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Abstract

Recently, the notion of accrual of arguments has re-
ceived some attention from the argumentation com-
munity. Three principles for argument accrual have
been identified as necessary to hold in argumenta-
tion frameworks. In this paper we propose an ap-
proach to model the accrual of arguments in the
context of Defeasible Logic Programming, a logic
programming approach to argumentation which has
proven to be successful for many real-world appli-
cations. We will analyze the above mentioned prin-
ciples in the context of our proposal, studying other
interesting properties.

1 Introduction

In the last two decades, argumentation has evolved as a pow-
erful paradigm to formalize commonsense qualitative reason-
ing. Several argumentation frameworks have been developed,
notably Defeasible Logic Programming (DeLP) [Garcı́a and
Simari, 2004], a logic programming approach to argumenta-
tion which has proven to be successful for many real-world
applications (e.g., [Chesñevar et al., 2006]).

The notion of accrual of arguments has received some at-
tention from the argumentation community [Verheij, 1996;
Prakken, 2005]. This notion is based on the intuitive idea
that having more reasons or arguments for a given conclusion
makes such a conclusion more credible. Modeling accrual
of arguments is not a simple issue, and previous research
[Prakken, 2005] has identified different principles that should
hold for performing accrual of arguments in a sound way.

In this paper we propose an approach to model accrual of
arguments in the context of DeLP. We show that accrued argu-
ments can be conceptualized as structures which can be sub-
ject to a dialectical analysis similar to the one applied in con-
ventional argumentation systems. We also analyze Prakken’s
principles in the context of our proposal, and describe some
interesting features of our approach.

The rest of this paper is structured as follows. The next sec-
tion briefly describes DeLP. Then, we present the notion of
accrued structure, which plays a central role in our proposal.
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68005-C04-01 and TIN2006-15662-C02-02 (MEC, Spain).

Based on this notion, we then formalize the notions of attack
and defeat among accrued structures. Next, we introduce the
dialectical analysis on accrued structures, formalizing the no-
tion of justified accrued structure. Then, we discuss related
work and describe some significant features of our approach.
Finally, we present the main conclusions obtained.

2 The DeLP system: a brief overview

Next we will briefly introduce DeLP (for full details see
[Garcı́a and Simari, 2004]). As we will see in the next sec-
tion, DeLP will provide a natural context for modeling the
accrual of arguments. We begin by introducing its language.

Definition 1 (DeLP Language). The DeLP language is de-
fined in terms of three disjoint sets of clauses: a set of
facts which are literals, a set of strict rules of the form
L0 ←− L1, ..., Lk, and a set of defeasible rules of the form
L0

—< L1, ..., Lk, where L0, . . . , Lk, with k > 0, are literals.
In the language of DeLP, a literal “L” is a ground atom “A”
or a negated ground atom “∼A”, where “∼” represents the
strong negation.

Pragmatically, facts and strict rules will be used
to represent strict (non defeasible) information (e.g.,
mammal←− dog) whereas defeasible rules will be used to
represent tentative or weak information (e.g., flies —< bird).

Definition 2 (DeLP program). A DeLP program P is a finite
set of facts, strict rules and defeasible rules. In a program
P we will distinguish the subset Π of facts and strict rules,
and the subset Δ of defeasible rules. When required, we will
denote P as (Π, Δ).

Example 1. The following constitutes a DeLP program:

P =

j
a —< b, c a —< g b —< d c e h
a —< b, f g ←− h b —< e d f

ff

Definition 3 (Defeasible derivation). Let P be a DeLP pro-
gram and L a ground literal. A defeasible derivation of L
from P, consists of a finite sequence L1, . . . , Ln = L of
ground literals, s.t. for each i, 1 ≤ i ≤ n, Li is a fact or there
exists a rule Ri in P (strict or defeasible) with head Li and
body B1, . . . , Bm, s.t. each literal on the body of the rule is
an element Lj of the sequence appearing before Li (j ≤ i).

We say that a given set of DeLP clauses is contradictory if
and only if there exists a defeasible derivation for a pair of
complementary literals (w.r.t. strong negation) from this set.
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Definition 4 (Argument). Let P = (Π, Δ) be a DeLP pro-
gram. We will say that 〈A, h〉 is an argument for a literal h
from P, if A is a minimal set of defeasible rules (A⊆ Δ), such
that: (1) there exists a defeasible derivation for h from Π∪A,
and (2) the set Π ∪A is non-contradictory.

Definition 5 (Subargument). An argument 〈B, q〉 is a sub-
argument of an argument 〈A, h〉 if B ⊆ A.

Example 2. Consider the DeLP program in Ex. 1. Then h, g, a
and d, b, c, a are defeasible derivations for a, 〈A1, a〉 =
〈{(a —< b, c), (b —< d)}, a〉 and 〈A2, a〉 = 〈{a —< g}, a〉 are argu-
ments, and 〈{b —< d}, b〉 is a subargument of 〈A1, a〉.

The attack among arguments in DeLP is defined in terms of
the notion of disagreement of literals. Given a DeLP program
P = (Π, Δ), two literals h1 and h2 are in disagreement (or
just disagree) iff the set Π ∪ {h1, h2} is contradictory. Then,
given two arguments 〈A, h〉 and 〈B, k〉 in P, 〈B, k〉 attacks
〈A, h〉 at literal h′ iff there exist a subargument 〈A′, h′〉 of
〈A, h〉 such that k and h′ disagree. The subargument 〈A′, h′〉
is called the disagreement subargument.

3 Modeling the Accrual of Arguments

We will introduce next the notion of accrued structure in or-
der to model the accrual of different arguments for the same
conclusion.

Definition 6 (Accrued Structure). Let P be a DeLP pro-
gram, and let Ω be a set of arguments in P supporting the
same conclusion h, i.e., Ω = {〈A1, h〉, ..., 〈An, h〉}. We de-
fine the accrued structure for h (or just a-structure) from the
set Ω (denoted Accrual(Ω)) as [Φ, h], where Φ = A1 ∪ ... ∪
An.
When Ω = ∅ we get the special accrued structure [∅, ε], rep-
resenting the accrual of no argument.

Example 3. Consider the DeLP program P in Ex. 1. Let
〈A1, a〉= 〈{(a —< b, c), (b —< d)}, a〉,
〈A2, a〉= 〈{(a —< b, c), (b —< e)}, a〉,
〈A3, a〉= 〈{(a —< b, f), (b —< e)}, a〉 and
〈A4, a〉= 〈{a —< g}, a〉 be arguments in P. Then

Accrual({〈A1, a〉, 〈A4, a〉}) = [Φ1, a] where
Φ1 = {(a —< b, c), (b —< d), (a —< g)} (Fig. 1a)

Accrual({〈A1, a〉, 〈A3, a〉}) = [Φ2, a] where
Φ2 = {(a —< b, c), (a —< b, f), (b —< d), (b —< e)} (Fig. 1b)

Accrual({〈A1, a〉, 〈A2, a〉}) = [Φ3, a] where

Φ3 = {(a —< b, c), (b —< d), (b —< e)} (Fig. 1c)

An a-structure for h can be seen as a special kind of ar-
gument which subsumes different chains of reasoning which
provide support for h. For instance, the a-structure [Φ1, a]
(Fig. 1a) provides two alternative chains of reasoning sup-
porting a, both coming from each of the arguments accrued.
The graphical representation of a-structures shows both strict
and defeasible rules of the subsumed chains of reasoning (al-
though the a-structure itself has only defeasible rules).

The case of [Φ2, a] in Ex. 3 illustrates an important fea-
ture of our notion of accrual. If two arguments for the same
conclusion share some intermediate conclusion but support
it in different ways, then by accruing them the reasons for
the intermediate conclusion also accrue. Fig. 1b shows this
situation for two different reasons for the intermediate con-
clusion b. The case of [Φ2, a] in Ex. 3 highlights another fea-
ture of our characterization of accrual. Although each of the

[Φ1, a] [Φ2, a] [Φ3, a]

(a) (b) (c)

Figure 1: Accrued Structures

arguments accrued stands for one chain of reasoning support-
ing a conclusion a, the resulting a-structure [Φ2, a] stands for
four chains of reasoning for a (two of them are not explicitly
present in the individual arguments accrued).

The case of [Φ3, a] in Ex. 3 (Fig. 1c) illustrates a situation
similar to the previous one, but in this case the arguments
involved share not only the intermediate conclusion b but also
their topmost parts (more precisely the rule a —< b, c).

An important question that naturally emerges when con-
sidering the way we accrue arguments is what happens when
accruing two arguments that are in conflict (for instance be-
cause they have contradictory intermediate conclusions). We
will come back to this issue later.

Definition 7. Let [Φ, h] be an a-structure. Then the set
of arguments in [Φ, h], denoted as Args([Φ, h]), is the
set of all arguments 〈Ai, h〉 s.t. Ai ⊆ Φ. In particular,
Args([∅, ε]) =def ∅.

Example 4. Consider the arguments and a-
structures presented in Ex. 3 (Fig. 1). Then
Args([Φ3, a]) = {〈A1, a〉, 〈A2, a〉} and Args([Φ2, a]) =
{〈A1, a〉, 〈A2, a〉, 〈A3, a〉, 〈{(a —< b, f), (b —< d)}, a〉}.

Although Accrual and Args are not reverse operations (as
illustrated by the case of [Φ2, a] in Exs. 3 and 4), we can
ensure that the arguments accrued will always be among the
arguments in the resulting a-structure. We can also ensure
that by accruing the arguments in a given a-structure [Ψ, k]
we always get [Ψ, k] as a result.

Property 1. Let Ω be a set of arguments for a
given conclusion h. Then Args(Accrual(Ω)) ⊇ Ω.
Besides, for any a-structure [Ψ, k] it holds that
Accrual(Args([Ψ, k])) = [Ψ, k]. 1

Definition 8 (Maximal a-structure). Let P be a DeLP pro-
gram. We say that an a-structure [Φ, h] is maximal iff
Args([Φ, h]) contains all arguments in P with conclusion h.

Example 5. Consider the DeLP program P in Ex. 1. Then
[{(b —< d), (b —< e)}, b] is a maximal a-structure in P, whereas

[{(b —< d)}, b] is not.

Next we will introduce the notion of narrowing of an a-
structure, which is analogous to the notion of narrowing in
[Verheij, 1996]. Intuitively, a narrowing of an a-structure
[Φ, h] is an a-structure [Θ, h] accounting for a subset of
Args([Φ, h]).

Definition 9 (Narrowing of an a-structure). Let [Φ, h] and
[Θ, h] be two a-structures. We say that [Θ, h] is a narrowing
of [Φ, h] iff Args([Θ, h]) ⊆ Args([Φ, h]).

Example 6. Consider the a-structures [Φ2, a] and [Φ3, a] in Ex.
3. Then [Φ3, a] and [Φ2, a] itself are narrowings of [Φ2, a].

1Proofs are not included for space reasons.
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Next we will introduce the notion of accrued sub-structure,
that is analogous to the notion of subargument but for a-
structures. Intuitively, an accrued sub-structure of an a-
structure [Φ, h] is an a-structure supporting an intermediate
conclusion k of [Φ, h] and accounting for a subset of the rea-
sons that support k in [Φ, h]. The one that accounts for all the
reasons supporting k in [Φ, h] is called complete.

Definition 10 (a-substructure and complete a-substruc-
ture). Let [Φ, h] and [Θ, k] be two a-structures. Then we say
that [Θ, k] is an accrued sub-structure (o just a-substructure)
of [Φ, h] iff Θ ⊆ Φ. We also say that [Θ, k] is a complete a-
substructure of [Φ, h] iff for any other a-substructure [Θ′, k]
of [Φ, h] it holds that Θ′ ⊂ Θ.

Example 7. Consider [Φ3, a] in Ex. 3. Then [{b —< d}, b],
[{(b —< d), (b —< e)}, b] and [Φ3, a] itself are a-substructures of
[Φ3, a]. Moreover, the two latter a-substructures are complete.

4 Conflict and Defeat

Next we will formalize the notion of attack between a-
structures, which differs from the notion of attack in ar-
gumentation frameworks in several respects. First, an a-
structure [Φ, h] generally stands for more than one chain of
reasoning (argument) supporting the conclusion h. Besides,
some intermediate conclusions in [Φ, h] could be shared by
some, but not necessarily all the arguments in Args([Φ, h]).
Thus, given two a-structures [Φ, h] and [Ψ, k], if the conclu-
sion k of [Ψ, k] contradicts some intermediate conclusion h′

in [Φ, h], then only those arguments in Args([Φ, h]) involv-
ing h′ will be affected by the conflict.

Next we will define the notion of partial attack, where the
attacking a-structure generally affects only a narrowing of the
attacked one (that one containing exactly the arguments in the
attacked a-structure affected by the conflict), and we will refer
to this narrowing as the attacked narrowing.

Definition 11 (Partial Attack and Attacked Narrowing).
Let [Φ, h] and [Ψ, k] be two a-structures. We say that [Ψ, k]
partially attacks [Φ, h] at literal h′, iff there exists a com-
plete a-substructure [Φ′, h′] of [Φ, h] s.t. k and h′ disagree.
The a-substructure [Φ′, h′] will be called the disagreement a-
substructure. We will say that [Λ, h] is the attacked narrowing
of [Φ, h] associated with the attack iff [Λ, h] is the minimal
narrowing of [Φ, h] that has [Φ′, h′] as an a-substructure.

Example 8. Consider a DeLP program P where:

P =

8><
>:

x —< z ∼z —< w ∼x —< q u
x←− y ∼z —< s s —< p v
z —< t y —< u y w
z —< v ∼y —< p t p

9>=
>;

Consider the a-structures [Φ, x] and [Ψ1,∼z] in Fig. 2,
where Φ = {(x —< z), (z —< t), (z —< v), (y —< u)} and
Ψ1 = {(∼z —< w), (∼z —< s), (s —< p)}. Then [Ψ1,∼z]
partially attacks [Φ, x] with disagreement a-substructure [Φ′, z]
= [{(z —< t), (z —< v)}, z]. The attacked narrowing of [Φ, x]
is [{(x —< z), (z —< t), (z —< v)}, x]. Graphically, this attack
relation will be depicted with a dotted arrow (see Fig. 2).

4.1 Accrued Structures: Evaluation and Defeat

In order to decide if a partial attack really succeeds and con-
stitutes a defeat we need a criterion to determine the relative

Figure 2: Partial Attack

strength (or conclusive force) of those a-structures in conflict.
In general, such comparison criterion must be defined accord-
ing to the application domain. In what follows, we will ab-
stract from that criterion assuming the existence of a binary
preference relation ‘
’ between a-structures.

Definition 12 (Partial Defeater). Let [Φ, h] and [Ψ, k] be
two a-structures. Then we say that [Ψ, k] is a partial defeater
of [Φ, h] (or equivalently that [Ψ, k] is a successful attack on
[Φ, h]) iff 1) [Ψ, k] partially attacks [Φ, h] at literal h′, where
[Φ′, h′] is the disagreement a-substructure, and 2) it is not the
case that [Φ′, h′]
 [Ψ, k].

Example 9. Consider the attack from [Ψ1,∼z] against [Φ, x] with
disagreement a-substructure [Φ′, z] in Ex. 8 (Fig. 2), and let us as-
sume that [Ψ1,∼z]� [Φ′, z]. Then the attack succeeds, constitut-
ing a defeat. Graphically, this defeat relation will be depicted with
a continuous arrow (see Fig. 3).

Figure 3: Defeated and Undefeated Narrowings

Given an attack relation, we will identify two complemen-
tary narrowings associated with the attacked a-structure: the
narrowing that becomes defeated as a consequence of the at-
tack, and the narrowing that remains undefeated.

Definition 13 (Undefeated and Defeated narrowings). Let
[Φ, h] and [Ψ, k] be two a-structures s.t. [Ψ, k] attacks [Φ, h].
Let [Λ, h] be the attacked narrowing of [Φ, h]. Then the de-
feated narrowing of [Φ, h] associated with the attack, de-
noted as N

D
w([Φ, h], [Ψ, k]), is defined by cases as follows:

1) N
D
w([Φ, h], [Ψ, k]) = [Λ, h], if [Ψ, k] is a partial de-

feater of [Φ, h], or 2) N
D
w
([Φ, h], [Ψ, k]) = [∅, ε], other-

wise. The undefeated narrowing of [Φ, h] associated with
the attack, denoted as N

U
w([Φ, h], [Ψ, k]), is the a-structure

Accrual(Args([Φ, h]) \Args(ND
w
([Φ, h], [Ψ, k]))).

Example 10. Fig. 3 illustrates a successful attack from [Ψ1,∼z]
against [Φ, x], as well as the defeated and undefeated narrowings
of [Φ, x] associated with the attack. As another example, consider
the attack from [Ψ2,∼x] = [{∼x —< q},∼x] against [Φ, x], with

[Φ, x] itself as disagreement a-substructure, and let us assume that
[Φ, x]� [Ψ2,∼x]. In this case the attack does not succeed, and
then [∅, ε] is the defeated narrowing and [Φ, x] is the undefeated
narrowing (i.e., [Φ, x] remains completely undefeated).

4.2 Combined Attack

Until now we have considered only single attacks. When a
single attack succeeds, a nonempty narrowing of the attacked
a-structure becomes defeated. But two or more a-structures
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could simultaneously attack another, possibly affecting dif-
ferent narrowings of the target a-structure, and thus causing
a bigger narrowing to become defeated (compared with the
defeated narrowings associated with the individual attacks).
Fig. 4a shows a combined attack from a-structures [Ψ1,∼z]
and [Ψ3,∼y] against [Φ, x]. Even though each attacking a-
structure defeats only a proper narrowing of [Φ, x], the whole
[Φ, x] becomes defeated after applying both attacks. Consider

(a)

(b)

Figure 4: Combined Defeat

now the combined attack against [Φ, x] shown in Fig. 4b. One
of the attacking a-structures ([Ψ1,∼z]) defeats a narrowing
of [Φ, x] on its own, whereas the other ([Ψ2,∼x]) only at-
tacks [Φ, x]. But suppose that, although [Φ, x] is stronger than
[Ψ2,∼x] according to our criterion, [Ψ2,∼x] is stronger than
[Φ′, x] = [{y —< u}, x], a proper narrowing of [Φ, x]. That
is possible as, in general, a narrowing of an a-structure is
weaker than the a-structure itself. Then, when the a-structures
[Ψ1,∼z] and [Ψ2,∼x] combine their attacks, they cause the
whole [Φ, x] to become defeated (see Fig. 4b). The reason
is that the successful attack of [Ψ1,∼z] weakens the target
a-structure, allowing the attack of [Ψ2,∼x] to succeed.

The previous examples, together with the figures, suggests
the following informal procedure to calculate the undefeated
narrowing associated with a combined attack from a set of a-
structures Σ against an a-structure [Φ, x]. (1) Pick a defeater
in Σ of [Φ, h] (if any) and apply it, obtaining an undefeated
narrowing [Θ, h] of [Φ, h]. (2) Repeat step 1 taking the re-
sulting a-structure [Θ, h] as the new target for defeaters, until
there is no more defeaters for [Θ, h] in Σ.

Lets consider again the combined attack in Fig. 4a. We
can arrive to the same result by selecting the defeaters in a
different order, i.e., first [Ψ3,∼y] and then [Ψ1,∼z]. How-
ever, in other situations, different choices may cause different
undefeated narrowings to remain undefeated in the end, an
then, different outputs. This situation can only arise when, ac-
cording to the preference relation, a given accrual is weaker
than some of its narrowings. Consider the combined attack

against [Φ, x] shown in Fig. 5, and assume that (unlike it
was assumed in Fig. 4b) [Ψ2,∼x]
 [Φ, x]. Assume also
that [{(x —< z), (z —< t), (z —< v)}, x]
 [Ψ2,∼x]. Then as
shown by Fig. 5 there exist two different choices in step 1
of the procedure, leading to two different results. In order to

Figure 5: Combined Defeat

disambiguate this situation, and following the same strategy
as in Prakken’s approach, we restrict the order in which de-
featers are applied so that deeper defeaters are applied first. 2

The purpose of the following definitions is to formally cap-
ture the notions of defeated and undefeated narrowings asso-
ciated with a given combined attack. In particular, the first
one formally captures the informal procedure given above (in-
cluding the restriction on defeater application). In this defini-
tion we will use the term a-substructure defeater to refer to a
defeater which attacks the target a-structure at an intermedi-
ate conclusion, i.e., that attacks a proper a-substructure of the
target a-structure.

Definition 14 (Bottom-up sequential degradation). Let
[Φ, h] be an a-structure and let Σ be a set of a-structures at-
tacking [Φ, h]. A Sequential Degradation of [Φ, h], associated
with the combined attack of the a-structures in Σ, consists of
a finite sequence of narrowings of [Φ, h]:

[Φ1, h], [Φ2, h], . . . , [Φm+1, h]

provided there exists a finite sequence of a-structures in Σ:

[Ψ1, k1], [Ψ2, k2], . . . , [Ψm, km]

where [Φ1, h] = [Φ, h], for each i, 1 ≤ i ≤ m, [Ψi, ki]
partially defeats [Φi, h] with associated undefeated narrow-
ing [Φi+1, h], [Φm+1, h] has not defeaters in Σ, and for any
disagreement a-substructure [Λi, ki] associated with the at-
tack of [Ψi, ki] against [Φi, h], it holds that [Λi, ki] has no
a-substructure defeater in Σ, 1 ≤ i ≤ m.

Thus, according to definition 14, the sequences of defeat
applications in Figs. 4a and 4b and the topmost in Fig. 5
correspond to bottom-up sequential degradations. On the
other hand, the lowermost sequence of defeat applications in
Fig. 5 is not a bottom-up sequential degradation. Note that
the disagreement a-substructure associated with the attack of

2Given a combined attack against an a-structure for x (like the
one shown in Fig. 5), it is natural to consider all the conflicts affect-
ing the individual reasons supporting x (deeper defeats) before the
accrual for x is weighted against its rebutting defeater (the one sup-
porting ∼x), since the “real” support for x (and thus, its strength) is
not revealed until such deeper conflicts are considered and resolved.
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[Ψ2,∼x] against [Φ, x], which is [Φ, x] itself, has [Ψ3,∼y]
as a-substructure defeater. Interestingly, it can be shown that
all bottom-up sequential degradations associated with a given
combined attack converge to the same a-structure.

Property 2. Let [Φ, h] be an a-structure and let Σ be a
set of a-structures attacking [Φ, h]. Let [Φ1, h], . . . , [Φm, h]
and [Φ′

1, h], . . . , [Φ′

n, h] be two bottom-up sequential degra-
dations of [Φ, h] associated with the combined attack of the
a-structures in Σ. Then [Φm, h] = [Φ′

n, h].

Definition 15 (Undefeated and Defeated Narrowings as-
sociated with a Combined Attack). Let [Φ, h] be an a-
structure and let Σ be a set of a-structures attacking [Φ, h].
Let [Φ1, h], ..., [Φm+1, h] be a bottom-up sequential degra-
dation of [Φ, h] associated with the combined attack of the
a-structures in Σ. Then [Φm+1, h] is the undefeated nar-
rowing of [Φ, h] associated with the combined attack, and
Accrual(Args([Φ, h]) \ Args([Φm+1, h])) is its defeated
narrowing.

Example 11. Consider the combined attack of [Ψ1,∼z] and
[Ψ2,∼x] against [Φ, x] shown in Fig. 4b. The associated undefeated
narrowing of [Φ, x] is [∅, ε]. As another example, consider the com-
bined attack against [Φ, x] shown in Fig. 5. The associated unde-
feated narrowing of [Φ, x] is [{(x —< z), (z —< t), (z —< v)}, x].

5 Dialectical Analysis for Accrued Structures

Given a DeLP program P and a maximal a-structure [Φ, h]
we are interested in determining which is the final undefeated
narrowing of [Φ, h] after considering all possible a-structures
attacking it. As those attacking a-structures may also have
other a-structures attacking them, this strategy prompts a re-
cursive dialectical analysis formalized as follows.

Definition 16 (Accrued Dialectical Tree). Let [Φ, h] be a
maximal a-structure. The accrued dialectical tree for [Φ, h],
denoted T[Φ, h], is defined as follows:

1. The root of the tree is labeled with [Φ, h].
2. Let N be an internal node labelled with [Θ, k]. Let Σ

be the set of all disagreement a-substructures associ-
ated with the attacks in the path from the root to N . Let
[Θi, ki] be an a-structure attacking [Θ, k] s.t. [Θi, ki]
has no a-substructures in Σ. Then the node N has a
child node Ni labelled with [Θi, ki]. If there is no a-
structure attacking [Θ, k] satisfying the above condition,
then N is a leaf.

The condition involving the set Σ avoids the introduction
of a new a-structure as a child of a node N if it is already
present in the path from the root to N (resulting in a circular-
ity). This requirement is needed to avoid fallacious reason-
ing, as discussed in [Garcı́a and Simari, 2004].

Once the dialectical tree has been constructed, each com-
bined attack is analyzed, from the deepest ones to the one
against the root, to determine the undefeated narrowing of
each node in the tree.

Definition 17 (Undefeated narrowing of a Node). Let
T[Φ, h] be an accrued dialectical tree for [Φ, h]. Let N be

a node of T[Φ, h] labelled with [Θ, k]. Then the undefeated

narrowing of N is defined as follows:

(a) (b)

Figure 6: Dialectical Tree and Justification analysis.

1. If N is a leaf node, then the undefeated narrowing of N
is its own label [Θ, k].

2. Otherwise (i.e., if N is an internal node), let M1, ..., Mn

be the child nodes of N and let [Λi, k] be the undefeated
narrowing of the a-structure labelling the child node Mi,
1 ≤ i ≤ n. Then the undefeated narrowing of N is
the undefeated narrowing of [Θ, k] associated with the
combined attack involving all the [Λi, k], 1 ≤ i ≤ n.

Example 12. Fig. 6a shows the dialectical tree for [Φ, x]. Fig. 6b
shows the dialectical tree for [Φ, x], where the undefeated narrow-
ings of each node are highlighted. The preference relation is as-
sumed the same as for sequential degradations in Figs. 4a and 4b.
Additionally, we assume that [Ψ4,∼s]� [{s —< p}, s], and thus
[Ψ4,∼s] defeats a narrowing of [Ψ1,∼z]. We also assume that al-
though [Ψ1,∼z] is preferred over [{(z —< t), (z —< v)}, z], the un-
defeated narrowing of [Ψ1,∼z] ([{∼z —< w},∼z]) is not, and thus
its attack against [Φ, x] does not succeed.

Definition 18 (Justified a-structure). Let P be a DeLP pro-
gram and let h be a literal. Let [Φ, h] be a maximal a-
structure for h such that the undefeated narrowing of [Φ, h]
in T[Φ, h] is a non empty a-structure [Φ′, h]. Then we say that

[Φ′, h] is a justified a-structure for its conclusion h.

According to the dialectical tree in Fig. 6b,
[{(x —< z), (z —< t), (z —< v)}, x] is a justified a-structure
for x.

The following property establishes that the a-structure
emerging as a result of the above dialectical process cannot
involve contradictory literals.

Property 3. Let P be a DeLP program, and let [Φ, h] be a
justified a-structure w.r.t. P. Then there exist no intermediate
conclusions k and r in [Φ, h] which are in disagreement.

6 Conclusions and Related Work

In this paper we have proposed a novel formalization to model
the accrual of arguments based on the notion of accrued
structure, which accounts for different arguments supporting
a given conclusion. We have shown how accrued structures
can be in conflict w.r.t. the notions of partial attack and defeat,
from which defeated and undefeated narrowings can be iden-
tified. The notions of combined attack and sequential degra-
dation were also defined, allowing us to characterize a di-
alectical process which has as an input a maximal a-structure
[Φ, h], and gives as an output a justified a-structure (if any)
which corresponds to a narrowing of [Φ, h].
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In [Prakken, 2005], Prakken presents a formalization of
accrual that is based on a combination of two widely rec-
ognized argument-based logics: Dung’s abstract approach to
argumentation [Dung, 1995] instantiated with Pollock’s ap-
proach to the structure of arguments [Pollock, 1994]. Asso-
ciated with his formalization, Prakken presents three princi-
ples that should hold for performing accrual of arguments in
a sound way.

Lets analyze these principles of accrual in the context of
our formalization. The first principle says that “accruals are
sometimes weaker than their elements” due to the possibil-
ity that accruing reasons are not independent. This principle
is satisfied since in our formalization no assumption on the
preference relation is made. Indeed, we introduced the notion
of bottom-up sequential degradation to obtain a sound result
when calculating the undefeated narrowing (associated with
a given combined attack) of an accrual that is weaker than
its elements. The second principle states that “any ‘larger’
accrual that applies, makes all its ‘lesser’ versions inappli-
cable.” Intuitively, that means that we should always accrue
as many arguments as possible, even if in the end the ac-
crual is outweighed by a conflicting accrual. This principle
is trivially verified since the dialectical acceptance analysis
only considers maximal a-structures. Finally, the third princi-
ple states that “flawed reasons or arguments may not accrue.”
Although the third principle is not verified in a strict sense, its
underlying purpose is. That is, we first allow all arguments to
accrue (in a maximal a-structure), and then we let the dialec-
tical analysis (based on the notion of partial defeat) to rule
out the flawed parts of the accrual. In the end, no flawed ar-
gument will be present in a justified a-structure.

In [Verheij, 1996] the Cumula system is presented. In it the
status of arguments is defined using a Dung-like semantics.
According to this semantics, an argument is defeated if one of
its subarguments is defeated, and if a given argument A is de-
feated, all its narrowings (arguments accounting for a subset
of reasons in A) are also defeated. As analyzed by Prakken
in [Prakken, 2005], the condition imposed by Verheij’s se-
mantics concerning the status of narrowings of an argument
is too strong. That is, if an argument (possibly accruing many
individual reasons) is defeated because of subargument de-
feat, according to Verheij’s semantics all the narrowings will
become defeated, even though the ones not involving the de-
feated subargument should not.

Finally, some defeasible logics (e.g., Defeasible Logic
[Governatori and Maher, 2000]) incorporate the notion of
team defeat, which is in some respect a form of accural.

There exist some interesting features of our approach that
we will summarize next. The first two are related to the fact
that our formalization of accrual is based on a fully work-
ing system such as DeLP. Since DeLP has been applied in
several real-world domains, this new capability for model-
ing accrual can be used to improve those existing applica-
tions (e.g., [Chesñevar et al., 2006]). The second advantage
has to do with explanations for answers. In the literature,
an argument is often regarded as an explanation for a certain
literal. In [Garcı́a et al., 2007] a broader notion of expla-
nation was proposed as providing the necessary information
to understand the warrant status of a literal, helping to com-

prehend and analyze answers provided by argumentation sys-
tems based on dialectical proof procedures (as is the case of
DeLP). This also signifies as a potential feature in our pro-
posal, not exhibited by other frameworks which formalize the
status of arguments using Dung’s semantics.

There is an advantage of our approach over Prakken’s for-
malization concerning the efficiency of the acceptance anal-
ysis of accruals (a-structures). Concretely, in our approach
only one accrual is considered for a given conclusion x (the
maximal one), whereas in Prakken’s formalization the num-
ber of accruals constructed for a given conclusion x is expo-
nential in the number of individual reasons for x, and so the
computation of Dung’s semantics becomes more complex.

Finally, in addition to satisfying all three principles pro-
posed by Prakken, our formalization satisfies an interesting
property (Prop. 3) which suggests an additional principle: ac-
crued structures which are ultimately accepted as justified
should not involve conflicting arguments.

It must be noted that there are several real-world problems
in which accrual of arguments plays a major role (e.g., legal
reasoning, social networks, etc.). Part of our current work
involves representing those problems in terms of our formal-
ism, analyzing the obtained results. To test the applicability
of our proposal we are developing an implementation using
the DeLP system 3 as a basis. Also, we are studying different
theoretical results emerging from our proposal which could
help to speed up the computation of accrued dialectical trees.
Research in this direction is currently being pursued.
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