
Abstract 
Distance metric has an important role in many ma-
chine learning algorithms. Recently, metric learn-
ing for semi-supervised algorithms has received 
much attention. For semi-supervised clustering, 
usually a set of pairwise similarity and dissimilarity 
constraints is provided as supervisory information. 
Until now, various metric learning methods utiliz-
ing pairwise constraints have been proposed. The 
existing methods that can consider both positive 
(must-link) and negative (cannot-link) constraints 
find linear transformations or equivalently global 
Mahalanobis metrics. Additionally, they find met-
rics only according to the data points appearing in 
constraints (without considering other data points). 
In this paper, we consider the topological structure 
of data along with both positive and negative con-
straints. We propose a kernel-based metric learning 
method that provides a non-linear transformation. 
Experimental results on synthetic and real-world 
data sets show the effectiveness of our metric 
learning method. 

1 Introduction 
Distance metric is a key issue in many machine learning 
algorithms [Xiang et al., 2008]. Over the last few years, 
there has been considerable research on distance metric 
learning [Yang and Jin, 2006]. Many of the earlier studies 
optimize the metric with class labels for classification tasks 
[Lebanon, 1994; Hastie and Tibshirani, 1996; Zhang et al.,
2003; Goldberger et al., 2004]. More recently, researchers 
have given much attention to distance learning for semi-
supervised algorithms and specially semi-supervised cluster-
ing algorithms. Since class label information is not gener-
ally available for clustering tasks, constraints are used as 
more natural supervisory information for these tasks. Pair-
wise similarity (positive) and dissimilarity (negative) con-
straints are the most popular kind of side information that 
has been used for semi-supervised clustering. However, 
other kinds of side information like relative comparisons 
(for example, x  is closer to y  than to z ) have also been 

considered in some studies [Schultz and Joachims, 2004; 
Kumar and Kummamuru, 2007].  

Distance learning based on constraints has been studied 
by many researchers. [Klein et al., 2002] introduced one of 
the first distance learning methods for semi-supervised clus-
tering. This method finds a distance metric according to the 
shortest path in a version of the similarity graph that has 
been altered by positive constraints. Some latter studies 
have considered a more popular approach that learns global 
Mahalanobis metrics from pairwise constraints. [Xing et al.,
2003] proposed a convex optimization problem to learn a 
global Mahalanobis metric according to pairwise con-
straints. [Bar–Hillel et al., 2005] devised a more efficient, 
non-iterative algorithm called Relevant Component Analysis
(RCA) for learning a Mahalanobis metric. This method only 
incorporates positive constraints. An extension of the RCA 
method that can consider both positive and negative con-
straints has also been introduced [Yeung and Chang, 2006]. 
[Hoi et al., 2006] proposed Discriminative Component 
Analysis (DCA) method that uses the ratio of between chun-
klets and within chunklets convariance determinants as the 
objective function. Recently, [Xiang et al., 2008] introduced 
the trace ratio optimization problem as a more appropriate 
objective function. They have also provided a nice heuristic 
search to solve this problem. [Chang and Yeung, 2006] pro-
posed a method that finds a locally linear metric using posi-
tive constraints. However, the objective function of this 
method has many local optima and the topology cannot be 
preserved well during this approach [Yeung and Chang, 
2007]. [Chang et al., 2006] proposed a metric adaptation 
method. This method adjusts the location of data points it-
eratively, so that similar points tend to get closer and dis-
similar points tend to move away from each other. As this 
method lacks an explicit transformation map, it cannot pro-
ject new data points onto the transformed space straightfor-
wardly [Chang et al., 2006]. In [Yeung and Chang, 2007], 
two kernel-based metric learning methods have been pre-
sented that have some limitations [Yeung and Chang, 2007].  

Among the existing metric learning methods for semi-
supervised clustering, some of them [Xing et al., 2003; Ye-
ung and Chang, 2006; Hoi et al., 2006; Xiang et al., 2008] 
can incorporate both positive and negative constraints for 
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metric learning. But, none of these methods (that can con-
sider both positive and negative constraints) have used the 
topological structure of data. Moreover, all of them find a 
linear transformation (or equivalently a Mahalanobis dis-
tance metric) according to pairwise constraints. In this pa-
per, we formulate an objective function considering all data 
points along with pairwise similarity and dissimilarity con-
straints and generalize this objective function to learn a 
nonlinear transformation. We find the global optimum of the 
proposed objective function using the search algorithm in-
troduced by [Xiang et al., 2008]. As our metric learning 
method can find nonlinear metrics and also it considers the 
topological structure of data, it shows higher capability 
compared with the existing methods. 

The rest of this paper is organized as follows: In Section 
2, a metric learning method considering both pairwise con-
straints and the intrinsic structure of data is proposed. In this 
section, first we introduce an optimization problem to find 
an appropriate linear metric and then we provide a non-
linear metric learning method as a special case of the kernel-
ized version of our linear method. Section 3 presents ex-
perimental results on some synthetic and real-world data 
sets. Concluding remarks are given in the last section. 

2 Proposed Metric Learning Approach 
In this section, first we propose a metric learning method 
using pairwise constraints while considering the topological 
structure of data. Then, we introduce a non-linear extension 
of this method. 

2.1 Linear metric learning  
To find an appropriate metric, the manifold structure of data 
is incorporated along with pairwise (positive and negative) 
constraints in our method. We are given a set of data points 

1{ }n
i iX �� x  and two sets including positive 

{( , ) |  and  are in the same class}i j i jP � x x x x  and negative 
{( , ) |  and  are in two different classes}i j i jD � x x x x  con-

straints. The optimization problem for the transformation 
T�y W x  is defined as: 
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Here, ( )J W  shows a penalty (regularizer) term that tries to 
preserve the topological structure of data during the trans-
formation, and 0� 
  balances between distances of similar 
pairs and the regularizer term. In (1), a metric T�A WW  is 
sought that makes distances between point pairs in D  as 
large as possible while making a combination of distances 
between point pairs in P  and the penalty term as small as 
possible. The constraint T �W W I  has also been consid-
ered to prevent improper solutions [Xiang et al., 2008; Hoi 

et al., 2006]. Based on T�y W x , we can rewrite the opti-
mization problem in (1) as: 
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Here, tr  shows the trace operator, and wS  and bS  are de-
fined as:  
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If we set 0� �  in (2), the problem becomes similar to the 
optimization problem introduced in [Xiang et al., 2008]. In 
(2), d dRW ���  shows the transformation matrix (with 
d d� 
 ), where d  and d �  denote the dimensionality of the 
input and the transformed space respectively. When d d �� ,
we have T TWW W W I� �  which generates the Euclidean 
metric [Xiang et al., 2008] and thus we consider d d� � .

To preserve the topological structure of data via the term 
( )J W  in the objective function, we use the idea of Locally

Linear Embedding (LLE) method [Roweis and Saul, 2000]. 
Indeed, we try to preserve the manifold structure of data by 
retaining locally linear relationships between close data 
points in the transformed space. Given the set of data points, 
a k -nearest neighbor graph models the relations between 
close data points. The optimal weight matrix * *[ ]ijs�S  pro-
viding minimal error for the linear reconstruction of data 
points from their neighbors is obtained according to: 

2

*
1[ ] ( ) ( )

min ,  s.t. , 1
ij

j k i j k i

n
i ij j ijis N N

s i s
��

� �

� � � �	 	 	S x x x x
S x x ,  (5) 

where � �k iN x  shows the set of k  nearest neighbors of ix .
This problem can be solved as a constrained least-squares 
problem [Roweis and Saul, 2000]. After finding the optimal 
weight matrix *S , we define the penalty term � �J W  as: 
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where * *( ) ( )T� � �E I S I S  and � �1 2, , , n�Y y y y� . Thus, 

for T�y W x , we have � �( ) T TJ tr�W W XEX W  where 

� �1 2, , , n�X x x x� . In (6), � �J W  denotes the locally linear 
reconstruction error of the transformed data points accord-
ing to the weight matrix *S . Indeed, it reflects the assump-
tion of preserving the geometrical structure of data in the 
transformed space.  

By substituting (6) into (2), we have 
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This problem cannot be solved by eigenvalue decomposition 
approaches. However, we can use the search algorithm in-
troduced in [Xiang et al., 2008] for optimizing the con-
strained trace ratio problem. Since the matrix E  and conse-
quently T

w ��S XEX  are symmetric positive semi-definite 
matrices, the necessary condition of the introduced algo-
rithm in [Xiang et al., 2008] is satisfied even when we con-
sider the regularizer term in the objective function. Thus, we 
can use the heuristic search algorithm presented in [Xiang et
al., 2008] to solve the proposed optimization problem and 
find the optimal transformation matrix *W  or equivalently 
the optimal metric * * *( )T�A W W .

2.2 Kernel-Based Metric Learning  
In this section, first we introduce a kernelized version of our 
linear metric learning method presented in the above section 
and then we consider a special case of this kernelized 
method as the proposed kernel-based metric learning 
method. To perform our linear method in Reproducing Ker-
nel Hilbert Space (RKHS), we consider the problem in a 
feature space F  induced by a nonlinear mapping 

: dR F� �  [Cai et al., 2007]. For a proper chosen � , we 
can define an inner product on F  using Mercer kernel 

( ), ( ) ( , )K� �� ��x y x y  where (.,.)K  is a positive semi-
definite kernel function. Many choices for kernel functions 
that satisfy Mercer’s condition are possible such as polyno-
mial, Gaussian, and exponential kernels.  

In the kernel-based method, we apply the transformation 
matrix � �1 2, ,..., d ��W w w w  consisting of orthonormal vec-

tors � �| 1, 2,...,i F i d �� �w  ( ,,i j i j�� ��w w ) on ( ) F� �x

via the transformation ( )T��y W x . This transformation 
performs a mapping from dR  to dR � . To express the opti-
mization problem in the kernel space, first we rewrite the 
problem in (1) as: 
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DU  can also be defined similarly according to the set of 
negative constraints D . Let 1 2[ ( ), ( ),..., ( )]n� � ��� x x x
denotes the data points in the kernel space. As ( )T��y W x ,
we obtain the following optimization problem in the RKHS: 

* ( )
= arg max
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Since the vectors { | 1, 2,..., }i F i d �� �w  can be written 
as linear combinations of data points in the kernel space 

1 2( ), ( ), , ( )n� � �x x x� 1, there exist a matrix 

� �1 2, , , d ��V v v v�  such that �W �V . Indeed, each n -
dimensional vector iv  contains coefficients required for 
computing iw  from data points in the kernel space. Thus, 
we can rewrite (12) as:   
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where T�K � �  is the kernel matrix. Since DKU K  and 
( )P ��K U E K  are positive semi-definite matrices, we can 

solve this optimization problem using the search algorithm 
introduced in [Xiang et al., 2008].  

Unfortunately, for many kernel learning settings, the 
amount of supervisory information is typically very lim-
mited [Yeung et al., 2007]. Allowing too much flexibility in 
the model while having limited supervisory information 
may lead to model over-fitting [Yeung et al., 2007]. Here, 
we restrict the transformation matrix W  in (12) and revise 
the optimization problem for finding a smaller matrix. We 
limit the columns of matrix W  such that they are calculated 
only from positively constrained data points (these data 
points are usually the most informative ones). Let 

1 2
{ , , , }

ml l lx x x�  be the set of data points appearing in posi-
tive constraints and m  be the number of unique data points 
involved in positive constraints. If we restrict the columns 
of matrix W  to linear combinations of 

1 2
( ), ( ), , ( )

ml l l� � �x x x� , the transformation matrix W  can 

be defined as � ��W � V  where �V  is an m d ��  matrix 
and

1 2
[ ( ), ( ), , ( )]

ml l l� � �� �� x x x� . In this case, we obtain 
the following optimization problem: 
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where 1[ (., ),..., (., )]T
ml l� �� �K � � K K . Also, we have 

( )T T T� � � �� � �Y W � � V � V K . According to (14), we 
need to optimize a smaller matrix �V  than V . We can use 
the heuristic search algorithm introduced in [Xiang et al.,

1 Using the search algorithm presented in [Xiang et al. 2008], the 
columns of W  in (12) are obtained as eigenvectors of  

( ( )) T
D P� �� �� U U E �  and these eigenvectors are linear combi-

nations of 1 2( ), ( ), , ( )n� � �x x x� .
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2008] to find the optimal matrix �V  and then we compute 
the transformed data points accordingly T� ��Y V K . We 
use the exponential kernel � �( , ) expK w� � �x y x y  in 
our method. 

3 Experimental Results 
In this section, we explain experiments that we have con-
ducted to compare our non-linear metric learning method 
with some existing methods. We measure the effectiveness 
of semi-supervised metric-learning algorithms by comparing 
clustering results obtained from using different metrics. 

3.1 Comparison of Metrics 
We compare our non-linear method with the metric learning 
algorithms introduced in [Xiang et al., 2008; Xing et al.,
2003; Yeung and Chang, 2006], as they are the most effec-
tive methods considering both positive and negative con-
straints. We also include the LLMA algorithm [Chang and 
Yeung, 2006] in our evaluations. This algorithm is one of 
the most powerful metric learning methods that only use 
positive constraints (it provides a globally non-linear met-
ric).

As in [Xing et al., 2003; Yeung and Chang, 2006; Chang 
and Yeung, 2006], we use the Euclidean distance (without 
metric learning) for the baseline comparison and apply the 
k-means clustering algorithm with different distance metrics 
to compare these metrics. Thus, the performance of our non-
linear metric learning algorithm is evaluated by comparing 
the following algorithms: 
1. k-means without metric learning; 
2. k-means with the metric learning method introduced in 

[Xiang et al., 2008]; 
3. k-means with the LLMA [Chang and Yeung, 2006] 

method for metric learning; 
4. k-means with the extended RCA [Yeung and Chang, 

2006] method for metric learning; 
5. k-means with the metric learning method introduced in 

[Xing et al., 2003]; 
6. k-means with our non-linear metric learning method. 
The parameters of our algorithm are set to 10k � ,

2d m� � , and  
0.2 5
0.02 5

d
d

�
��

� � 
�
.                                                           (15) 

The kernel parameter w  of our method and the Gaussian 
window parameter of the LLMA method are specified as 

2 [ ( 1)]x xi ji j
w n n�

�
� � �	  according to [Chang and 

Yeung, 2006] where we set 1.5� �  for our method. The 
number of nearest neighbors k  of the LLMA has also been 
set to 10k �  and the parameter �  of this algorithm has 
been set to 0.2� �  (this value provides better results than 

5� �  used in [Chang and Yeung, 2006]). For optimization 
in the LLMA algorithm, we used the spectral method. Fi-

nally, we set the reduced dimensionality of the method of 
[Xiang et al., 2008] to half of the dimensionality of the in-
put space [Xiang et al., 2008]. 

As in [Yeung and Chang, 2006], we set nc P D� �  for 
methods that use both positive and negative constraints. 
Since results depend on P  and/or D  sets, we generate 20 
different P  and/or D  sets for each data set. Finally, we run 
the k-means algorithm 20 times with different random ini-
tializations for each P  and/or D  set. 

3.2 Performance Measure 
To evaluate the performance of clustering in our experi-
ments, we employ the Rand index as the most widely used 
measure by semi-supervised metric learning algorithms. It 
shows how well the clustering results agree with the ground 
truth clusters [Chang and Yeung, 2006]. Let sn  be the num-
ber of data pairs assigned to the same cluster, both in the 
ground truth and the resultant clustering (i.e., matched pairs) 
and dn  be the number of data pairs assigned to different 
clusters both in the ground truth and the resultant clustering 
(i.e., mismatched pairs). The Rand index is defined as 

2( ) / ( ( 1))s dRI n n n n� � �  [Xing et al., 2003] ( n  denotes 
the number of data points). This index favors assigning data 
points to different clusters when there are more than two 
clusters [Xing et al., 2003]. Thus, we modify the Rand in-
dex as in [Xing et al., 2003] such that the matched pairs and 
mismatched pairs are assigned weights to give them equal 
chances of occurrence (0.5) [Chang and Yeung, 2006]. 

3.3 Experiments on Synthetic and UCI Data Sets 
At first, we conduct experiments on three synthetic data sets 
displayed in Figure 1. In this figure, the data points that be-
long to the same class are shown with the same style. Figure 
2 shows the results of applying different algorithms on these 
data sets as box-plots ( nc P D� � ). Although the LLMA 
algorithm gives good results on two out of the three syn-
thetic data sets, our method performs well on all of them.  

We then conduct further experiments on nine real-world 
data sets obtained from the Machine Learning Repository2

of the University of California, Irvine (UCI): Soybean 
(47/35/4), Protein (116/20/6), Iris (150/4/3), Wine 
(178/13/3), Ionosphere (351/34/2), Boston housing 
(506/13/3), Breast cancer (569/31/2), Balance (625/4/3), and 
Diabetes (768/8/2). The numbers inside parentheses (n/d/c) 
show the number of data points n , the number of features 
d , and the number of classes c . Figure 3 shows the results 
of different algorithms on the nine UCI data sets. The num-
ber of constraints nc  used for different data sets has been 
specified according to the numbers used in [Yeung and 
Chang, 2006; Chang and Yeung, 2006]. All of the data sets 
are normalized before use in the clustering 

2 http://archive.ics.uci.edu/ml/ 
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(a) data set 1 (b) data set 2 (c) data set 3 
Figure 1. Synthetic data sets. 

(a) data set 1, 5nc � (b) data set 2, 10nc � (c) data set 3, 15nc �
Figure 2. Clustering results on the three synthetic data sets using different metrics (numbered as in Section 3.1). 

(a) soybean 10nc �  (b) protein 20nc �  (c) iris 30nc �

(d) wine 20nc �  (e) ionosphere 30nc � (f) Boston housing 40nc �

(g) breast cancer 40nc �  (h) balance 40nc �  (i) diabetes 40nc �
Figure 3. Clustering results on the nine UCI data sets using different metrics (numbered as in Section 3.1). 
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algorithms (each feature is normalized to zero mean and unit 
standard deviation). 

As we can see in Figure 3, our method generally provides 
better results than the other methods. By comparing the pro-
posed method with [Xiang et al., 2008], the most recent 
metric learning method, we find that our method is clearly 
better than it for six out of the nine data sets and comparable 
with it for two of the data sets. 

4 Conclusions and Future Works 
In this paper, we introduced a novel metric learning method 
for semi-supervised clustering. The existing metric learning 
methods that can use both positive and negative constraints 
have not incorporated the geometrical structure of data. Ad-
ditionally, they only provide linear metrics. The proposed 
method uses the topological structure of data along with 
positive and negative constraints to find an appropriate met-
ric. We proposed a kernel-based method to find a non-linear 
metric that is usually more useful than linear metrics. Ex-
perimental results on synthetic and UCI data sets showed 
the superior performance of our algorithm. In the future, we 
will investigate other forms of kernel-based metric learning 
methods. We also intend to evaluate the performance of our 
method on other real-world applications. 
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