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Abstract
Recognition of chatting activities in social interac-
tions is useful for constructing human social net-
works. However, the existence of multiple peo-
ple involved in multiple dialogues presents spe-
cial challenges. To model the conversational dy-
namics of concurrent chatting behaviors, this pa-
per advocates Factorial Conditional Random Fields
(FCRFs) as a model to accommodate co-temporal
relationships among multiple activity states. In ad-
dition, to avoid the use of inefficient Loopy Be-
lief Propagation (LBP) algorithm, we propose us-
ing Iterative Classification Algorithm (ICA) as the
inference method for FCRFs. We designed ex-
periments to compare our FCRFs model with two
dynamic probabilistic models, Parallel Condition
Random Fields (PCRFs) and Hidden Markov Mod-
els (HMMs), in learning and decoding based on
auditory data. The experimental results show that
FCRFs outperform PCRFs and HMM-like models.
We also discover that FCRFs using the ICA infer-
ence approach not only improves the recognition
accuracy but also takes significantly less time than
the LBP inference method.

1 Introduction
Human social organizations often have complex structures.
The organization of a group defines the roles and functions
of each individual, thereby ensuing the functions of the group
as a whole. Ad hoc social organization may develop during
a public gathering due to common interests or goals. For ex-
ample, at an academic conference, attendees tend to interact
with people who share similar background or research inter-
ests. As a result, conversation patterns among the attendees
can be used to map out the human networks [Gips and Pent-
land, 2006]. Such insights can help provide important support
for timely services, e.g. sending announcements to attendees
with relevant interests, or tracking conversations on hot topics
at the meeting.

This research aims to develop the methodology for recog-
nition of concurrent chatting activities from multiple audio
streams. The main challenge is the existence of multiple par-
ticipants involved in multiple conversations. To model the

dynamic interactions, we adopt a probabilistic framework to
learn and recognize concurrent chatting activities.

This paper proposes using Factorial Conditional Random
Fields (FCRFs) [Sutton et al., 2007] to detect and learn from
patterns of multiple chatting activities. First, we survey sev-
eral related projects and technologies for chatting activity
recognition. Section 3 defines the FCRFs model, and section
4 introduces its learning and decoding, combined with LBP or
ICA inference methods. Finally, we present our experiments
to evaluate the performance of different models and inference
methods, followed by the conclusions and future work.

2 Background
It is intuitively reasonable to infer activities of daily living
using dynamic probabilistic models, such as Hidden Markov
Models (HMMs) and complex Dynamic Bayesian Networks
(DBNs) To recognize chatting activities, researchers tried to
examine the Mutual Information between each person’s voic-
ing segments as a matching measure [Basu, 2002; Choud-
hury and Basu, 2004]. However, since multiple conversa-
tional groups usually exist concurrently in public occasions,
it is very likely that the matching result does not correspond
to the actual pair of conversational partners. To avoid am-
biguity, model-based methods are used to monitor the chat-
ting activities among different social groups. To capture the
turn-taking behaviors of conversations, HMMs are used to
describe the transition possibility of dynamic changes among
group configurations [Brdiczka et al., 2005]. Factored DBNs
were introduced in [Wyatt et al., 2007] to separate speakers
in a multi-person environment relying on privacy-sensitive
acoustic features, where the state factorization makes it rel-
atively simple to express complex dependencies among vari-
ables.

Conditional Random Fields (CRFs) [Lafferty et al., 2001]
provide a powerful probabilistic framework for labeling and
segmenting structured data by relaxing the Markov indepen-
dence assumption. Various extensions of CRFs have been
successfully applied to learning temporal patterns of com-
plex human behaviors [Liao et al., 2007]. Multi-Task CRFs
(MCRFs), a generalization of LCRFs, are proposed to do
multitasking sequence labeling for human motion recogni-
tion [Shimosaka et al., 2007]. FCRFs are adopted by [Wu
et al., 2007] to recognize multiple concurrent activities from
the MIT House n dataset [Intille et al., 2006]. Researchers at
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MIT presented Dynamic CRFs (DCRFs) combined with fac-
tored approach to capture the complex interactions between
NP and POS labels in natural-language chunking task [Sut-
ton et al., 2007]. A hierarchical CRFs model was proposed in
[Liao et al., 2007] for automatic activity and location infer-
ence from the traces of GPS data.

To solve inference problems on generalized CRFs with
loops, LBP algorithm is proposed based on local messages
passing [Yedidia et al., 2002]. Unfortunately, the LBP algo-
rithm is neither an exact inference algorithm nor guaranteed
to converge except when the model structure is a tree [Sut-
ton and McCallum, 2007]. In addition, its updating proce-
dure is very time-consuming to train and decode generalized
CRFs models. Other researchers from MIT presented ICA
to iteratively infer the states of variables given the neighbor-
ing variables as observed information [Neville and Jensen,
2000]. ICA inference was shown empirically to help improve
classification accuracy and robustness of the LBP algorithm
for graph structures with high link density [Sen and Getoor,
2007].

3 Model Design
Let X be the set of observed variables representing acous-
tic feature values and Y be the set of hidden variables rep-
resenting the chatting activity labels. In addition, let (x, y)
denote the values assigned to the variables (X, Y ), N denote
a given number of concurrent chatting activities, and T de-
note a given total time steps. Specifically, we use a 3-state
variable Y t

i ∈ Y whose value is yt
i to represent the state of

chatting activity i at time step t. We also use Yi = {Y t
i }T

t=1
whose values are yi to represent the state sequence of chatting
activity i over time. Similarly, we use one observed variable
Xt

i assigned with xt
i to denote single observed feature value

related to Y t
i . As for multiple feature values, each of them

will be represented as an independent observed variable.
Let G = (V,E) be an undirected graph structure consisting

of two vertex sets {(X, Y )} ≡ V . For any given time slice
t and chatting activity i, we build edges (Y t

i , Y t+1
i ) ∈ E

to represent the possibility of activity state transition across
time slices. We also build edges (Xt

i , Y
t
i ) ∈ E to represent

the possible relationships between activity labels and acous-
tic observations. Most importantly, edges (Y t

i , Y t
j ) ∈ E are

built to represent the possibility of co-temporal relationships
between any two concurrent chatting activities i and j. That
is, all the hidden nodes within the same time slice are fully
connected. Figure 1 shows a sample FCRFs model for the
recognition of 3 concurrent chatting activities in a dynamic
form by unrolling the structure of two time slices.

Secondly, we let C be the set of maximum cliques in G,
where each clique c(i, j, t) ∈ C is composed of the vertices
based on the indexes (i, j, t) and chatting activities i �= j.
Figure 1 presents 3 sample cliques, where the local clique
consists of (Xt

i , Y
t
i ) ∈ C, the temporal clique consists of

(Xt
i , Y

t
i , Xt+1

i , Y t+1
i ) ∈ C, and the co-temporal clique con-

sists of (Xt
i , Y

t
i , Xt

j , Y
t
j ) ∈ C. Meanwhile, several non-

negative potential functions are also defined on these cliques,
which are shown as follows:

• We use φA
i (xt

i, y
t
i , t) =

exp

(
P∑

p=1

w
(p)
i f

(p)
i (xt

i, y
t
i , t)

)

to denote the local potential function defined on every
local clique, where f

(p)
i (. . .) is a function to indicate

whether the state values are equal to the pth state com-
bination within this clique, and w

(p)
i is its corresponding

weight assigned to W
(p)
i . Particularly, f

(p)
i (. . .) = xt

i, if
Xt

i represents a numerical feature value.

• We use φB
i (xt

i, y
t
i , x

t+1
i , yt+1

i , t) =

exp

(
Q∑

q=1

w
(q)
i f

(q)
i (xt

i, y
t
i , x

t+1
i , yt+1

i , t)

)

to denote the temporal potential function defined on ev-
ery temporal clique, where f

(q)
i (. . .) is a function to

indicate whether the state values are equal to the qth

state combination within this clique, and w
(q)
i is its

corresponding weight assigned to W
(q)
i . Particularly,

f
(q)
i (. . .) = |xt+1

i − xt
i|, if Xt

i represents a numerical
feature value.

• We use φΔ
ij(x

t
i, y

t
i , x

t
j , y

t
j , t) =

exp

(
R∑

r=1

w
(r)
ij f

(r)
ij (xt

i, y
t
i , x

t
j , y

t
j , t)

)

to denote the co-temporal potential function defined on
every co-temporal clique, where f

(r)
ij (. . .) is a function

to indicate whether the state values are equal to the
rth state combination within this clique, and w

(r)
ij is its

corresponding weight assigned to W
(r)
ij . Particularly,

f
(r)
ij (. . .) = |xt

i − xt
j |, if Xt

i represents a numerical fea-
ture value.

Figure 1: A sample FCRF of 3 concurrent chatting activities.

Finally, we use W = {W (k)}K
k=1 whose assigning values

are w = {w(k)}K
k=1 to denote the combined set for all of the

model parameters {WA
i ∪ WB

i ∪ WΔ
ij }N

i �=j , where WA
i =
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{W (p)
i }P

p=1, WB
i = {W (q)

i }Q
q=1, WΔ

ij = {W (r)
ij }R

r=1 and K
is the number of model parameters. In addition, we use D =
{x(m), y(m)}M

m=1 to denote the data set used for learning and
decoding processes, where M is the number of data. Now we
can formally define the mathematical formulation of FCRFs
model as follows:

P (y|x, w) =
1

Z(x)

(
T∏

t=1

N∏
i=1

φA
i (xt

i, y
t
i , t)

)
(

T−1∏
t=1

N∏
i=1

φB
i (xt

i, y
t
i , x

t+1
i , yt+1

i , t)

)
⎛
⎝ T∏

t=1

N∏
i,j

φΔ
ij(x

t
i, y

t
i , x

t
j , y

t
j , t)

⎞
⎠

(1)

where Z(x) is the normalization constant.

4 Inference Methods
Before describing the necessary inference tasks in our FCRFs
model, let us use f (k)(xc(i,j,t), yc(i,j,t), t) to denote either
f

(p)
i (. . .), f

(q)
i (. . .) or f

(r)
ij (. . .) for simplification, where

(xc(i,j,t), yc(i,j,t)) represents the assigning values of nodes in
the specific clique c(i, j, t). The following sections describe
the learning and decoding processes in detail and how we uti-
lize the ICA inference method to improve the efficiency.

4.1 Learning and Decoding Processes
The purpose of the learning process is to determine the weight
w(k) corresponding to each feature function f (k). To do this,
we can maximize the log-likelihood relying on the training
data set D, where the log-likelihood function is shown as fol-
lows:

L(D|w) =
M∑

m=1

log P (y(m)|x(m), w) (2)

which is the log value of P (D|w) defined as follows:

P (D|w) =
M∏

m=1

P (y(m), x(m)|w)

=
M∏

m=1

P (y(m)|x(m), w)
M∏

m=1

P (x(m)|w)

∼=
M∏

m=1

P (y(m)|x(m), w)

where
∏M

m=1 P (x(m)|w) is constant and can be ignored, be-
cause we reasonably assume that P (X|W ) is a uniform dis-
tribution. As a result, we can derive the partial derivative of

log-likelihood with respect to w(k) from Eq. (1) and Eq. (2)
as follows:

∂L(D|w)
∂w(k)

=
M∑

m=1

T∑
t=1

N∑
i,j

f (k)(x(m)
c(i,j,t), y

(m)
c(i,j,t), t)−

M∑
m=1

T∑
t=1

N∑
i,j

P (y(m)
c(i,j,t)|x(m), w)f (k)(x(m)

c(i,j,t), y
(m)
c(i,j,t), t)

(3)

In this way, we can learn the weights w by satisfying the
equation ∂L(D|w)/∂w(k) = 0. To solve such an optimiza-
tion problem, we use L-BFGS method to conduct the learn-
ing process [Sutton and McCallum, 2007]. Noticeably, the
marginal probability P (y(m)

c(i,j,t)|x(m), w) in Eq. (3) can be
difficult to calculate. However, we cannot use the Forward-
Backward Algorithm (FBA) [Rabiner, 1989] to efficiently
compute it, because such a DP method can only be used in
linear-chain graph structures like HMMs and LCRFs models.
Therefore, we decide to use LBP sum-product algorithm with
random schedule strategy to approximate the marginal prob-
ability [Yedidia et al., 2002]. Although LBP simply conducts
approximate inference, it has often been used for loopy CRFs
inference [Sutton et al., 2007; Vishwanathan et al., 2006;
Liao et al., 2007].

Unfortunately, as for the objective value of log-likelihood
required by the L-BFGS optimization process, it is infeasi-
ble for LBP algorithm to calculate the normalization constant
Z(x) in Eq. (1). Therefore, we decide to use Bethe free
energy [Yedidia et al., 2005] to approximate the normaliza-
tion constant. Furthermore, to avoid the over-fitting prob-
lem, what we actually do is to maximize the penalized log-
likelihood L(w|D) = L(D|w) +

∑K
k=1 logP (w(k)) by tak-

ing into consideration a zero-mean Gaussian prior distribu-
tion P (w(k)) = exp(−(w(k))2/2σ2) with variance σ = 1.5
for each parameter W (k). As a result, the original partial
derivative in Eq. (3) becomes a new penalized form which
is shown as follows:

∂L(w|D)
∂w(k)

=
∂L(D|w)

∂w(k)
− w(k)

σ2

As regards the decoding process, LBP algorithm can be
also used for performing the MAP (Maximum A Priori) in-
ference which can decode the most possible sequences of ac-
tivity states [Yedidia et al., 2002]. To conduct the MAP in-
ference, we simply propagate the max value during the mes-
sage updating procedure in the original LBP sum-product
algorithm. After such an LBP max-product algorithm con-
verges and the MAP probability of each hidden variable is
estimated, we can label every hidden variable by choosing
the most likely value according to the MAP probability.

4.2 Decomposition
Another interpretation for the FCRFs model is to separate
the factored graph structure into several linear-chain struc-
tures. That is, the original FCRFs model is considered to be-
ing composed of several LCRFs models, where each of them
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represents single chatting activity. To further maintain the
co-temporal relationships, each hidden node Y t

i depends not
only on its own observed node Xt

i but also on other hidden
nodes Y t

j as observations. As a result, the new form for each
LCRFs model is expressed as follows:

P (yi|oi, wi) =
1

Z(oi)

(
T∏

t=1

φA
i (ot

i, y
t
i , t)

)
(

T−1∏
t=1

φB
i (ot

i, y
t
i , o

t+1
i , yt+1

i , t)

)

where ot
i is a value set assigned to new observed variables

Ot
i = Xt

i ∪ {Y t
j }N

i �=j , oi is a value set assigned to Oi =
{Ot

i}T
t=1, and wi is a value set assigned to the LCRFs model

parameters Wi = WA
i ∪ WB

i only for chatting activity i.
Noticeably, {Y t

j }N
i �=j represents the neighbor nodes of Y t

i in
the same time slice t. In this way, the learning process for
the original FCRFs structure is to train individual LCRFs
models, where each LCRFs model considers other activity
states as additional observations. As a result, the main infer-
ence tasks, including the calculation of marginal probability
P (y(m)

c(i,j,t)|o(m)
i , wi) and the normalization constant Z(o(m)

i ),
can be efficiently obtained through the use of FBA, such that
the exact inference is still likely to be applied in FCRFs learn-
ing.

4.3 ICA Inference
Most importantly, ICA provides another inference approach
in an iterative fashion for decoding process. The basic idea
of ICA is to decode every target hidden variable based on the
assigning labels of its neighbor variables, where the labels
might be dynamically updated throughout the run of iterative
process. Compared with LBP algorithm, ICA does the in-
ference not only based on observed variables but also based
on hidden variables as observations. After a given number
of iterative cycles, the classification process will eventually
terminate and all the hidden variables will be assigned with
fixed labels.

Therefore, we can use the ICA inference method to label
multiple concurrent sequences, as long as we priorly follow
the decomposition procedure, letting the LCRFs model pa-
rameters Wi for every chatting activity i be learned as wi. Al-
gorithm 1 formally provides the detailed ICA procedure for
our FCRFs decoding, where an upper limit Λ = 103 for the
number of iterations is set to avoid infinite repeat, followed
by an ICA example with 2 concurrent chatting activities as
shown in Figure 2. Noticeably, since the LCRFs model pro-
vides an efficient FBA, the ICA inference method also has an
opportunity to help accelerate the decoding process.

5 Experiments
Before carrying out the experiments, we asked every partici-
pant to wear an audio recorder around his or her neck to col-
lect the audio data. During a given period of time, the partic-
ipants can randomly determine their conversational partners

Algorithm 1 Iterative Classification Algorithm (Λ)
1: repeat
2: {Decode new labels}
3: for all Yi ⊆ Y do
4: Store yi ← arg maxyi

P (yi|oi, wi)
5: end for
6: {Update new labels}
7: for all Yi ⊆ Y do
8: Assign yi to Yi as new labels
9: end for

10: until yi = yi, for all Yi ⊆ Y

Figure 2: An ICA example for FCRFs model decoding.

and the audio recorders can record their conversations. As a
result, the collected audio recordings can be used for the an-
notation of participants’ conversational states as well as the
extraction of acoustic feature values. To do annotation, re-
searchers should listen very carefully to the audio recordings
to know who has spoken with whom, relying on the content
of what was said.

To evaluate the performance, we used the cross-validation
method to test the experimental data. However, to deal with
sequential data, this method suffers from the problem that the
important activities to be recognized may only occur in spe-
cific time periods, such that the possible patterns in the testing
data cannot be learned in the training data, or the learned re-
sults in training data cannot help recognize the testing data.
To address the problem, the sequential data should be frag-
mented into several small segments and each of the adjacent
segments along the temporal axis will be systematically reas-
signed to each fold. In practice, we define the time duration
between two consecutive time steps as 1 second and each seg-
ment contains 10 time slices (T = 10).

Finally, we measure the recognition accuracy as the per-
centage of correctly predicted conversations by applying the
10-fold cross-validation to compare the performance of the
various types of models and inference methods. More specifi-
cally, the comparisons for recognition accuracy include accu-
racy, recall, precision and F-score. In addition, to analyze the
efficiency of FCRFs learning and decoding by using different
inference methods, including LBP and ICA inferences, we
measure the learning time as the accumulated training time
during the process of cross-validation on an Xeon 5130 2.0G
PC, and measure the decoding time as the accumulated de-
coding time in a similar way. The following sections present
several experiments to verify the advantages of our FCRFs
models with ICA inference method.
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5.1 FCRFs Models vs. PCRFs Models
In this experiment, the primary purpose is to analyze the
recognition accuracy of two different FCRFs models by us-
ing LBP and ICA inference methods respectively. In addi-
tion, another Parallel CRFs (PCRFs) model is also trained
for comparison, which is composed of several LCRFs mod-
els parallelly and no co-temporal connections between hidden
nodes are built. That is, the co-temporal relationships among
chatting activities in FCRFs model are eliminated. As a re-
sult, we calculate the accuracy, recall, precision and F-score
for each chatting activity and then average them respectively.
We’ve designed 2 common scenarios to collect auditory data
for experiments, which are shown as follows:

1. Meeting activity The data is a set of 80-minute audio
streams recorded by 3 participants who are sitting in
fixed seats and holding discussion on a project. During
the period, they can switch their conversational partners
and no others would interrupt their meeting. Noticeably,
the audio recorders simply record the voices from the
participants rather than other non-human noises, so we
choose the volume features as our primary observations.
Although most of the time only one person is speaking,
the lack of voice recognition makes it relatively difficult
to disambiguate the speakers. The recognition accuracy
is summarized in Table 1.

Table 1: Recognition accuracy (%) in meeting activity.
Results (%) Accuracy Precision Recall F-score

PCRFs 80.71 78.94 73.45 75.22
FCRFs + LBP 80.31 78.60 81.27 79.77
FCRFs + ICA 82.28 81.53 77.74 79.41

2. Public occasion The data is a set of 45-minute au-
dio streams recorded by 3 participants who can walk
around and chat with others in a real-world laboratory.
Noticeably, not only these participants who wear au-
dio recorders are involved in our experimental environ-
ment, but also other occupants who do not wear audio
recorders are allowed to exist. In this way, all of them
can randomly chat with each other or choose to do their
personal activities, thereby creating a naturalistic sce-
nario varies in background noise. Therefore, in addition
to the feature values of volume and MI, we consider ex-
tra features used for human voice detection. The recog-
nition accuracy is summarized in Table 2.

Table 2: Recognition accuracy (%) in public occasion.
Results (%) Accuracy Precision Recall F-score

PCRFs 80.62 69.46 39.67 50.47
FCRFs + LBP 84.57 66.11 63.20 64.09
FCRFs + ICA 86.62 82.16 61.37 68.94

In both the above scenarios, we can observe a consistent
phenomenon that all the FCRFs models significantly outper-
form the PCRFs model in the comparison of F-score. This

result provides us the conclusion that it is helpful to utilize
the co-temporal relationship for chatting activity recognition.
However, the FCRFs model with LBP inference performs
even more badly than the PCRFs model in the comparison
of precision, while the FCRFs model with ICA inference still
performs the best.

5.2 CRF-like Models vs. HMM-like Models
In this experiment, two DBN models, Parallel HMMs (PH-
MMs) [Vogler and Metaxas, 2001] and Coupled HMMs
(CHMMs) [Brand et al., 1997], are trained for comparison.
PHMMs model is very similar to the PCRFs model, where
all of the multiple chatting activities are independent tempo-
ral processes and each of them is modeled as a linear-chain
HMMs. Furthermore, the CHMM model assumes that each
hidden variable is conditionally dependent on all hidden vari-
ables in the previous time slice. Therefore, the CHMM model
also has the ability to capture the interactive relationships
among chatting activities, which can be compared with the
FCRFs model. By analyzing the audio data collected in the
public occasion, the recognition accuracy of HMM-like mod-
els is summarized in Table 3.

Table 3: Recognition accuracy (%) of various HMMs.
Results (%) Accuracy Precision Recall F-score

PHMMs 42.90 35.01 42.63 36.69
CHMMs 49.95 42.29 32.83 36.86

Taken as a whole, we can discover that all the CRF-like
models significantly outperform the HMM-like models in all
the comparisons of recognition accuracy, which concludes
that the CRF-like models indeed have the ability to accom-
modate overlapping features and are much more powerful to
capture complex co-temporal relationships among multiple
chatting activities.

5.3 LBP Efficiency vs. ICA Efficiency
The efficiency analysis based on the audio data collected in
the public occasion is summarized in Table 4, which com-
pares the learning time and decoding time by using the vari-
ous types of CRFs models as well as inference methods.

Table 4: Performance comparisons of learning time (sec.) and
decoding time (sec.) using the various types of CRFs models
and inference methods in the public occasion.

Results (sec.) Learning Time Decoding Time
PCRFs 2879.57 1.20

FCRFs + LBP 113320.00 40.05
FCRFs + ICA 6437.16 19.00

In this experiment, we can come to an important conclu-
sion that the FCRFs model with ICA inference takes much
less time than LBP method to complete the learning and de-
coding processes. Especially in the comparison of learning
time, we can observe that there is even no significant differ-
ence between the PCRFs model and the FCRFs model with
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ICA inference. Given the difference in convergence property
of LBP and ICA in various conversation contexts, we chose to
compare them when effective convergence is reached – just to
be fair. Additional experiments may indeed offer potentially
interesting observations by stopping LBP early at increasing
rounds of message passing.

6 Conclusion and Future Work
This paper proposes the FCRFs model for joint recognition
of multiple concurrent chatting activities by using the ICA
inference method. We designed the experiments based on the
collected auditory data to compare our FCRFs model with
other dynamic probabilistic models, including PCRFs model
and HMMs-like models. The initial experiment showed that
the FCRFs model with ICA inference method, which is ca-
pable of accommodating the co-temporal relationships, can
help improve the recognition accuracy in the presence of co-
existing conversations. Most importantly, the FCRFs model
using ICA inference approach significantly takes much less
time to conduct the learning and decoding processes than the
LBP inference method. FCRF with ICA can be generalized
to recognize more general conversations or activities among
a larger group of participants with properly designed FCRF
graph structure capturing co-temporal relationships.
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