
Active Policy Iteration: Efficient Exploration through Active Learning
for Value Function Approximation in Reinforcement Learning

Takayuki Akiyama, Hirotaka Hachiya, and Masashi Sugiyama

Department of Computer Science, Tokyo Institute of Technology

{akiyama@sg., hachiya@sg., sugi@}cs.titech.ac.jp

Abstract

Appropriately designing sampling policies is
highly important for obtaining better control poli-
cies in reinforcement learning. In this paper, we
first show that the least-squares policy iteration
(LSPI) framework allows us to employ statistical
active learning methods for linear regression. Then
we propose a design method of good sampling poli-
cies for efficient exploration, which is particularly
useful when the sampling cost of immediate re-
wards is high. We demonstrate the usefulness of
the proposed method, named active policy iteration
(API), through simulations with a batting robot.

1 Introduction

In practical reinforcement learning (RL), it is often expen-
sive to obtain immediate reward samples while state-action
trajectory samples are readily available. For example, let us
consider a robot-arm control task of hitting a ball by a bat
and drive the ball as far as possible (see Figure 5). Let us use
the carry distance of the ball as the immediate reward. In this
setting, obtaining state-action trajectory samples of the robot
arm is easy and relatively cheap since we just need to con-
trol the robot arm and record its state and action trajectories
over time. On the other hand, explicitly computing the carry
of the ball from the state-action samples is hard due to fric-
tion and elasticity of links, air resistance, and unpredictable
disturbances such a current of air. Thus, in practice, we may
have to put the robot in a large place, let the robot really hit
the ball, and measure the carry of the ball manually. Thus
gathering immediate reward samples is much more expensive
than the state-action trajectory samples.

When the sampling cost of immediate rewards is high,
it is important to design the sampling policy appropriately
so that a good control policy can be obtained from a small
number of samples. In this paper, we first show that the
least-squares policy iteration (LSPI) framework [Lagoudakis
and Parr, 2003] allows us to use statistical active learn-
ing (AL) methods for linear regression [Cohn et al., 1996;
Sugiyama, 2006].

In the LSPI framework, the state-action value function is
approximated by fitting a linear model with least-squares es-
timation. A traditional AL scheme [Cohn et al., 1996] is de-

signed to find the input distribution1 that minimizes the vari-
ance of the least-squares estimator. Since the expected ap-
proximation error of the value function is expressed as the
sum of the (squared) bias and variance, the bias needs to be
zero for justifying the use of the traditional AL scheme. To
this end, we need to assume that the linear model used for
approximating the value function is correctly specified, i.e., if
the parameters are learned optimally, the true value function
can be perfectly approximated.

However, such a correct model assumption may not be ful-
filled in practical RL tasks since the profile of value func-
tions may be highly complicated. To cope with this problem,
an importance-sampling based AL method has been devel-
oped recently [Sugiyama, 2006]. This AL algorithm is valid
even when the model is misspecified, i.e., even when the true
value function is not included in the model—which would
be a usual case in practice—a good input distribution can be
designed.

In this paper, we develop a new exploration scheme for
LSPI based on the importance-sampling based AL idea. The
proposed method combined with LSPI is called active policy
iteration (API). Through batting-robot simulations, the use-
fulness of API is demonstrated.

2 Formulation of RL Problem

In this section, we review how Markov decision problems
(MDPs) can be solved using policy iteration based on value
functions.

MDPs: Let us consider an MDP specified by
(S,A, PT, R, γ), where S is a set of states, A is a set
of actions, PT(s′|s, a) (∈ [0, 1]) is the conditional probabil-
ity density of the agent’s transition from state s to next state
s′ when action a is taken, R(s, a, s′) (∈ R) is a reward for
transition from s to s′ by taking action a, and γ (∈ (0, 1]) is
the discount factor for future rewards. Let π(a|s) (∈ [0, 1])
be a stochastic policy which is the conditional probability
density of taking action a given state s. The state-action
value function Qπ(s, a) (∈ R) for policy π is the expected

1When approximating the state-action value function, the input
distribution corresponds to the stationary distribution of states and
actions.

980

discounted sum of rewards the agent will receive when taking
action a in state s and following policy π thereafter, i.e.,

Qπ(s, a)≡ E
π,PT

[
∞∑

n=1

γn−1R(sn, an, sn+1)

∣∣∣∣s1 = s, a1 = a

]
,

where Eπ,PT denotes the expectation over {sn, an}
∞
n=1

following π(an|sn) and PT(sn+1|sn, an).

The goal of RL is to obtain the policy which maximizes the
discounted sum of future rewards; the optimal policy can be
expressed as π∗(a|s) ≡ δ(a − argmaxa′ Q∗(s, a′)), where
δ(·) is Dirac’s delta function and Q∗(s, a) ≡ maxπ Qπ(s, a)
is the optimal state-action value function.

Qπ(s, a) can be expressed as the following recurrent form
called the Bellman equation: ∀s ∈ S, ∀a ∈ A,

Qπ(s, a) = R(s, a) + γ E
PT(s′|s,a)

E
π(a′|s′)

[Qπ(s′, a′)] ,

where R(s, a) ≡ EPT(s′|s,a) [R(s, a, s′)] is the expected re-
ward when the agent takes action a in state s, EPT(s′|s,a) de-

notes the conditional expectation of s′ over PT(s′|s, a) given
s and a, and Eπ(a′|s) denotes the conditional expectation of

a′ over π(a′|s′) given s′.

Policy Iteration: Computing the value function Qπ(s, a)
is called policy evaluation. Using Qπ(s, a), we may find a
better policy π′(a|s) by ‘softmax’ update:

π′(a|s) ∝ exp(Qπ(s, a)/τ),

where τ (> 0) determines the randomness of the new policy
π′; or by ε-greedy update:

π′(a|s) = εpu(a) + (1 − ε)I(a = arg max
a′

Qπ(s, a′)),

where I(c) is the indicator function (1 if c is true and 0 other-
wise), pu is the uniform probability density over actions, and
ε (∈ (0, 1]) determines how deterministic the new policy π′

is. Updating π based on Qπ(s, a) is called policy improve-
ment. Repeating policy evaluation and policy improvement,
we may find the optimal policy π∗(a|s). This entire process
is called policy iteration [Sutton and Barto, 1998].

Least-squares Framework for Value Function Approxi-
mation: Although policy iteration is useful, it is often com-
putationally intractable since the number of state-action pairs
|S| × |A| is very large; |S| or |A| becomes infinite when
the state space or action space is continuous. To overcome
this problem, we approximate the state-action value function
Qπ(s, a) using the following linear model:

Q̂π(s, a;θ) ≡

B∑
b=1

θbφb(s, a) = θ�φ(s, a),

where φ(s, a) = (φ1(s, a), φ2(s, a), . . . , φB(s, a))� are
the fixed linearly independent basis functions, � denotes the
transpose, B is the number of basis functions, and θ =
(θ1, θ2, . . . , θB)� are model parameters. Note that B is usu-
ally chosen to be much smaller than |S| × |A|.

For N -step transitions, we ideally want to learn the param-
eters θ so that the squared Bellman residual G(θ) is mini-
mized [Lagoudakis and Parr, 2003]:

θ∗ ≡ argmin
θ

G(θ),

G(θ) ≡ E
Pπ

[
1

N

N∑
n=1

(θ�ψ(sn, an) − R(sn, an))2

]
,

ψ(s, a) ≡ φ(s, a) − γ E
PT(s′|s,a)

E
π(a′|s′)

[φ(s′, a′)] .

EPπ
denotes the expectation over the joint probability

density function Pπ(s1, a1, s2, a2, . . . , sN , aN , sN+1) ≡

PI(s1)
∏N

n=1 PT(sn+1|sn, an)π(an|sn), where PI(s) de-
notes the initial-state probability density function.

Value Function Learning from Samples: Suppose that
roll-out data samples consisting of M episodes with N steps
are available as training data. The agent initially starts from a
randomly selected state s1 following the initial-state probabil-
ity density PI(s) and chooses an action based on a sampling
policy π̃(an|sn). Then the agent makes a transition following
the transition probability PT(sn+1|sn, an) and receives a re-
ward rn(= R(sn, an, sn+1)). This is repeated for N steps—

thus the training dataset Deπ is expressed as

Deπ ≡ {deπ
m}M

m=1,

where each episodic sample deπ
m consists of a set of 4-tuple

elements as

deπ
m ≡ {(seπ

m,n, aeπ
m,n, reπ

m,n, seπ
m,n+1)}

N
n=1.

We use two types of policies which have different pur-
poses: the sampling policy π̃(a|s) for collecting data sam-
ples and the evaluation policy π(a|s) for computing the value

function Q̂π. Minimizing the importance-weighted empirical

generalization error Ĝ(θ), we can obtain a consistent estima-
tor of θ∗ as follows:

θ̂ ≡ argmin
θ

Ĝ(θ),

Ĝ(θ)≡
1

MN

M∑
m=1

N∑
n=1

(θ�ψ̂(seπ
m,n, aeπ

m,n;Deπ) − reπ
m,n)2weπ

m,N ,

ψ̂(s, a;D) ≡ φ(s, a) −
γ

|D(s,a)|

∑
s′∈D(s,a)

E
π(a′|s′)

[φ(s′, a′)] ,

where D(s,a) is a set of 4-tuple elements containing state s
and action a in the training data D,

∑
s′∈D(s,a)

denotes the

summation over s′ in the set D(s,a), and

weπ
m,N ≡

∏N

n′=1 π(aeπ
m,n′ |seπ

m,n′)∏N

n′=1 π̃(aeπ
m,n′ |seπ

m,n′)

is called the importance weight [Sutton and Barto, 1998]. It

is important to note that consistency of θ̂ can be maintained
even if weπ

m,N is replaced by the per-decision importance

weight weπ
m,n

[Precup et al., 2000], which is more efficient

981

to calculate. θ̂ can be analytically expressed with the matri-

ces L̂(∈ R
B×MN), X̂(∈ R

MN×B), W (∈ R
MN×MN), and

the vector reπ(∈ R
MN×1) as

θ̂ = L̂reπ, L̂ ≡ (X̂
�
WX̂)−1X̂

�
W ,

reπ
N(m−1)+n ≡ reπ

m,n, X̂N(m−1)+n,b ≡ ψ̂b(s
eπ
m,n, aeπ

m,n;Deπ),

WN(m−1)+n,N(m′−1)+n′ ≡

{
weπ

m,n if (m, n) = (m′, n′),
0 if (m, n) �= (m′, n′).

3 Efficient Exploration with Active Learning

The accuracy of the estimated value function depends on
the training samples collected following the sampling policy
π̃(a|s). In this section, we propose a new method for de-
signing a good sampling policy based on a statistical active
learning method [Sugiyama, 2006].

Preliminaries: Here we consider the case where collecting
state-action trajectory samples is easy and cheap, but gather-
ing immediate reward samples is hard and expensive (exam-
ples include the batting robot explained in the introduction).
In such a case, immediate reward samples cannot be used for
designing the sampling policy, but only state-action trajectory
samples are available.

The goal of active learning in the current setup is to deter-
mine the sampling policy so that the expected generalization
error is minimized. The generalization error is not accessible
in practice since the expected reward function R(s, a) and the
transition probability PT(s′|s, a) are unknown, so the gener-
alization error needs to be estimated from samples. A dif-
ficulty of estimating the generalization error in the context
of active learning is that its estimation needs to be carried
out only from state-action trajectory samples without using
immediate reward samples; thus standard techniques such as
cross-validation [Hachiya et al., 2008] cannot be employed
since it requires both state-action and immediate reward sam-
ples. Below, we explain how the generalization error could
be estimated under the active learning setup.

Decomposition of Generalization Error: The information
we are allowed to use for estimating the generalization error
is a set of roll-out samples without immediate rewards:

D
eπ
≡ {d

eπ

m}M
m=1, d

eπ

m ≡ {(seπ
m,n, aeπ

m,n, seπ
m,n+1)}

N
n=1.

Let us define the deviation of immediate rewards from the
mean as

εeπ
m,n ≡ reπ

m,n − R(seπ
m,n, aeπ

m,n).

Note that εeπ
m,n could be regarded as additive noise in least-

squares function fitting. By definition, εeπ
m,n has mean zero

and the variance may depend on seπ
m,n and aeπ

m,n, i.e., het-
eroscedastic noise. However, since estimating the variance of
εeπ
m,n without using reward samples is not possible, we assume

that the variance does not depend on seπ
m,n and aeπ

m,n—let us

denote the common variance by σ2.

Now we would like to estimate the generalization error

G(θ̂) ≡ E
Pπ

[
1

N

N∑
n=1

(θ̂
�
ψ̂(sn, an;D

eπ
) − R(sn, an))2

]
from D

eπ
. Its expectation can be decomposed as

E
εeπ

G(θ̂) = B + V + C,

where Eεeπ denotes the expectation over ‘noise’

{εeπ
m,n}

M,N
m=1,n=1. B, V , and C are the bias term, vari-

ance term, and model error defined by

B ≡ E
Pπ

[
1

N

N∑
n=1

{
(E
εeπ

θ̂ − θ∗)�ψ̂(sn, an;D
eπ
)

}2
]

,

V ≡ E
Pπ

E
εeπ

[
1

N

N∑
n=1

{
(θ̂ − E

εeπ

θ̂)�ψ̂(sn, an;D
eπ
)

}2
]

,

C ≡ E
Pπ

[
1

N

N∑
n=1

(θ∗�ψ̂(sn, an;D
eπ
) − R(sn, an))2

]
,

where the matrixU(∈ R
B×B) is defined as

U ij ≡ E
Pπ

[
1

N

N∑
n=1

ψ̂i(sn, an;D
eπ
)ψ̂j(sn, an;D

eπ
)

]
.

Note that the variance term V can be expressed as

V = σ2tr(UL̂L̂
�

).

Estimation of Generalization Error for AL: The model
error C is constant and can be safely ignored in generalization
error estimation. So we only need to estimate the bias term B
and the variance term V . However, B includes the unknown
optimal parameter θ∗ and therefore it may not be possible to
estimate B without using reward samples; similarly, it may
not be possible to estimate the ‘noise’ variance σ2 included
in the variance term V without using reward samples.

It is known that the bias term B is small enough to be ne-
glected when the model is approximately correct [Sugiyama,

2006], i.e., θ
∗�ψ̂(s, a) approximately agrees with the true

function R(s, a). Then we have

E
εeπ

G(θ̂) − C − B ∝ tr(UL̂L̂
�

),

which does not require immediate reward samples for its
computation. Since EPπ

included in U is not accessible, we

replaceU by its consistent estimator Û :

Û≡
1

MN

M∑
m=1

N∑
n=1

ψ̂(seπ
m,n, aeπ

m,n;D
eπ
)ψ̂(seπ

m,n, aeπ
m,n;D

eπ
)�weπ

m,n.

Consequently, we have the following generalization error es-
timator:

J ≡ tr(ÛL̂L̂
�

),

which can be computed only from D
eπ

and thus can be em-

ployed in the AL scenarios. If it is possible to gather D
eπ

multiple times, the above J may be computed multiple times
and its average J may be used as a generalization error esti-
mator.

982

Designing Sampling Policies: Based on the generalization
error estimator derived above, we give an algorithm for de-
signing a good sampling policy, which fully makes use of the
roll-out samples without immediate rewards.

1. Prepare K candidates of sampling policy: {π̃k}
K
k=1.

2. Collect episodic samples without immediate rewards for

each sampling-policy candidate: {D
eπk
}K

k=1.

3. Estimate U using all samples {D
eπk
}K

k=1 :

Ũ =
1

KMN

K∑
k=1

M∑
m=1

N∑
n=1

ψ̂(seπk
m,n, aeπk

m,n; {D
eπk
}K

k=1)

× ψ̂(seπk
m,n, aeπk

m,n; {D
eπk
}K

k=1)
�weπk

m,n.

4. Estimate the generalization error for each k:

Jk ≡ tr(Ũ L̂
eπk

L̂
eπk�),

L̂
eπk

≡ (X̂
eπk�W eπkX̂

eπk

)−1X̂
eπk�W eπk ,

X̂
eπk

N(m−1)+n,b ≡ ψ̂b(s
eπk
m,n, aeπk

m,n; {D
eπk
}K

k=1),

W eπk

N(m−1)+n,N(m′−1)+n′
≡

{
weπk

m,n if (m, n)=(m′, n′),
0 if (m, n) �=(m′, n′).

5. (If possible) repeat 2. to 4. several times and calculate
the average for each k: {Jk}

K
k=1.

6. Determine the sampling policy: π̃AL ≡ argmink Jk.

7. Collect training samples with immediate rewards: DeπAL .

8. Learn the value function by LSPI using DeπAL .

Numerical Examples: Here we illustrate how the pro-
posed method behaves in the 10-state chain-walk environ-
ment shown in Figure 1. The MDP consists of 10 states S =
{s(i)}10

i=1 = {1, 2, . . . , 10} and 2 actions A = {a(i)}2
i=1 =

{‘L’, ‘R’}. The immediate reward function R(s, a, s′) is de-
fined by R(s, a, s′) ≡ 0.3×(7−|s′−7|). The transition prob-
ability PT(s′|s, a) is indicated by the numbers attached to the

arrows in Figure 1; for example, PT(s(2)|s(1), ‘R’) = 0.9 and

PT(s(1)|s(1), ‘R’) = 0.1. Thus the agent can successfully
move to the intended direction with probability 0.9 (indicated
by solid arrows in the figure) and the action fails with prob-
ability 0.1 (indicated by dashed arrows in the figure). The
discount factor γ is set to 0.9. We use the 12 basis functions
φ(s, a) defined as

φ2(i−1)+j(s, a) =

⎧⎨⎩
I(a = a(j))exp(−(s − ci)

2/(2σ2))
for 1 ≤ i ≤ 5, 1 ≤ j ≤ 2,

I(a = a(j)) for i = 6, 1 ≤ j ≤ 2,

where c1 = 1, c2 = 3, c3 = 5, c4 = 7, c5 = 9, and σ = 3.0.
For illustration purposes, we evaluate the selection of sam-

pling policies only in one-step policy evaluation; evaluation
over iteration will be addressed in the next section. Sampling
policies and evaluation policies are constructed as follows.

102 31 9· · ·
0.9

0.1 0.1

0.9

8

Figure 1: 10-state chain walk. Filled/unfilled arrows indicate
the transitions when taking action ‘R’/‘L’ and solid/dashed
lines indicate the success/failed transitions.

Table 1: The parameters of sampling policy candidates
{π̃k}

10
k=1 for the 10-state chain-walk simulation.

k 1 2 3 4 5 6 7 8 9 10

εk 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
αk R R R R R L L L L L

μk 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5

First, we prepare a deterministic ‘base’ policy, e.g., ‘LLL-
LLRRRRR’, where the i-th letter denotes the action taken at
s(i). Let πε be the ‘ε-greedy’ version of the base policy, i.e.,
the intended action can be successfully chosen with proba-
bility 1 − ε/2 and the other action is chosen with probability
ε/2. We use π0.1 as the evaluation policy π. 10 candidates of
the sampling-policy{π̃k}

10
k=1 are constructed as follows: with

probability (1 − μk), the agent chooses an action following
πεk

; with probability μk, the agent takes action αk. The set-
tings of the sampling-policy parameters {εk, αk, μk}

10
k=1 are

summarized in Table 1.
For each sampling policy, we calculate the J-value 5 times

and take the average. The numbers of episodes M and steps
N are set to 10 and 5, respectively; the initial-state probability
PI(s) is set to be uniform. This experiment is repeated 100
times and we evaluate the mean and standard deviation of the
true generalization error and its estimate.

The results are depicted in Figure 2 (the true generalization
error) and Figure 3 (its estimate) as functions of the index k of
the sampling policies. We are interested in choosing k such
that the true generalization error is minimized. The results
show that the proposed generalization error estimator overall
captures the trend of the true generalization error well. Thus
the proposed generalization error estimator would be useful
for choosing a good sampling policy.

4 Active Learning in Policy Iteration

In Section 3, we have shown that the unknown generalization
error could be accurately estimated without using immediate
reward samples in one-step policy evaluation. In this section,
we extend the idea to the full policy-iteration setup.

Sample-reuse Policy Iteration (SRPI) with Active Learn-
ing: SRPI is a policy-iteration framework which allows us
to reuse previously-collected samples efficiently [Hachiya et
al., 2008]. Let us denote the evaluation policy at the l-th iter-
ation by πl and the maximum number of iterations by L.

In ordinary policy-iteration methods, new data samples
Dπl are collected following the new policy πl during the pol-
icy evaluation step. Thus, previously-collected data samples
{Dπ1 ,Dπ2 , ...,Dπl−1} are not used:

π1
E:{Dπ1}

→ Q̂π1
I
→ π2

E:{Dπ2}
→ Q̂π2

I
→ π3

E:{Dπ3}
→ · · ·

I
→ πL+1,

983

2 4 6 8 10

0

0.05

0.1

0.15

0.2
G

 v
al

ue

(a) ‘RRRRRLLLLL’

2 4 6 8 10
0

0.1

0.2

0.3

0.4

G
 v

al
ue

(b) ‘RRRLLLRRRR’

2 4 6 8 10
0

0.2

0.4

0.6

0.8

G
 v

al
ue

(c) ‘LLLLLRRRRR’

Figure 2: The mean and stan-
dard deviation of the true
generalization error over 100
trials.

2 4 6 8 10
0.2

0.4

0.6

0.8

1

J
va

lu
e

(a) ‘RRRRRLLLLL’

2 4 6 8 10
0.2

0.4

0.6

0.8

1

J
va

lu
e

(b) ‘RRRLLLRRRR’

2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

J
va

lu
e

(c) ‘LLLLLRRRRR’

Figure 3: The mean and stan-
dard deviation of the esti-
mated generalization error J
over 100 trials.

where ‘E : {D}’ indicates policy evaluation using the data
sample D and ‘I’ denotes policy improvement. On the
other hand, in SRPI, all previously-collected data samples are
reused for performing policy evaluation as:

π1
E:{Dπ1}

→ Q̂π1
I
→ π2

E:{Dπ1 ,Dπ2}
→ Q̂π2

I
→ π3

E:{Dπ1 ,Dπ2 ,Dπ3}
→ · · ·

I
→ πL+1,

where appropriate importance weights are applied to each set
of previously-collected samples in the policy evaluation step.

Here, we apply the active learning technique proposed in
the previous section to the SRPI framework. More specifi-
cally, we optimize the sampling policy at each iteration. Then
the iteration process becomes

π1
E:{Deπ1}

→ Q̂π1 I
→ π2

E:{Deπ1 ,Deπ2}
→ Q̂π2

I
→ π3

E:{Deπ1 ,Deπ2 ,Deπ3}
→ · · ·

I
→ πL+1.

Thus, we do not gather samples following the current evalua-
tion policy πl, but following the sampling policy π̃l optimized
based on the active learning method given in the previous sec-
tion. We call this framework active policy iteration (API).

Numerical Examples: Here we illustrate how the API
method behaves using the same 10-state chain-walk problem
(see Figure 1). The initial evaluation policy π1 is set to be

1 2 3 4 5
13

14

15

16

17

18

Iteration

P
er

fo
rm

an
ce

(a
ve

ra
ge

)

k = 1(fixed)
k = 2(fixed)
AL

Figure 4: The mean performance over 150 trials in the 10-
state chain-walk experiment. The dotted lines denote the per-
formance when fixed sampling policies are used and the solid
line denotes the performance when the sampling policies are
optimized by the proposed AL method. The error bars are
omitted for clear visibility; but they were all reasonably small.

uniform and policies are updated in the l-th iteration using the
ε-greedy rule with ε = 2−l. In the sampling-policy selection
step of the l-th iteration, we prepare the two sampling-policy

candidates {π̃
(l)
k }2

k=1 with (ε1, α1, μ1) = (0.4, ‘R’, 0.8),
(ε2, α2, μ2) = (0.4, ‘L’, 0.8). The number M of episodes and
the number N of steps are both set to 5, and J-value calcula-
tion is repeated 5 times for active learning. The performance
of the learned policy πL+1 is measured by the discounted
sum of immediate rewards for test samples {r

πL+1
m,n }50

m,n=1 (50
episodes with 50 steps collected following πL+1):

Performance =
1

50

50∑
m=1

50∑
n=1

γn−1rπL+1
m,n ,

where the discount factor γ is set to 0.9.
We compare the performance of fixed sampling policies

{π̃k}
2
k=1 and active learning of choosing the best sampling

policy from {π̃k}
2
k=1. The results are depicted in Figure 4,

showing that the proposed method works very well. Actu-
ally, the proposed method outperforms the best fixed strategy
(k = 2); this can happen since the optimal sampling policy is
not always k = 2 and it varies in each trial depending on ran-
domness of the training dataset. Thus, the results show that
the proposed active learning scheme can adaptively choose a
good policy based on the training dataset at hand.

5 Experiments

Finally, we evaluate our proposed method using a ball-batting
robot illustrated in Figure 5, which consists of two links and
two joints. The goal of the ball-batting task is to control the
robot arm so that it drives the ball as far as possible. The state
space S is continuous and consists of the angles ϕ1[rad] (∈
[0, π/4]) and ϕ2[rad] (∈ [−π/4, π/4]) and the angular ve-
locities ϕ̇1[rad/s] and ϕ̇2[rad/s]. Thus a state s (∈ S) is de-
scribed by a four-dimensional vector: s = (ϕ1, ϕ̇1, ϕ2, ϕ̇2)

�.
The action space A is discrete and contains two elements:

A = {a(i)}2
i=1 = {(50,−35)�, (−50, 10)�}, where the i-th

984

joint 1

joint 2

link 1

link 2

pin

ball

ϕ1

ϕ2

0.1[m]

(Object Settings)

link 1: 0.65[m] (length), 11.5[kg] (mass)
link 2: 0.35[m] (length), 6.2[kg] (mass)

ball: 0.1[m] (radius), 0.1[kg] (mass)
pin: 0.3[m] (height), 7.5[kg] (mass)

Figure 5: A ball-batting robot.

1 2 3 4
30

40

50

60

70

80

90

Iteration

P
er

fo
rm

an
ce

(a
ve

ra
ge

)

k = 1(fixed)
k = 2(fixed)
k = 3(fixed)
AL

Figure 6: The mean performance over 100 trials in the ball-
batting experiment. The dotted lines denote the performance
when fixed sampling policies are used and the solid line de-
notes the performance when the sampling policies are opti-
mized by the proposed AL method. The error bars are omit-
ted for clear visibility.

element (i = 1, 2) of each vector corresponds to the torque
[N · m] added to joint i.

We use the Open Dynamics Engine (‘http://ode.org/’) for
physical calculations including the update of the angles and
angular velocities, and collision detection between the robot
arm, ball, and pin. The simulation time-step is set to 7.5[ms]
and the next state is observed after 10 time-steps; the action
chosen in the current state is kept taken for 10 time steps.
To make the experiments realistic, we add noise to actions:
if action (f1, f2)

� is taken, the actual torques applied to the
joints are f1 + δ1 and f2 + δ2, where δi(i = 1, 2) follows the
standard normal distribution independently.

The immediate reward is defined as the horizontal carry of
the ball; this reward is given only when the robot arm collides
with the ball for the first time at the state s′ after taking action
a at the current state s.

We use the 110 basis functions defined as

φ2(i−1)+j =

⎧⎨⎩
I(a = a(j))exp(−‖ s − cj ‖2/(2σ2))

for 1 ≤ i ≤ 54, 1 ≤ j ≤ 2,

I(a = a(j)) for i = 55, 1 ≤ j ≤ 2,

where σ is set to 3π/2 and cj (j = 1, 2, . . . , 54) are
located on the regular grid {−π/4, 0} × {−π, 0, π} ×
{−π/4, 0, π/4} × {−π, 0, π}. We set M = 20 and N = 12
and the initial state is always set to s = (π/4, 0, 0, 0)�. The
initial evaluation policy is set to the ε-greedy version of the

base policy with ε = 0.5; the base policy is defined by the

greedy update using the ‘constant’ Q̂ function with θ̂i =
0.5 (1≤ i≤B). Policies are updated in the l-th iteration using

the ε-greedy rule with ε = 2−(1+l). The set of sampling-

policy candidates {π
(l)
k }3

k=1 in the l-th iteration is defined

as (ε1, α1, μ1) = (0.1, (50,−35)�, 0.7), (ε2, α2, μ2) =
(0.4, ∗, 0.0), and (ε3, α3, μ3) = (0.1, (−50, 10)�, 0.25),
where the symbol ‘∗’ means “don’t care” since the value
of μ is zero. The discount factor γ is set to 0.95 and
the performance of the learned policy πL+1 is measured by
the discounted sum of immediate rewards for test samples

{r
πL+1
m,n }20,12

m=1,n=1 (20 episodes with 12 steps collected follow-
ing πL+1):

Performance =

M∑
m=1

N∑
n=1

rπL+1
m,n .

The results are depicted in Figure 6, showing that the pro-
posed method works very well and it is comparable to or
slightly better than the best fixed strategy (k = 2). Based on
the experimental evaluation, we conclude that the proposed
sampling-policy design method, API, is useful in improving
the RL performance.

6 Conclusions

When we cannot collect many training samples, it is impor-
tant to choose the most ‘informative’ samples for efficiently
learning the value function. In this paper, we proposed a
new data sampling strategy based on a statistical active learn-
ing method. The proposed procedure called active policy
iteration (API)—which effectively combines the framework
of sample-reuse policy iteration with active sampling-policy
selection—was shown to perform very well in simulations
with chain-walk and ball-batting robot control.

References
[Cohn et al., 1996] D. A. Cohn, Z. Ghahramani, and M. I. Jordan.

Active learning with statistical models. Journal of Artificial In-
telligence Research, 4:129–145, 1996.

[Hachiya et al., 2008] H. Hachiya, T. Akiyama, M. Sugiyama, and
J. Peters. Adaptive importance sampling with automatic model
selection in value function approximation. In Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI2008), pages 1351–1356, Chicago, USA, Jul. 13–17 2008.
The AAAI Press.

[Lagoudakis and Parr, 2003] M. G. Lagoudakis and R. Parr. Least-
squares policy iteration. Journal of Machine Learning Research,
4(Dec):1107–1149, 2003.

[Precup et al., 2000] D. Precup, R. S. Sutton, and S. Singh. Eligi-
bility traces for off-policy policy evaluation. In Proceedings of
the Seventeenth International Conference on Machine Learning,
pages 759–766, Morgan Kaufmann, 2000.

[Sugiyama, 2006] M. Sugiyama. Active learning in approximately
linear regression based on conditional expectation of generaliza-
tion error. Journal of Machine Learning Research, 7:141–166,
Jan. 2006.

[Sutton and Barto, 1998] R. S. Sutton and G. A. Barto. Reinforce-
ment Learning: An Introduction. MIT Press, Cambridge, MA,
1998.

985

