convex solution to Eq. (1) as fol-
lows:

0. initialization: if M is a square matrix then M0 = I
otherwise initialize M by setting the components to 0 or
1 randomly.

1. At iteration t, if the stopping criterion is not met, solve
Eq. (3) to obtain W t+1 given M = M t.

2. For the obtained W t+1, solve Eq. (2) to obtain M t+1:

In contrast with [Amit et al., 2007], that recently pro-
posed implicitly modeling the hidden class relationships to
improve multi-class classification performance, our approach
produces an explicit representation of the inter-class relation-
ships learned. In [Amit et al., 2007], they learn a matrix W
to account for both class relationships and weight vectors;
whereas, in our formulation we explicitly de-coupled the ef-
fect of the class relationships from the weight vectors cap-
tured in M and W respectively. Another important difference
with [Amit et al., 2007] is that in our formulation, additional
constraints on M can be added to formulation (1) to enforce
desired conditions or prior knowledge about the problem. As
far as we know, this is not possible with any previous related
approaches. Examples of conditions that can be easily im-
posed on M without significantly altering the complexity of
the problem are: symmetry, positive definiteness, constraint
bounds on the elements of M , a prior known relation between
two or more of the classes, etc. Experiments regarding dif-
ferent types of contriants in M is currently being explored
and it will be a part of future work. Since we are also ex-
plicitly modeling the classifiers weight vectors W , separately
from the matrix M , we can also impose extra conditions on
the hyperplanes W (alone). For example: we could include
regularization-based feature selection, we could also enforce
uniform feature selection across all the K classifiers by using
a block regularization on all the i components of the K hyper-
plane classifiers, or simply incorporate set and block feature
selection [Yuan and Lin, 2006] to formulation (1).

4 Practical Formulations

4.1 The one-vs-rest case

In order to simplify notation, when the one-vs-rest formula-
tion is considered, formulation (1) can be indexed by train-
ing datapoint and rewritten as below. Let us assume that

fk(x) = x′wk represents the kth classifier and f̃i

k
repre-

sents the output of the kth classifier for the ith datapoint,

Ai. i.e. f̃i

k
= Aiw

k. Let us define a vector fi such that

fi = [f̃i

1
, . . . , f̃i

K
]′. We also define a vector, yi, of slack

variables such that yi = [y1
i , . . . , yK

i ]′ and a matrix W such

that W = [w1, . . . , wK ].

min
(W )

μ
∑m

i=1 ‖e − DiMfi‖
2
2 +

∑K

k=1 ‖w
k‖2

2 + ν ‖M‖
2
F

(4)
This formulation can be solved efficiently by exploiting the
bi-convexity property of the problem similar to [Fung et al.,
2004]. Subproblem (3) is an unconstrained convex quadratic
problem that is independent of any restrictions on M and it is
easily obtained by solving a system of linear equations. When
M = RK×K , this is also an unconstrained convex quadratic
programming problem and its solution can also be found by
solving a simple system of linear equations. The complexity
of formulation (2) depends heavily on the conditions imposed
on M . In what is left of the paper, we impose conditions on
M , such that its elements are bounded in the set [−1, 1]. By
doing this, M can be associated to correlations among the
classes (although symmetry was not enforced in our experi-
ments to allow more general assymetrical relationships). This
is achieved by adding simple box constraints in the elements
of M , modifying formulation (2) into a constrained quadratic
programming problem.

4.2 Efficient formulation for the one-vs-rest case

In this section, we propose a slightly modified version of our
formulation presented in section 4.1. This modified formula-
tion is time and memory efficient and requires neither build-
ing large sized matrices nor solving large sized systems of
linear equations.

Instead of using the 2-norm regularization term in formu-
lation (4) that corresponds to a Gaussian prior on each one
of the hyperplane weight vectors wk , we use a joint prior on
the set of wk’s, inspired by the work presented in [Lee et al.,
2004]. In that work, they considered the following vector-
valued class codes:

Di
kk =

{
1 Ai belongs to class k
−1
k−1 otherwise

(5)

They showed (inspired by the Bayes rule) that enforcing,
for each data point, that the conditional probabilities of the
k classes add to 1 is equivalent to the sum-to-zero con-
straint on the separating functions (classifiers) fk (for all x):∑K

k=1 fk(x) = 0. However, when considering linear classi-
fiers, we have that:

∀x,
K∑

k=1

fk(x) = 0 ⇒ (
K∑

k=1

wk) = 0 (6)

Inspired by this constraint, instead of the standard 2-norm

regularization term
∑K

k=1

∥∥wk
∥∥2

2
, we propose to apply a new

1269



regularization term inspired by the sum-to-zero constraint:∥∥∥∑K

k=1 wk

∥∥∥2

2
. By minimizing this term, we are favoring so-

lutions for which equation (6) is satisfied (or close to be sat-
isfied). As stated in [Lee et al., 2004], by using this regu-
larization term the discriminating power of the k classifiers
is improved, especially where there is not a dominating class
(which is usually the case). With the new regularization term
we obtain the following formulation, which is very similar to
formulation (4):

min
(W,M)

μ
∑m

i=1 ‖e − DiMfi‖
2
2 + ‖

∑K

k=1 wk‖2
2 + ν ‖M‖

2
F

(7)
The solution to formulation(7) can be obtained by using an
alternating optimization algorithm similar to (1), but with
some added computational benefits that make this formula-
tion much faster and scalable. The main difference is that in
the second iterative step of the alternating optimization, in-
stead of (3), the problem to solve becomes:

min
(W )

μ
∑m

i=1 ‖e − DiMfi‖
2
2 + ‖

∑K

k=1 wk‖2
2 (8)

whose solution can be obtained by solving a system of linear

equations such that w∗ = [w1′, . . . , wK ′
]′ = −P−1q, where

P = Γ⊗Ā (the standard Kronecker product) with Γ = M ′M
and Ā =

∑m

i=1

(
Ai

′Ai

)
+ (1/μ)I .

Here, q = −2
∑m

i=1 Bi′e, where

Bi =

⎡
⎣

D
i

11M11Ai . . . D
i

11M1KAi

...

D
i

KKMK1Ai . . . D
i

KKMKKAi

⎤
⎦ (9)

Note that P is a matrix of size K(n + 1) by K(n + 1).
Recall that K is the number of classes and n is the number of
features. As we presented above, the solution to (7) is w∗ =
−P−1q and can be calculated efficiently (both memory-wise
and time-wise) by using a basic property of the Kronecker
product:

P−1 = Γ−1 ⊗ ¯A−1

We can draw the following conclusions from the equations
shown above:
1) Calculating Ā−1 ∈ R(n+1)×(n+1) and Γ−1 ∈ RK×K sep-

arately is enough to obtain P−1 ∈ RK(n+1)×K(n+1).
2) At every iteration of our method, only the inverse of
Γ ∈ RKxK is required to be calculated where K is around
ten for most problems.
3) We can calculate any row, column or component of P−1

without actually building or storing P−1 itself or even P .
4) Consequently, no matter how big the P−1 matrix is, we
can still perform basic matrix operations with P−1 such as
w∗ = −P−1q.
5) Finally, there is a relatively low computational cost in-
volved on finding the solution W ∗, regardless of the size of
P−1.
The time complexity for this efficient method can be pre-
sented as O(n3 + iK3), where i is the number of itera-
tions it takes for the alternating optimization problem to con-
verge. In our experiments, it took five iterations on average
for our methods to converge. The memory complexity of
our methods are also very efficient and can be presented as
O(n2 + K2).

5 Exploring the Benefits of the M Matrix

There are two main advantages of incorporating the M ma-
trix explicitly in our proposed formulation.
One of them is to discover useful information about the re-
lationships among the classes involved in the classification
problem. In order to present an illustrative toy example, we
generated two-dimensional synthetic data with five classes as
depicted in Figure 1a. As shown in the Figure, there are
five classes where Class 1 is spatially related to Class

2 (the classes are adjacent and similarly distributed) and sim-
ilarly Class 3 is related to Class 4. On the other hand,
Class 5 is relatively more distant to the rest of the classes.
When we train our algorithm using an RBF kernel, we ob-
tain the classifier boundaries in Figure 1b and the M matrix
shown in Figure 1c. For this toy example, in the M matrix,
similarity relations would appear as relatively large absolute
M matrix coefficients. The block structure of the matrix sug-
gests the similarities among some of the classes. Note that
for similar classes the corresponding M coefficient has op-
posite signs. For example, let us explore the result for f1(x)
and f2(x). Note if xk belongs to class 1 we must have that
f1(xk) > 0 but because class 1 and 2 are similar, f2(xk) is
likely to be greater than zero as well. This potential problem

is compensated by M such that the final classifier f̃1(xk) for
class 1 is approximately 0.9f1(xk) − 0.1f2(xk). This means
that in case of confusion (both classifiers are positive for xk) a
large magnitude of f2(xk) (classifier 2 is very certain that xk

belong to class 2) could swing the value of f̃1(xk) to be neg-
ative (or to change its prediction). Note that the M matrix in
Figure 1c, learned the expected relationships among the five
classes. Another property of the M matrix is that by using a
rectangular M , we can decrease the number of classifiers re-
quired to classify a multiclass problem by slightly modifying
our original formulation. In order to exemplify this M prop-
erty, let us consider the one-vs-one approach where we are
required to train p = K(K − 1)/2 classifiers. Our goal is to
train b < p number of classifiers that can achieve comparable
accuracies. This property has the potential to create compact
multiclass classification models that require considerably less
parameters to learn (hyperplane coefficients) especially when
non-linear kernels are used. For example, let us consider the
case where a kernel with 1000 basis functions is used and
the one-vs-one method is considered for a 10-class problem.
Using the standard one-vs-one method, p = 45 classifiers
have to be learned with 1000 coefficients each (45000 coeffi-
cients). However, by considering M ∈ R10×45 we only have
to learn 10×1000 plane coefficients plus M (450 coefficients)
for a total of 10450 coefficients. This compact representation
might benefit from Occam’s razor (by avoiding overfitting)
and hence resulting in more robust classifiers.

6 Numerical Experiments

In these experiments, we investigate whether we can improve
the accuracy of one-vs-rest by using the information that we
learn from inter-class relationships, how the performance of
our classifiers compares with related state-of-the-art methods,
and if we can achieve the accuracy of one-vs-one by us-
ing less number of classifiers than what one-vs-one re-

1270



0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45
Class 1
Class 2
Class 3
Class 4
Class 5

(a)
0 10 20 30 40

0

5

10

15

20

25

30

35

40

45
Class 1
Class 2
Class 3
Class 4
Class 5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5 −0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

Figure 1: a: Synthetic Data-1 with five classes. b: Class boundaries for Synthetic Data-1. c: The M matrix obtained for Synthetic Data-1.

quires. We test on five data sets: ICD (978,520,35)1, Vehi-
cle (846, 18, 4), USPS (9298,256,10), Letter (20000,16,26)2,
and HRCT (500,108,5)3, with (a, b, c) representing number
of samples, features, and classes respectively. We imple-
mented the following algorithms: original, our original
formulation in Eq. 4; fast our efficient formulation (7)
from Sec. 4.2; traceNorm from [Amit et al., 2007]; and
1vsrest a standard one-vs-rest formulation. While solv-
ing (2), we imposed the conditions on M such that Mij ∈
[−1, 1], ∀i, j. We used conjugate gradient descent to solve
traceNorm as indicated in [Amit et al., 2007]. We also
compared our methods against popular multi-class algorithms
such as LaRank and SVMstruct and used the implementa-
tions distributed by the authors. After randomly selecting the
training set, we separate 10% of the remaining data as a vali-
dation set to tune the parameters. The remaining data is used
for testing. We tuned our parameters (μ and ν) and the trade-
off parameter (C) for all the methods over 11 values ranging
from 10−5 to 105. All of the classifiers use a linear kernel
for ICD, Vehicle and HRCT, and the Gaussian Kernel with
ξ = 0.1 for the USPS and Letter data.

Figures 2 (a) − (f) plot the performance (y-axis) of
the six methods for varying amounts of training data (x-
axis). Each point on the plots is an average of ten ran-
dom trials. For the USPS and Letter data, the compet-
ing method [Amit et al., 2007] was too demanding com-
putationally to run for training set sizes of more than 12%,
thus we limited comparisons to a lower range. For the ICD
data, we observe that fast and original improve the one-
vs-rest coding and outperforms the other algorithms for ev-
ery amount of training data. traceNorm exceeded our
memory capacity for this data set and thus results are not
available. For the HRCT data, we observe that the four
methods (1vsrest, fast, original and traceNorm

) are comparable. However, LaRank and SVMstruct per-
formed poorly. For the Vehicle data, we see that fast
and original are better than others for the first one hun-
dred training samples. For more than one hundred training
samples, the performances of the algorithms are comparable
except for LaRank (which performed poorly). For the USPS
data, we observe the improvement due to the sharing of in-

1A medical dataset from www.computationalmedicine.org
2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3A real-world high-resolution computed tomography image

medical data set for lung disease classification.

formation among the classes as demonstrated by the signifi-
cantly higher accuracies obtained by the fast, original,
traceNorm, and SVMstruct methods, which take advan-
tage of the shared class structure, compared to 1vsrest and
LaRank. In summary, our proposed algorithms were consis-
tently ranked among the best. SVMstruct also did well for
most datasets; however, it cannot extract explicit class rela-
tionships. The main competing approach, traceNorm did
not scale well to large datasets. Another advantage of our
methods over traceNorm is that we can explicitly learn the
inter-class relations and represent it in a matrix form, M .

In Figure 2(f), we present the M matrix that we learned
for USPS by using fast with 1000 data points. USPS is a
good example where we can relate the relationships of classes
given in M to the physical domain, since the classes corre-
spond to digits and we can intuitively say that some digits are
similar, such as 3 and 8. Looking at the 5th row of M in Fig.
2(f), we observe that the 5th classifier, f5(x), is related to
digits 3, 6 and 8, which looks similar in the physical domain.
Similar relations can be observed in rows 6, 7 and 8, where
digit 7 is similar to 1, 6 to 5, and 9 to 8.

We also ran experiments comparing the performance of
one-vs-one versus our approach with a reduced set of base
classifiers, reduced. Due to space limitations, we only re-
port the results on the HRCT and USPS data. Figures 2 (g)
and (h) show the results. For these data, one-vs-one re-
quires 10 and 50 classifiers, whereas reduced only trained
with 5 and 10 classifiers for the HRCT and USPS respectively.
In order to combine the outputs of the classifiers, we applied
voting for both approaches. The figures demonstrate that we
can achieve similar performance in terms of accuracy even
with fewer base classifiers (half and one-fifth in these cases)
compared to one-vs-one, because we take advantage of
inter-class relationships.

7 Conclusions

We developed a general formulation that allows us to learn the
classifier and uncover the underlying class relationships. This
provides an advantage over methods that solely obtain deci-
sion boundaries since the results of our approach are more
amenable to (e.g., human-level) analysis. A closely related
work is traceNorm [Amit et al., 2007]. However in [Amit
et al., 2007], they require further work (solving another op-
timization problem after learning the decision boundaries) to
recover the class relationships; whereas, our approach learns

1271



50 100 150 200 250 300 350 400 450 500

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

ICD

Number of training points

A
cc

ur
ac

y

1vsrest
original
fast
SVM

struct

LaRank

50 100 150 200 250

0.65

0.7

0.75

0.8

0.85

0.9

0.95

HRCT

Number of trainig points

A
cc

ur
ac

y

1vsrest
original
fast
traceNorm
SVM

struct

LaRank

50 100 150 200 250

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
VEHICLE

Number of trainig points

A
cc

ur
ac

y

1vsrest
original
fast
traceNorm
SVM

struct

LaRank

0 200 400 600 800 1000 1200 1400

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

USPS

Number of training points

A
cc

ur
ac

y

1vsrest
original
fast
traceNorm
SVM

struct

LaRank

(a) (b) (c) (d)

100 200 300 400 500 600 700 800 900 1000 1100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

LETTER

Number of training points

A
cc

ur
ac

y

1vsrest
original
fast
traceNorm
SVM

struct

LaRank

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
−0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200 250 300
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96
HRCT

Training Set Size

A
cc

ur
ac

y

one−vs−one
reduced

100 200 300 400 500 600 700 800 900 1000
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87
USPS

Training Set Size

A
cc

ur
ac

y

one−vs−one
reduced

(d) (e) (f) (g)

Figure 2: a-d: Experimental results for various datasets comparing one-against-rest vs. our original method (original), the fast method

(fast), LaRank, SVMstruct and traceNorm. e: M matrix representing the inter-class correlations learned for USPS data. Indices

correspond to digits 1 . . . 9 and 0 respectively. f-g: Comparing one-vs-one vs. our method, reduced, on the HRCT and USPS data.

the boundaries and the relationships at the same time. In ad-
dition, we are able to achieve this efficiently at faster speeds
and less memory compared to the traceNorm formulation.
Our fast formulation has speeds comparable to the standard
one-vs-rest approach. In terms of accuracy, the performance
of our formulation is consistently ranked among the best and
the results confirm that taking class relationships into account
improves class accuracy compared to the standard one-vs-rest
approach. Moreover, experiments reveal that our approach
can perform as well as standard one-vs-one with fewer base
classifiers by taking advantage of shared class information.

This work provides a flexible model that is amenable to in-
corporating prior knowledge of class relationships. For future
work, by using different norms, the model can be extended to
allow regularization-based feature selection (1-norm-based).
We are not aware of any method that compares with our pro-
posed family of large margin formulations in providing the
flexibility of incorporating prior knowledge to the class struc-
ture (explicit constraints on M ) and adding constraints to fea-
ture weights.

Acknowledgements Thanks to Siemens Medical Solutions
USA, Inc. and NSF CAREER IIS-0347532.

References
[Al-Khayyal and Falk, 1983] F. A. Al-Khayyal and J. E. Falk.

Jointly constrained biconvex programming. MOR, 8(2):273–286,
1983.

[Allwein et al., 2000] E. L. Allwein, R. E. Schapire, and Y. Singer.
Reducing multiclass to binary: A unifying approach for margin
classifiers. JMLR, pages 113–141, 2000.

[Amit et al., 2007] Y. Amit, M. Fink, N. Srebro, and S. Ullman.
Uncovering shared structures in multiclass classification. In
ICML 2007, pages 17–24, 2007.

[Bezdek and Hathaway, 2003] J. Bezdek and R. Hathaway. Conver-
gence of alternating optimization. Neural, Parallel Sci. Comput.,
11(4):351–368, 2003.

[Bordes et al., 2007] A. Bordes, L. Bottou, P. Gallinari, and J. We-
ston. Solving multiclass support vector machines with larank. In
ICML 07, pages 89–96, 2007.

[Bredensteiner and Bennett, 1999] E. Bredensteiner and K. Ben-
nett. Multicategory classification by support vector machines.
Computational Optimization and Applications, 12:53–79, 1999.

[Crammer and Singer, 2001] K. Crammer and Y. Singer. On the al-
gorithmic implementation of multiclass kernel-based vector ma-
chines. JMLR, 2:265–292, 2001.

[Friedman, 1996] J. Friedman. Another approach to polychoto-
mous classifcation. Technical report, Stanford University, De-
partment of Statistics, 1996.

[Fung and Mangasarian, 2001] Glenn Fung and O. L. Mangasarian.
Proximal support vector machine classifiers. In Knowledge Dis-
covery and Data Mining, pages 77–86, 2001.

[Fung et al., 2004] Glenn Fung, Murat Dundar, Jinbo Bi, and
Bharat Rao. A fast iterative algorithm for fisher discriminant us-
ing heterogeneous kernels. In ICML ’04, page 40, 2004.

[Lee et al., 2004] Y. Lee, Y. Lin, and G. Wahba. Multicategory sup-
port vector machines, theory, and application to the classifica-
tion of microarray data and satellite radiance data. Journal of the
American Statistical Association, 99(465), 2004.

[Platt et al., 2000] J. Platt, N. Cristianini, and J. Shawe-Taylor.
Large margin dags for multiclass classification. In S.A. Solla,
T.K. Leen, and K.-R. Mueller, editors, Advances in Neural Infor-
mation Processing Systems 12, pages 547–553, 2000.

[Platt, 1999] John C. Platt. Fast training of support vector machines
using sequential minimal optimization. MIT Press, 1999.

[Tsochantaridis et al., 2005] I. Tsochantaridis, T. Joachims, T. Hof-
mann, and Y. Altun. Large margin methods for structured and
interdependent output variables. JMLR, 6:1453–1484, 2005.

[Weston and Watkins, 1999] J. Weston and C. Watkins. Support
vector machines for multiclass pattern recognition. In Proceed-
ings of the Seventh European Symposium On Artificial Neural
Networks, pages 219–224, 1999.

[Yuan and Lin, 2006] Ming Yuan and Yi Lin. Model selection and
estimation in regression with grouped variables. Journal Of The
Royal Statistical Society Series B, 68(1):49–67, 2006.

1272


