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Abstract

Object recognition using image-set or video se-
quence as input tends to be more robust since
image-set or video sequence provides much more
information than single snap-shot about the vari-
ability in the appearance of the target subject.
Constrained Mutual Subspace Method (CMSM) is
one of the state-of-the-art algorithms for image-
set based object recognition by first projecting
the image-set patterns onto the so-called gener-
alized difference subspace then classifying based
on the principal angle based mutual subspace dis-
tance. By treating the subspace bases for each
image-set patterns as basic elements in the grass-
mann manifold, this paper presents a framework
for robust image-set based recognition by CMSM-
based ensemble learning in a boosting way. The
proposed Boosting Constrained Mutual Subspace
Method(BCMSM) improves the original CMSM in
the following ways: a) The proposed BCMSM al-
gorithm is insensitive to the dimension of the gen-
eralized differnce subspace while the performance
of the original CMSM algorithm is quite depen-
dent on the dimension and the selecting of optimum
choice is quite empirical and case-dependent; b)
By taking advantage of both boosting and CMSM
techniques, the generalization ability is improved
and much higher classification performance can be
achieved. Extensive experiments on real-life data
sets (two face recognition tasks and one 3D ob-
ject category classification task) show that the pro-
posed method outperforms the previous state-of-
the-art algorithms greatly in terms of classification
accuracy.

1 Introduction

Recently object/face recognition with image-set has attracted
more and more attention within computer vision and pattern
recognition communities. Compared with single snapshot,
a set or a sequence of images provides much more infor-
mation about the variability in the appearance of the target
subject. The variability always exist in the context of ob-
ject category classification, visual surveillance or face recog-

nition applications, where multiple-viewpoint shots of target
object or surveillance system output over a period of time
with varying illumination conditions or changing facial ex-
pressions are available. Previous studies show that more ro-
bust object/face recognition performance can be achieved by
fully exploiting these kind of information[Shakhnarovich et
al., 2002; Yamaguchi et al., 1998; Wolf and Shashua, 2003;
Fukui and Yamaguchi, 2003; Fukui et al., 2006]. Fig1 shows
the superiority of image-set based recognition to the tradi-
tional method using a single snap-shot of image pattern.

Figure 1: Left: The traditional recognition method using sin-
gle input pattern; Right: Image-set based recognition using
multiple patterns

It is well known that the appearance distribution of image-
set or sequence for a target subject captured under complex
conditions, for example changing facial expressions, varying
illuminations or multiple viewpoints, can be approximately
represented by a low dimensional linear subspace. The prin-
cipal angles[Hotelling, 1936] between subspace pairs can be
used as a distance measure of the corresponding image-set
pairs. Many algorithms have been proposed for image-set
based object recognition using the concept of principal an-
gle based subspace distances. A noteworthy work is the
Mutual Subspace Method(MSM) presented by Yamaguchi
et al. [Yamaguchi et al., 1998]. In MSM, each image-set
is represented by the linear subspace spanned by the prin-
cipal components of the data and the smallest principal an-
gle between subspaces is exploited as distance measure. K.
Fukui et al. proposed the Constrained Mutual Subspace
Method(CMSM)[Fukui and Yamaguchi, 2003] which outper-
forms the original MSM greatly. Instead of directly applying
the classification using the principal angle based subspace
distances, the underlying idea of CMSM is to learn a lin-
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ear transformation while in the transformed space the corre-
sponding inter-class subspace distances are larger than that in
the original feature space. That is to say, the subspace bases
for different classes in the transformed space are more or-
thogonal to each other thus a higher classification rate can be
achieved. The above methods were further extended to their
non-linear counterpart by using the kernel trick such as in
[Wolf and Shashua, 2003; Fukui et al., 2006]. These kernel
based extensions improve the recognition performance at the
expense of prohibitively computational burden and the diffi-
culty of choosing optimum model and kernel parameters.

Recently ensemble-based learning with boosting has re-
ceived more and more attention within pattern recognition
and machine learning communities. Boosting is a classifier
ensembling method and has successful applications such as in
the face/object detection. The main idea of boosting is to se-
quentially learn a base classifier on a weighted version of the
training sample set. The weight distribution of each sample is
updated at each iteration in such a way that more emphasis are
put on those samples that are misclassified in the preceding it-
eration. It has been proved theoretically and demonstrated ex-
perimentally that in case that the learned base weak learners
perform slightly better that random guess, the final ensembled
classifier can achieve very accurate result. The boosting algo-
rithm is appealing for its ability of overfitting preventing and
generalization error reducing. The boosting algorithm can
use not only weak learners such as stump function but also
some rather strong learners for example LDA(Linear Dis-
criminant Analysis)-like algorithms[Masip and Vitria, 2006;
Lu et al., 2003; Dai and Yeung, 2007].

By treating the subspace bases for each image-set pat-
terns as basic elements in the grassmann manifold, this paper
presents a framework for robust image-set based recognition
by CMSM-based ensemble learning in a boosting way. In this
paper we will show that procedures of CMSM computation
can be incorporated into the proposed boosting framework
seamlessly. The proposed Boosting Constrained Mutual Sub-
space Method(BCMSM) improves the original CMSM in the
following ways: a) The proposed BCMSM algorithm is in-
sensitive to the dimension of the generalized difference sub-
space while the performance of the original CMSM algorithm
is quite dependent on the dimension and the selecting of op-
timum choice is quite empirical and case-dependent; b) By
taking advantage of both boosting and CMSM techniques,
the generalization ability is improved and much higher classi-
fication performance can be achieved. Extensive experiments
on real-life data sets show that the proposed method outper-
forms the previous state-of-the-art algorithms greatly in terms
of classification accuracy.

The rest of this paper is organized as follows: In sec-
tion 2 we first review the concept of the principal angles
based distance metric between subspace bases for the cor-
responding image-sets. Then some previous principal angles
based image-set classification methods and their drawbacks
are discussed, especially the Constrained Mutual Subspace
Method(CMSM), which is one of the state-of-the-art image-
set based recognition algorithms and also the basic learner
in the proposed boosting framework. Section 3 describes the
proposed method in detail and we will show how to boost

the performance of the CMSM in an ensemble learning way.
Section 4 is the experimental results and section 5 draws the
conclusion.

2 Image-set based recognition using principal

angles

We first define the problem of image-set based recogni-
tion as follows: Given C classes n input image-sets X i

j ∈

Rrc×hi
j , i = 1, ..., C, j = 1, ..., ni,

∑C
i=1 ni = n and the

X i
j denotes the j-th image-set instance for class i. r and c

represent the number of rows and columns respectively for
the original image in image-set and rc is the dimension of
the vectorized image. hi

j is the number of images in the j-th
image-set or length of the j-th sequence for the i-th class. The
collection of image-set instances for each class approximately
reside in a Ki-dimensional subspace Ωi ∈ Rrc×Ki while
each input image-set has its own underlying ki

j-dimensional

subspace structure denoted as U i
j ∈ Rrc×ki

j , i = 1, ..., C, j =
1, ..., ni, which can approximately describe the variations
in the appearance caused by different illuminations, varying
poses and changing facial expressions et al.1 For a test image-
set Xtest ∈ Rrc×h, the task is to predict its corresponding
identity ytest ∈ {1, ..., C}.

2.1 Principal angles between subspace pairs

The concept of principal angles between linear subspaces was
first presented in the 19-th century and then translated into
the statistics as canonical correlations[Hotelling, 1936]. Its
successful applications include data analysis, random pro-
cess, stochastic realization and system identification. Re-
cently in computer vision community, the concept of prin-
cipal angles is used as a distance measure for matching two
image-set pairs or sequence pairs, where each of them can be
approximated by a linear subspace[Yamaguchi et al., 1998].
If the principal angles between two subspace pairs are small
enough, then the corresponding image-set pairs from which
subspace pairs derived are considered similar. Generally, let
UA,UB represent two k-dimensional linear subspaces. The
principal angles 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θk ≤ π/2 between the
two subspaces can be uniquely defined as[Yamaguchi et al.,
1998]:

cos2(θi) = maxuA
i ⊥uA

j (j=1,2,...,i−1)

uB
i ⊥uB

j (j=1,2,...,i−1)

‖(uA
i ·u

B
i )‖2

‖uA
i ‖

2‖uB
i ‖

2 where

uA
i ∈ UA, uB

i ∈ UB .

Denote d(XA, XB) = d(UA, UB) = f(θ1, θ2, ..., θk)
as the principal angle based distance between image-sets
XA, XB with corresponding subspace bases UA and UB . It
is a function of principal angles and different methods for
image-set based recognition has different empirical form of
the function f .

1In the following discussion, for the simplicity we assume that
each image-set instance has the same number of frames which is
represented as h. The subspace for each image-set pattern has the
same dimension of k and the approximate subspace for each class
has the same dimension of K.
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2.2 Image-set based recognition using principal
angles

The original baseline Mutual Subspace Method(MSM) per-
forms the nearest neighbor search in the original feature space
without feature extraction procedure. The distance between
the subspace bases of the corresponding image-set pairs is de-
fined as the minimum principal angle in the form of d(·, ·) =
θ1[Yamaguchi et al., 1998].

K. Fukui et al. proposed the Constrained Mutual Sub-
space Method(CMSM) to further improve the performance
of the original MSM by feature extraction. Specifi-
cally, the Constrained Mutual Subspace Method(CMSM)
projects the original feature onto the eigenvectors of

G =
∑C

i=1 Pi =
∑C

i=1 ΩiΩi
T corresponding to the d small-

est eigenvalues, where G is the sum of the projection matrix
of all classes. The space spanned by those eigenvectors is
defined as the generalized difference subspace[Fukui and
Yamaguchi, 2003]. Projecting the image pattern on the
generalized difference subspace has the effect of expanding
the principal angle based distances between each class and
making the subspace bases for each class as orthogonal as
possible. Thus higher classification rate can be achieved. The
generalized difference subspace includes only the essential
component for recognition task since it is orthogonal to the
principal component subspace, which represents the inter-
sections of reference subspaces of each class. The distance
between the subspace bases of the corresponding transformed
image-set pairs is defined as the mean of the square of the

first t smallest principal angles as d(·, ·) = 1
t

∑t

i=1 θ2
t . More

specifically, the CMSM algorithm can be summarized as
follows:
Algorithm 1: Constrained Mutual Subspace
Method(CMSM):
Training:
1) Compute sum of the projection matrix of all classes as

G =
∑C

i=1 Pi =
∑C

i=1 ΩiΩi
T and eigendecompose G;

2) Output projection matrix W as the eigenvectors of G
corresponding to the first d smallest eigenvalues;
3) Project training image-sets using projection matrix W as

X̂ i
j = WT X i

j, i = 1, ..., C, j = 1, ..., ni

Testing:
1) Project testing image-set using projection matrix W as

X̂test = WT Xtest;
2) Classify using the projected training and testing image-set
patterns using baseline Mutual Subspace Method(MSM).

Although CMSM algorithm outperforms the original Mu-
tual Subspace Method(MSM) greatly and is one of the state-
of-the-art image-set based recognition methods, it still suffers
some drawbacks:
a) CMSM performs the principal angle based classification
after projecting the input patterns onto the generalized dif-
ference subspace which represents the subspace orthogonal
to the common subspace of the subspace bases for all input
classes. But there does not exist a theoretical way of choos-
ing the dimension of the generalized difference subspace. In
fact, the dimension of the generalized difference subspace
has great effect on the classification performance in terms of
recognition rate and the selecting of optimum choice of the
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Figure 2: A typical curve of recognition rate vs. the
dimension of the generalized difference subspace. The di-
mension of the original feature is 225 so when the dimension
of the generalized difference subspace equals to 225 the
Constrained Mutual Subspace Method(CMSM)(Solid
line) degenerates to the original Mutual Subspace
Method(MSM)(Dashed line)

dimension is quite empirical and case-dependent. For exam-
ple, Fig2 demonstrates a typical curve of recognition rate vs.
the dimension of the generalized difference subspace.

b) More severely, CMSM assumes that the distribution of
each class can be represented using a simple linear subspace,
while in the real life applications the actual distributions are
usually highly complex and reside in a nonlinear manifold.
Thus CMSM’s linear subspace assumption limits its general-
ization ability and has severe overfitting problem under cer-
tain circumstances. Instead, in this paper we treat the sub-
space bases for each image-set patterns in a specific class as
points in the grassmann manifold, and compute the represen-
tative prototype as weighted Karcher mean[Boothby, 2002;
Begelfor and Werman, 2006]. The constructed representa-
tive prototype emphasizes different region of the nonlinear
manifold according to the weight distribution. This will be
discussed in detail in the next section.

3 Boosting Constrained Mutual Subspace

Method(BCMSM)

Just as discussed above, the CMSM algorithm has its own
drawbacks and in this section, by treating the subspace base
for each image-set instance as a point in the grassmann man-
ifold space, a framework for robust image-set based object
recognition by CMSM ensemble learning in a boosting way
is presented.

Since our proposed method is based on the algorithm of ad-
aboost.M2, we first review the adaboost.M2 as follows. Ad-
aboost.M2 is a multiclass extension of the original binary ad-
aboost.M1 algorithm and aims to extend the communication
between the boosting algorithm and the corresponding basic
learner, which is the projection matrix learned by CMSM
in the proposed method. The adaboost.M2 allows the ba-
sic learner to generate more expressive hypotheses indicat-
ing a degree of belief. For example, the hypotheses output a
continuous confidence of each label rather than a single la-
bel. More specifically, a hypothesis h takes a sample y and
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a class label c as the inputs and produces a plausibility score
h(y, c) ∈ [0, 1] as the output. Furthermore, a more sophisti-
cated error measure pseudo-loss εt is introduced with respect
to the so-called mislabel distribution Dt(n, c), where t is the
boosting step index. (n, c) is a mislabel pair where n is the in-
dex of a training sample and c is an incorrect label associated
with the sampling n. let B denotes the set of all mislabels as
follows:

B = (n, c) : n = 1, ..., N, c �= cn (1)

A mislabel distribution Dt(n, c) is a distribution defined
over the set B of all mislabels.

At each boosting step t, the pseudo-loss εt of the hypothe-
sis ht with respect to Dt(n, c) can be computed as follows:

εt =
1

2

∑

(n,c)∈B

Dt(n, c)(1 − ht(yn, cn) + ht(yn, c)) (2)

By manipulating the mislabel distribution the resulting ad-
aboost.M2 boosting algorithm can focus not only on the hard-
to-classify examples, but more specifically also on the incor-
rect labels that are hardest to discriminate. For more de-
tail of adaboost.M2 algorithm refer to literature[Freund and
R.E.Schapire, 1996].

From the mislabel distribution Dt(n, c) we can also derive
the pseudo sample weight and pseudo class weight respec-
tively as follows:

wsample
t (n) =

∑

c�=cn

Dt(n, c) (3)

wclass
t (c) =

∑

n�=cn

Dt(n, c) (4)

Pseudo sample weight and pseudo class weight describe
the difficult extent of correctly classifying for a specific sam-
ple or for a specific class, respectively. Using the above defi-
nitions, we next discuss how to construct the Constrained Mu-
tual Subspace Method(CMSM) based basic learner under the
corresponding weights on each round of boosting. And how
to incorporate the CMSM into the framework of ensemble
learning based boosting seamlessly. Intuitively, The pseudo
weights can effect the CMSM computation in the following
two ways:

1)As discussed above, a direct linear subspace representa-
tion for each class can not describe the pattern distribution
faithfully. On each boosting round, we should focus more on
those hard-to-classify image-set samples patterns, that is to
say, those hard-to-classify samples should have more contri-
bution to the construction of the prototype subspace base for
the corresponding class, which will be fed into the CMSM
procedure as input of computing the generalized difference
subspace. The k-dimensional real vector subspace bases of
the rc-dimensional vector space Rrc can be represented as
points of grassmann manifold denoted as G(k, rc)[Boothby,
2002]. Similar to the Euclidean spaces, the Karcher mean of
points on the grassmannian manifold can be defined as:

Ω̃ = argminU

N∑

n=1

d2(Un, U) (5)

which minimizes the sum of squared grassmann distance,
where d(·, ·)is the principal angle based geodesic distance
metric between two subspaces. It has been shown that
unique Karcher mean exists if distributions are limited to
a sufficiently small region of grassmann manifold, which
is usually satisfied in the object recognition scenarios. In
this paper we compute the Karcher mean by adopting the
method proposed in[Begelfor and Werman, 2006], which is
described briefly as follows:
Algorithm 2: Compute Karcher Mean on Grassmann
Manifold:
Input: Points U1, U2, ..., UN ∈ G(k, rc)

Output: Karcher mean Ω̃
Procedure:

1) Initialize Ω̃ = U1

2) Compute W = 1
N

∑N

n=1 LogΩ̃(Un)
where Log denotes log map on grassmann manifold[Begelfor
and Werman, 2006].

3) if ||W || is small enough, return Ω̃, else
4) Singular Value Decomposition W as W = USV T

and update Ω̃ = Ω̃V cos(S) + U sin(S)
5) iterate till convergence reached.

Here we extend the concept of Karcher mean to its weight-
ing version. The extension is straightforward and for each
class we define its weighted Karcher mean as follows:

Ω̃i = argminU

1
∑Ni

j=1 wsample
t (n)

Ni∑

j=1

wsample
t (n)∗d2(U i

j , U)

(6)

n =
∑i−1

l=1 Nl + j denotes the index for the j-th image-set
instance in the i-th class. The weighted Karcher mean can be
computed easily based on Algorithm 2 by changing step 2 to
its weighted counterpart.

2)We should focus not only on the hard-to-classify sam-
ples, but also on the incorrect labels that are hardest to dis-
criminate. The pseudo class weight can be incorporated into
the CMSM as follows. When computing the the generalized
difference subspace we put more weights on those classes
which is harder to be correctly classified during the preceding
boosting steps

G =

C∑

i=1

dclass
t (i)Ω̃i ∗ Ω̃T

i (7)

Next we eigen-decompose the matrix G and the eigenvec-
tors corresponding to the d smallest eigenvaules are chosen
as the generalized difference subspace, which forms the pro-
jection matrix of the CMSM and is used as the base learner
to generate hypothesis.

The propose Boosting Constrained Mutual Subspace
Method(BCMSM) can be summarized in detail as follows:

Algorithm 3 : Boosting Constrained Mutual Subspace
Method(BCMSM)
Input: C classes n input training image-sets X i

j ∈

Rrc×h, i = 1, ..., C, j = 1, ..., ni,
∑C

i=1 ni = n. X i
j denotes

the j-th image-set instance for class i. r and c represent the
number of rows and columns respectively for the original im-
age in image-set and rc is the dimension of the vectorized im-
age; The CMSM-based base learner described in Algorithm
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Table 1: Recognition rate comparison of different methods on PIE, FaceVD and ETH-80 dataset.

Recognition rate PIE FaceVD ETH80

Training set number 3 4 5 6 3 4 5 6 3 4 5 6
MSM[Yamaguchi et al., 1998] 87.6 89.6 90.7 91.2 80.7 81.4 85.1 85.5 80.5 81.5 83.5 83.5

KMSM[Wolf and Shashua, 2003] 91.7 90.3 92.9 92.5 83.1 85.2 84.9 86.3 86.5 86.3 88.5 91.3

CMSM[Fukui and Yamaguchi, 2003] 91.2 92.1 92.5 93.3 84.9 87.2 88.6 88.7 84.5 87.0 89.5 90.3
The proposed BCMSM 95.0 95.3 97.6 98.3 98.5 99.1 99.7 99.9 92.5 94.0 95.0 95.5

1; The number of maximum iterations T .
Initialization:
D1(n, c) = 1

N(C−1) , D1(n, cn) = 0, Compute pseudo sam-

ple weight dsample
1 and pseudo class weight dclass

1 using equa-
tion 3 and 4 respectively. For each image-set instance X i

j

compute its corresponding subspace base U i
j using principal

component analysis.
Procedures:
For t = 1, ..., T ,

1)For each class, compute the weighted Karcher mean us-

ing Algorithm 2 based on the pseudo sample weight dsample
t ;

2)Compute the weighted sum of the projection matrix G
for each class using equation 7 based on the pseudo class
weight dclass

t ;
3)CMSM based learning using Algorithm 1. Specifically,

eigen-decompose the matrix G and the eigenvectors corre-
sponding to the d smallest eigenvalues are chosen as the gen-
eralized difference subspace and projecting all the image-sets

X i
j onto the generalized difference subspace as X̃ i

j ;

4)Get hypothesis {ht(yn, c) ∈ [0, 1]} by applying the near-

est mean classifier, where yPi−1

l=1
nl+j = X̃ i

j;

5)Compute the pseuo-loss of the current hypothesis ht us-
ing equation 2;

6)Update the mislabel distribution as follows:

Dt+1(n, c) = Dt(n, c)β
1
2
(1+ht(yn,cn)−ht(yn,c))

t

where βt = εt/(1− εt) and then normalize it to a distribution

function as: Dt+1(n, c) = Dt+1(n,c)P
n

P
c Dt+1(n,c)

7) Update the pseudo sample weight and pseudo class
weight using equation 3 and 4 respectively;
Output: The final strong hypothesis:

H(y) = argmaxc

∑T
t=1(log

1
βt

)ht(y, c)

4 Experimental results

In this section we test the proposed image-set based ob-
ject recognition method using real life datasets, which
include the PIE face dataset[Sim et al., 2003], a self-
collected face video database(FaceVD) and the ETH-80
multiview 3D object database[Geusebroek et al., 2005].
We compare the performance of the following algorithms:
1) The baseline Mutual Subspace Method(MSM)[Yam-
aguchi et al., 1998]; 2) The Kernel Mutual Subspace
Method(KMSM)[Wolf and Shashua, 2003]; 3) The Con-
strained Mutual Subspace Method(CMSM)[Fukui and Yam-
aguchi, 2003]; 4) The proposed Boosting Constrained Mutual
Subspace Method(BCMSM);

The linear subspace of each image-set is learned us-
ing principal component analysis and the corresponding di-
mension was chosen to represent 98% data energy. For
CMSM, the dimension of the generalization difference sub-
space was set corresponding to the best recognition result
for each training and testing round. For KMSM, a six-
degree polynomial kernel was used as in[Wolf and Shashua,
2003]. For the proposed boosting constrained mutual sub-
space method(BCMSM), the maximum iteration number was
set to be 25.

• For the CMU-PIE face database we used images of 45
subjects and for each subject 160 near-frontal images were
selected which cover variations in facial expression and illu-
mination. Then the face regions are cropped and resize to
15× 15 in pixels. The 160 images are divided into 10 image-
sets with each image-set has 16 images with different illumi-
nation and pose conditions.

• To further illustrate the performance of the proposed
method, we self-collected a face video database(FaceVD)
which has 20 subjects and for each subject 10 separate se-
quences were recorded with large variation in illumination
and facial expression. Each specific sequence contains about
180 frames and the face region was extracted automatically
using a face detector. The face regions were histogram equal-
ized and resized to 16 × 16 in pixels.

• For the category classification task we use the public
multiview 3D object database—ETH-80 dataset to evaluate
the proposed method. This data set has 8 categories (e.g.
Cow,Horse,Dog,Cup,Apple,Pearl,Peach and Car) and each
category has 10 objects. For each object images taken from
41 different view points was collected and forms the image-
set pattern.

For each dataset, we randomly partition 10 image-
sets/sequences of each subject/category into training set
which include 3, 4, 5, 6 objects and the remaining for the test
set. The random partition procedure repeated for 10 times and
the average classification results are computed. The compar-
ison of recognition performance for the above experiments
are demonstrated in Table1. It can be seen that the proposed
method of recognition using Boosting Constrained Mutual
Subspace Method(BCMSM) outperforms the MSM,KMSM
and CMSM greatly and consistently. The proposed BCMSM
algorithm ensembles a set of CMSM-based basic learner in a
boosting way while each learner is constructed with emphasis
on certain region of the nonlinear distribution. The boosting
procedure is illustrated in Fig 3. As expected, the training er-
ror and testing error decrease which consistent with the boost-
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ing theory. And the selection of the dimension of generalized
difference subspace for the basic CMSM based learner has
little effect on the recognition performance. Refer the caption
for detail.

Figure 3: Left column: the training and testing recognition
rate vs. boosting step index, for PIE, FaceVD and ETH-80
datasets respectively. Right column: The testing recogni-
tion rate with different dimension of generalized difference
subspace(CMSM Dim) vs. boosting step index. It can be
clearly seen that the proposed BCMSM is insensitive to the
dimension of of generalized difference subspace for the basic
learner.

5 Conclusion

By treating the subspace base for each image-set instance
as a point in the grassmann manifold space, this paper
presents a framework for robust image-set based object
recognition by CMSM based ensemble learning in a boosting
way. The proposed Boosting Constrained Mutual Subspace
Method(BCMCM) is insensitive to the dimension of the gen-
eralized difference subspace, and more importantly, by taking
advantage of both boosting and CMSM techniques, the gen-
eralization ability is improved and higher classification per-
formance can be achieved. Extensive experiments on real life
data sets demonstrate the superiority of the proposed method.

References
[Begelfor and Werman, 2006] E. Begelfor and M. Werman.

Affine invariance revisited. In Proceedings of Interna-

tional Conference on Computer Vision and Pattern Recog-
nition, pages 2087–2094, 2006.

[Boothby, 2002] W.M. Boothby. An introduction to differ-
entiable Manifolds and Riemannian Geometry. Academic
Press, 2002.

[Dai and Yeung, 2007] G. Dai and Dit-Yan Yeung. Boosting
kernel discriminant analysis and its application on tissue
classification of gene expression data. In Proceedings of
International Joint Conference on Artificial Intelligence,
pages 744–749, 2007.

[Freund and R.E.Schapire, 1996] Y. Freund and
R.E.Schapire. Experiments with a new boosting al-
gorithm. In Proceedings of International Confernce on
Machine Learning, pages 148–156, 1996.

[Fukui and Yamaguchi, 2003] K. Fukui and O. Yamaguchi.
Face recognition using multi-viewpoint patterns for robot
vision. In Proceedings of 11th International Symposium of
Robotics Research, pages 192–201, 2003.

[Fukui et al., 2006] K. Fukui, B. Stenger, and O. Yamaguchi.
A framework for 3d object recognition using the kernel
constrained mutual subspace method. In Proceedings of
Asain Conference on Computer Vision, pages 315–324,
2006.

[Geusebroek et al., 2005] J.M. Geusebroek, G.J. Burghouts,
, and A.W.M. Smeulders. The amsterdam library of ob-
ject images. International Journal of Computer Vision,
61(1):103–112, 2005.

[Hotelling, 1936] H. Hotelling. Relations between two sets
of variates. In Biometrika, pages 321–372, 1936.

[Lu et al., 2003] J.W. Lu, K.N. Plataniotis, and A.N. Venet-
sanopoulos. Boosting linear discriminant analysis for face
recognition. In Proceedings of International Conference
on Image Processing, pages 657–660, 2003.

[Masip and Vitria, 2006] D. Masip and J. Vitria. Boosted
discriminant projections for nearest neighbour classifica-
tion. Pattern Recognition, 39(2):174–170, 2006.

[Shakhnarovich et al., 2002] Gregory Shakhnarovich,
John W. Fisher, and Trevor Darrell. Face recognition
from long-term observations. In Proceedings of the
7th European Conference on Computer Vision, pages
851–865, September 2002.

[Sim et al., 2003] T. Sim, S. Baker, and M. Bsat. The cmu
pose, illumination, and expression database. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
25(12):1615–1618, 2003.

[Wolf and Shashua, 2003] L. Wolf and A. Shashua. Learning
over sets using kernel principal angles. Journal of Machine
Learning Research, 4(10):913–931, 2003.

[Yamaguchi et al., 1998] O. Yamaguchi, K. Fukui, and
K. Maeda. Face recognition using temporal image se-
quence. In Proceedings of the 3rd International Confer-
ence on Automatic Face and Gesture Recognition, pages
318–323, 1998.

1137


