Bidirectional Answer Set Programs with Function Symbols

*

Thomas Eiter and Mantas Simkus
Institute of Information Systems, Vienna University of Technology
Favoritenstra3e 9-11, Vienna, Austria
(eiter|simkus) @kr.tuwien.ac.at

Abstract

Current Answer Set Programming (ASP) solvers
largely build on logic programming without func-
tion symbols. This limitation makes ASP decid-
able, but greatly complicates the modeling of indef-
inite time, recursive data structures (e.g., lists), and
infinite processes and objects in general. Recent re-
search thus aims at finding decidable fragments of
ASP with function symbols and studying their com-
plexity. We identify bidirectional ASP programs as
an expressive such fragment that is useful, e.g., for
reasoning about actions involving both the future
and the past. We tightly characterize the compu-
tational complexity of bidirectional programs and
of some of their subclasses, addressing the main
reasoning tasks. Our results also imply that the re-
cently introduced FDNC programs can be extended
by inverse predicates while retaining decidability,
but computational costs are unavoidably higher.

1 Introduction

In the last decade, Answer Set Programming (ASP) has be-
come an important paradigm of Knowledge Representation
and Reasoning [Baral, 2002]. ASP, with its roots in logic
programming and databases, is based on logic programs
with non-monotonic negation under the answer set seman-
tics [Gelfond and Lifschitz, 1991], and is especially well-
suited to represent problems involving common-sense rea-
soning. Supported by efficient reasoners,! ASP has been
fruitfully applied in many areas of computer science and Al,
including information integration, diagnosis, configuration
management, reasoning about actions and change, etc. (see
e.g. [Woltran, 2005] for a showcase and more details).
Current ASP implementations largely build on logic pro-
gramming without function symbols. For this reason, the an-
swer sets (also known as stable models) of an ASP program
P are always finite relational structures over the relations and
constants of P. This intrinsic finiteness is an acknowledged
limitation in terms of expressiveness, and becomes apparent

*This work has been partially supported by the Austrian Sci-
ence Fund (FWF) grants P20840 and P20841, and the EC project
OntoRule (IST-2009-231875).

See http://asparagus.cs.uni-potsdam.de/

765

when modeling concepts that cannot be confined using a finite
number of constants; this includes time, action sequences, re-
cursive data structures like lists, and infinite processes and
objects in general [Bonatti, 2004; Calimeri et al., 2008].

Using function symbols, we can easily generate infinite do-
mains, and so more compactly represent problems involving
infinite objects. Unfortunately, an unrestricted use of function
symbols makes ASP highly undecidable. In fact, already in-
ference from Horn logic programs becomes undecidable, and
equipped with negation under the answer set semantics, it is
at the second level of the analytical hierarchy (as stable model
existence is Y1-complete, cf. [Marek et al., 1994]). This im-
mense complexity, which discouraged many researchers, has
two reasons. Firstly, function symbols make the Herbrand
universe infinite, and the program can have infinitely many
and possibly infinite answer sets. Secondly, each answer set
of a program satisfies a minimality property that quantifies
over (possibly infinitely many and infinite) interpretations.

The need to represent problems with infinite domains led
several authors to identify fragments of ASP with function
symbols that have lower complexity; the majority of them tai-
lored conditions for the program dependency graph [Baselice
et al., 2007; Syrjanen, 2001; Bonatti, 2004; Calimeri et al.,
2008]. While many of the identified program classes are de-
cidable, a weakness of this approach is that recognizing the
programs from such classes may be difficult, if not undecid-
able. Moreover, many classes allow only finite models.

The recent FDNC programs [Simkus and Eiter, 20071,
avoid the above limitations. Inspired by modal fragments
of first-order logic where purely syntactic conditions yield
decidability, FDNC is tailored to ensure tree-shaped stable
models, and allow to inductively describe infinite objects.
However, e.g., in reasoning about actions, they allow to talk
naturally about the future, but not the past; in FDNC pro-
grams, atoms cannot be derived from structurally more com-
plex atoms; e.g., in the famous Yale Shooting domain, a rule
Dead(x) V Loaded(x) < Dead(shoot(x)) is forbidden.

In this paper, we present bidirectional (BD)-programs,
which are a close relative of FDNC, but are relieved from the
above restriction on atom dependency direction. This makes
talking about both the future and the past possible. Further-
more, in contrast to FDNC, it allows us to elegantly express
eventuality conditions (A holds for some term) by backward
propagation (which is not succinctly possible in FDNC), and

to represent combinations of backward and forward reason-
ing; this makes BD-programs more expressive (and complex)
than FDNC in general. Briefly, our main contributions are:

e We introduce the class of BD-programs with function sym-
bols. Its syntactic restrictions, which modularly apply on the
rules and are easy to test, ensure that the stable models of
a program, like of FDNC programs, are tree-shaped. How-
ever, due to the minimality of stable models, bidirectionality
of atom dependencies makes recognizing such models much
more complicated, and needs special treatment.

e We thus provide a semantic characterization of stable mod-
els of BD-programs in terms of specially labeled trees. Based
on it, we present algorithms for the basic reasoning tasks, in-
cluding consistency testing, and brave/cautious entailment of
ground/existential queries. The algorithms are different from
those for FDNC; we use automata-theoretic methods and, for
disjunctive programs, a suitable automata acceptance notion
to obtain optimal complexity results.

e We tightly characterize the complexity of BD-programs
and some of its subclasses. Under bounded predicate arities,
the aforementioned reasoning tasks are 2EXPTIME-complete
for disjunctive BD-programs (hence provably harder than in
FDNC), but EXPTIME-complete if disjunction is disallowed;
on the other hand, already brave reasoning from disjunctive
BD-programs without negation is 2EXPTIME-hard. If only
one function symbol is available (which suffices to model
time), the complexity of reasoning drops to EXPSPACE in the
disjunctive case, and to PSPACE if disjunction is disallowed.

The high expressivity of BD-programs makes them a pos-
sible host for encoding problems with matching complex-
ity into ASP with function symbols. Examples are plan-
ning problems (e.g., conditional planning) or reasoning tasks
in Description Logics (e.g., answering conjunctive queries
in SHZQ and satisfiability testing in SRZQ) that are
2EXPTIME-complete, or deciding datalog query containment
(BEXPTIME-complete for pairs of non-recursive and recur-
sive queries). To our knowledge, no ASP classes, as simple
as BD-programs, with similar capacity were identified before.

2 Preliminaries

Answer Set Programming We assume a standard first-order
language with distinct, countably infinite sets of variables,
constants, and function and predicate symbols of positive ar-
ity. A literal is either an atom A (positive literal), or a negated
atom not A (negative literal).

A disjunctive logic program (briefly, program) is an arbi-
trary set of (disjunctive) rules r of the form

AiV...VA, — Ly,..., Ly, (1)

where n+m > 0, all A; are atoms (called head atoms) and all
L; are literals (called body literals). We let head(r) = {4,

., A, } and denote by body™ (1) (resp., body ~ (r)) the set of
atoms that occur in positive (resp., negative) body literals of r.
The rule r is a fact, if m =0; a constraint, if n=0; normal,
if n=1; positive, if body™ (r) =0 (we then let body(r) =
body™ (r)); and safe, if all variables in r occur in body™ (r)).

766

A program P is positive (normal, etc.), if all its rules are
positive (normal, etc.). The Herbrand universe HU P Her-
brand base HBY and the grounding Ground(P) of P are as
usual (cf. [Minker, 1988]). By M M (P) we denote the set of
C-minimal (Herbrand) models of P (viewing not as classi-
cal negation).

Recall that an interpretation [is a stable model of P, iff I &
M M (PT), where P! is the reduct of P w.r.t. I [Gelfond and
Lifschitz, 1991]. We denote by SM (P) the set of all stable
models of P. A program P is consistent, if SM (P) # ().

An existential query q is of the form 3. A(%), where A is
an n-ary predicate symbol, ¥ is an n-tuple of variables and
constants, and Z is a list of all variables in ¢. If & is empty,
then q is a ground query. A program P bravely (resp., cau-
tiously) entails ¢, in symbols P =, ¢ (resp., P =), if some
(resp., every) I € SM(P) contains a ground instance A(%)
of A(Z).

Alternating Tree Automata For an introduction to automata
on infinite trees, we refer to [Thomas, 1990]. We here recall
2-way alternating tree automata from [Vardi, 1998].

An infinite tree T is any prefix-closed set of words over
the positive integers (denoted by N), i.e., T" C N* such that
z-c € T,where z € N*and ¢ € N, impliesxz € T. T is
full if, additionally, x-¢’ € T for all 0 < ¢’ < ¢. Each element
x € T is a node of T', where € (the empty word) is the root
of T'. The nodes x-c € T, where ¢ € N, are the successors
of . By convention, -0 = x and (z-i)-(—1) = z (note that
e-(—1) is undefined). T is k-ary if it is full and each node in
T has k successors. An infinite path in T is a prefix-closed
node set p C T such that for every ¢ > 0 there is a unique
x € p such that |z| =1i. A labeled tree over an alphabet X is a
tuple (7, L), where £ : T — ¥, i.e., a tree where the nodes
are labeled with symbols from .

For a set V' of propositions, let B(V') be the set of all
Boolean formulas that can be built from V' U {true, false}
using V and A as connectives. We say that I CV satisfies
v € B(V), if assigning true to each p € I and false to each
p € V'\ I makes ¢ true.

Let [k] = {-1,0,1,...,k}. A two-way alternating tree
automaton (2ATA) over infinite k-ary trees is a tuple A =
(3, Q, 9, g0, F), where X is an input alphabet, @ is a finite set
of states, § : QxX — B([k]xQ) is a transition function, ¢y €
@ is an initial state, and F’ specifies an acceptance condition.
We consider here parity acceptance, which is given by a chain
F:Gy C Gy C...C Gy, of subsets of @) where G,,,=Q.

Informally, a run of a 2ATA A over a labeled tree (T, £)
is a tree T, where each node n € T, is labeled with (x,q)€
T x Q. Here n describes a copy of A that is in state g and
reads the node = € T', and the labeling of its successor nodes
must obey the transition function. Formally, a run (7., r) is
labeled tree over X, = T' x @), which satisfies the following:
1. ee T, and r(e) = (& qo).

2. For each y €T, with r(y)=(z,q) a
there is a set S={(c1,q1),. CnyQn)

that (i) S satisfies @, and (ii) for all 1 < ¢ < n, we have

that y-i € T}, z-¢; is defined, and r(y-i) = (x-¢;, ¢i).

A run (T, 7) is accepting, if every infinite path p C 7. sat-
isfies F' as follows. Let in f(p) be the set of states g € () that

nd
}

x)) =

o(q, L
g[]szuch

occur infinitely often in p. Then p satisfies F, if an even %

exists for which inf(p) NG; # 0 and inf(p) NG;—1 = 0.
An automaton accepts a labeled tree, if there is a run that

accepts it. By L(A) we denote the set of trees that A accepts.

3 Bidirectional Programs

We now introduce bidirectional programs (BD-programs).
After defining the full language, we focus on core programs,
for which we give an algorithm for consistency checking.
Other basic reasoning tasks and reasoning for the full lan-
guage can be reduced to this problem.

BD-programs are syntactically restricted to ensure that sta-
ble models are tree-shaped. This allows us to recognize the
possibly infinite stable models using a tree automaton.

Definition 3.1. (t-atom) An atom R(¢, s1, .. ., S,) is called a
t-atom, if each s; is either a constant, or a variable that is
distinct from and not occurring in ¢.

Example 3.1. Let z, y, z be variables, and ¢, d be constants.
Then R(z,c,d,y) is an x-atom, and P(f(z),c,d,y) is an
f(x)-atom. However, R(g(z), z,x) is not a g(x)-atom be-
cause z is a subterm of g(x) and z is occurs in the 3rd position
of the atom. Also, R(z, ¢, d, f(y)) is not an z-atoms because
functional terms are allowed in the first position only.

Definition 3.2. (BD-programs) Let ¢ be a designated con-
stant. A BD-program P consists of safe rules r of the form
(1) such that, for some variable x, each atom in r is a t-atom
where either t = x, t = f(z) for some unary f, ort = c.

Example 3.2. E.g., rules R(x,z,y) < P(f(z),y,2) and
P(f(x),c,y) — P(x, z,y),not R(g(x),y) are allowed in the
syntax of BD-programs. However, R(f(y),z) — P(f(z),y)
is not allowed since it does not fulfill the requirement above.

Observe that the rule in the introduction satisfies the above
condition, and hence is allowed in BD-programs.

Note also that every atom in a stable model I of a BD-
program P is of the form R(¢,c1,...,¢p), Where ¢y, ..., ¢,
are constants and ¢ is of the form f,,(...f1(c)...). Observe
also that the set of all terms f,(...f1(c)...) forms a tree with
root ¢, where a node f(t) is a child of ¢. Thus, any I can be
seen as a labeled tree in which each R(t,c¢1,...,¢,) € I is
associated to the node ¢.

We consider next a program which is a safe variant of a
program in [Baselice er al., 20071, originally due to F. Fages.

Example 3.3. Let P consist of the rules
(1) D(c) <, 3) Qz)—Q(f(x)),
(2) D(f(x))—D(z), (4) Qz)< D(z),not Q(f(x)).
Then P is a BD-program, but is not finitely recursive ac-
cording to [Baselice ef al., 2007]: indeed, due to (3), Q(c)
depends on infinitely many atoms Q(f(¢c)), Q(f(f(c))), ...
Observe that P is inconsistent. Indeed, any model I of
P!, by (1) and (2), must contain D(t) for each ground term
t € HUP. Then, by the rules (3) and (4), I must also contain
Q(t) for each ground term t € HUY. Hence, P! contains
only instances of rules (1)-(3), and thus I is not a minimal
model of PT.
If we replace (4) by Q(z) V Q' (x) «— D(z), not Q(f(z)),
we obtain a consistent program with one stable model I,

767

for each natural number n: I,, consists of Q(f(c)) for each
i<n, Q' (f'(c)) foreach i >n, and D(f*(c)) for each 0 <.

To ease the development of algorithms, we focus on core pro-
grams over unary predicates, which are described next.

Definition 3.3. (Core programs) A BD-program P is a core
program, if it consists of core rules, which have the form:

a) A(c) < , where c is the special constant,
b) A(f(z)) «— B(z), called f-forward rule,
c) A(x) <« B(f(x)), called f-backward rule, or

d) Ai(x) V...V Ay (x) < [not] By(z),...,[not] By(x),
called local rule ([not] stands for a possible negation).

Core programs are structurally simple, but as expressive as
full BD-programs: by a structural transformation, we can
reduce consistency of a BD-program P to consistency of a
core program P’. First, by exploiting the restricted variable
interaction (see Definition 3.2), P can be translated into a BD-
program over unary predicates, arriving at rules with atoms of
the form A(z), A(f(x)), and A(c) only (if predicate arities
are bounded, the translation is polynomial). The resulting
program can then be easily simulated by core rules.

Proposition 3.1. Under bounded predicate arities, a disjunc-
tive (resp., normal) BD-program P can be transformed in
polynomial time into a disjunctive (resp., normal) core pro-
gram P’ such that P is consistent iff P’ is consistent.

We note that the translation moreover establishes a 1-1 corre-
spondence between the stable models of P and P’.

4 Consistency in Normal BD-Programs

In this section, we develop an algorithm for testing consis-
tency of normal core programs. To this end, we first introduce
the notion of a block tree: a labeled tree that encodes a posi-
tive disjunction-free program with an interpretation for it. We
then define minimal block trees, which are the ones where the
encoded interpretation coincides with the least model of the
encoded program, and define an automaton recognizing such
trees. To decide consistency of normal core programs, we
then focus on block trees where the encoded program equals
the Gelfond-Lifschitz reduct w.r.t. the encoded interpretation.

4.1 Minimal Block Trees

(Minimal) block trees are trees labeled by blocks which intu-
itively consists of two parts: a set of predicate names and a
set of rules associated to the node.

Definition 4.1. (Block) A block is any tuple b= (o, D, R),
where « is a constant or a function symbol, D is a set of
unary predicates, and R is a set of positive disjunction-free
core rules such that: (i) if « is a constant, then R has no f-
backward rule for any function f, and (ii) if « is a function
symbol f, then for each g-backward rule in R we have g = f.
In case (i), b is a root block, and in case (ii) b is a child block.

Intuitively, a root block can be used as a root of the tree and a
child block inside the tree. We next illustrate conditions (i-ii).

Example 4.1. Consider the following 3 blocks:
bi=(c,{A,C} {A(x) —; B(f(2)) — A(z); D(g(x)) — C(x)}),
b2 =(f,{B},{C(z) = B(f(x))}), bs=(9,{D},0).

Note that by is a root block, bo, b3 are child blocks; b1 has 2
forward rules, by has a backward rule, and that b3 has no rules.

To ease the presentation, we assume that each function sym-
bol f is indexed by i(f), that the function i is bijective, and
w.l.0.g. that the set of indices of all functions in any set 13 of
blocks is an initial segment of the positive integers.

Definition 4.2. (Block tree) Let B be a block set where
k function symbols occur. Then a B-tree is any k-ary B-
labeled tree 7 = (T, £) satisfying the following properness
conditions: (i) L(¢) is a root block, and (ii) for all x-c€T,
L(z-c)=(a, D, R) is a child block with i(a) = c.

Example 4.2. (Cont’d) Assume i(f)=1 and i(g) =2, and
B={b1,b2,b3,bs, by} with by =(f,0,0) and b, =(g,0, D).
Take a 2-ary tree T with labeling L(e) =b1, L(1)=ba,
L(2)=bs, L(y)=0by forall ye T with y=2'-1 and 2’ #e¢,
and L(y) =b, for all y €T with y=2'-2 and 2’ #¢. Then
T =(T,L) is a B-tree. Another B-tree 7' can be obtained,
e.g., by setting £(11) = by instead of £(11)=by.

To obtain the encoded interpretation and program, we first
translate nodes of trees to terms. To this end, let x = ky- - -k,
be a word over N. Then term(z) = f,,(... fi(c)...), where
i(f;) = kj forevery j € {1,...,n} (note that term(e) = ¢).
Definition 4.3. (Associated interpretation) For a B-tree
T = (T, L), we define its associated interpretation int(T) as

int(7)={A(term(z)) |t € TAL(z) = (o, D, R) N A€ D}.
Example 4.3. (Cont’d) Observe thatint(7) = {A(c), C(c),
B(f(c)), D(g(c))} and int(T") = int(T) U {B(f(f(c)))}-
Definition 4.4. (Associated program) Let 7|; denote the
grounding a one-variable rule by a ground term ¢. Then for
a B-tree 7 = (T, L) its associated program prog(T) is the
smallest program closed under the following rules:
a) ife € T, L(z)=(o,D,R), r € R, and r is a local or a
forward rule, then 7 |term(2) € prog(7);
b) ifz € T, L(z)=(a,D,R), r € R, r is a backward rule,
and z = y-c with ¢ € N, then 7 |term(,) € prog(7);
Example 4.4. (Cont’d) For the B-tree 7, prog(7)={A(c) <;
B(f(c)) < Ale); D(g(c)) < C(c); Clc) = B(f(c))}.
Moreover, prog(7") = prog(7) U{C(f(c)) < B(f(f(c)))}-
The minimality of B-trees is defined in the natural way.
Definition 4.5. (Minimal 5-tree) We say a B-tree 7 is min-
imal, if {int(7)} = M M (prog(T)), i.e., int(T) is the least
model of prog(7) (note that prog(7) is non-disjunctive).
Example 4.5. (Cont’d) Note that {int(7) }=M M (prog(7)),
and hence 7 is minimal. On the other hand, 7" is not minimal
because int(7) C int(7"’) and int(7) is a model of prog(7”).
To characterize consistency of normal core programs P, we
just have to properly define the set I3 of blocks.

Definition 4.6. A block for a normal core program P is any
block (e, D, R), where « is a constant or a function from P,
D is a set of predicates of P, and R is a rule set consisting of:

768

a) All f-forward rules in P, for all functions f of P.

b) Incase a=c, therule A(x) « foreach fact A(c) « in P.
Otherwise, if ac is a function f, all f-backward rules of P.

¢) (Reduct) For each local rule r € P such that B ¢ D for all
B(z) € body™ (r), the rule head(r) « body ™ (r).

By construction, for any B-tree 7, where B is the set of all
blocks for P, we have prog(7) = Pin(T) Hence, if 7 is min-
imal, then int(7) € SM (P). On the other hand, for any I €
SM (P) we can build a minimal B-tree 7 with int(7) = 1.

Theorem 4.1. If B is the set of all blocks for a normal core
program P, then SM (P) ={int(T) | T is a minimal B-tree}.

Therefore, P is consistent iff there exists a minimal B-tree.

4.2 Generating Minimal Trees

In this section we assume an arbitrary set 3 of blocks, and
construct an automaton A8 = (X, Q, 6, qo, F), with X =B,
which accepts exactly the minimal B-trees. To this end, let
rules(B) and preds(B) denote the sets of all rules and pred-
icate names occurring in B, respectively. Furthermore, let k
be the number of function symbols occurring in B.

States Besides the initial state qp, the set of states () contains
the following:

e “test” states ¢° and ¢’ for global testing of consistency and
justification in a candidate tree;

e foreach A € preds(B), the states ¢9, qf‘ and qf;‘ for testing
containment of predicates in a block and their justification;

e for each r € rules(B), the states ¢S and ¢¢ for testing rule
containment in a block and rule satisfaction;

e the states ¢” and ¢, . . ., ¢}, to ensure properness.

Transitions The transition function ¢ is defined as follows:

o (Initial state) For each o € X, there is a transition from ¢g:
, & , ,
8(q0,0)=(0,¢°) A (0,¢") A (0, g5) A Nizy ((3,) A (i, ¢7)).
Intuitively, from the initial state the automaton switches to
states for testing consistency and minimality, and also for
testing if the symbol at the root is indeed a root block and

all the successors are proper child blocks, which is realized
as follows.

e (Properness) Foreacho = (o, D,R)in X and 1 < i < k.’
d(qh, o) = [is a constant],

d(¢?, o) = [ais a function with i(a) = 1],
8(a,0) = Nz ((i,df) A (5, 7).

Intuitively, the automaton fails if in the state ¢, (resp., ¢¥) it
reads a block that is not a root block (resp., not a child block
with function f s.t. i(f) =). The marking state ¢” ensures
recursively that the properness test is performed at each node
of the tree.

o (Consistency) The test for consistency is defined in 3 steps.
First, via the test state ¢¢, the rules that need be satisfied

2|E] stands for true, if E evaluates to true, and else for false.

are selected, and the state ¢¢ itself is propagated to the chil-
dren. To this end, for every 0 = (o, D,R) in ¥ we have:

6(qcv U) = /\TGR (07 qﬁ) A /\f:l(ia qc)'

In the second step we move to satisfaction of the selected
rules: for every o € ¥ and r € rules(B), we have

iy (0.5,) v (0.45), if r = A(x) — By (2),

(0.g5) v (i(f).a5), ifr=A(f(x)) = B(),
(0.g5) Vv (~1a5), ifr=A(@) = B(f(2)),
where B, (z) = {Bi(z), ..., Bn(z)}. Roughly, the rule r is

satisfied, if either A is in the label of the node (resp., of some
child or the parent), or some B; (resp., B) is not.

Finally, the test for containment of labels is as follows: for
each o = (o, D, R) in X and each A € preds(P) we have:

8(¢5,0) =[A€D], 8(¢5,0)=[A¢Dl.

é(qr,0)

e (Minimality testing) We use the test state ¢’ to globally
ensure justification of labels. For each o = (o, D, R) in X:

5(‘]]) C’) = /\Aep(oa Qfa;) A /\i:l (Z» qj>
Intuitively, when _in state qj , the automaton simultaneously
enters the states ¢’y in order to find justification for each pred-

icate in D, and also propagates ¢/ to all the children.

For the second step, let M(A) denote the set of all tuples
(d,r, L), where d € {—1,0,1,...,k}, r € rules(B) has the
predicate A in its head, and L C preds(B) such that:
-forlocal 7, d = 0 and L = {B | B(x) € body(r)};

- for f-forwardr, d = —1and L = {B | B(x) € body(r)};

-for f-backward r, d=i(f) and L={B | B(f(x))€body(r)}.

Intuitively, we collect in M (A) the predicates and the di-
rection that provide the justification. Now for each A €
preds(B) and each o € 3, we have

8(q),0) = V(arpyenm(a) ((d,q8) N Npep(d, qjé))'

Intuitively, the automaton guesses the rule that will be used
to find the justification. Finally, we need the transition for the
rule-containment state ¢<: for each 0 = (o, D, R) in X and
rule 7 € rules(B), we have §(¢S,0) = [r € R].

Acceptance Condition We define the parity condition F' :
0 C{q”, ¢ ¢’} C Q. To understand this, observe that runs of
AB can have 4 types of infinite paths: (i) paths where exactly
one of ¢?, ¢°, ¢’ occurs infinitely often, and (ii) paths where
for some subset {A1,...,A,} C preds(B) only the justifi-
cation states qf41, R qf4n occur infinitely often. To ensure
minimality, paths (ii) must be forbidden as they postpone jus-
tification indefinitely.

Theorem 4.2. Given a set B of blocks, AB accepts exactly the
minimal B-trees, i.e., L(A®) is the set of all minimal B-trees.

Note that the number of states in A, where B is the set of
all blocks of a normal core program P, is linear in | P|, and
B is exponential in | P|. As testing non-emptiness of 2ATAs
is feasible in time exponential in the number of states and
polynomial in the size of the input alphabet [Vardi, 1998], by

769

Theorem 4.2 and Proposition 3.1, we get the next complete-
ness result; hardness can be shown by encoding an alternating
Turing machine with polynomially bounded space.

Theorem 4.3. Testing consistency of normal core programs
and of normal BD-programs under bounded predicate arities
is EXPTIME-complete.

5 Consistency in Disjunctive BD-Programs

We analyze here the disjunctive case, and extend the method
of the previous section to disjunctive core programs. To this
end, we first characterize the minimal models of positive dis-
junctive ground programs in terms of split programs.

Definition 5.1. (Split) Let I be an interpretation for a positive
(disjunctive) ground program P. A non-disjunctive positive
program P’ is called a split of P w.r.t. I if P’ results from
P by

(a) replacing each rule r € P such that [head(r)N 1| > 1 with
arule h < body(r), where h € head(r) N I is picked ar-
bitrarily, and

(b) replacing each rule r € P such that |head(r)NI| = () with
the constraint « body(r).

By SP(P,I) we denote the set of all splits of P w.r.t. I.

Intuitively, a split P’ is obtained from P in two steps. First,
we identify the disjunctive rules having several of head atoms
true in /, and delete all but one such atom. Then the rules
with no head atoms true in [are transformed into constraints.
We can then characterize the minimal models of disjunctive
ground programs as follows.

Theorem 5.1. For any positive disjunctive ground program
P it holds that I € MM (P) iff I is the least model of every
P e SP(P,I).

Proof. For the “only if” case, observe that if [€ MM (P),
then I is also a model of every P’ € SP(P,I), and that an
arbitrary model of P’ is also a model of P.

For the “if” case, suppose [is the least model of every
P’ € SP(P,I)and I ¢ MM(P). As already observed, I is
a model of P. Hence, there must exist another model J C I
of P. Simply build a split P’ of P w.r.t. I in two steps:

1. replace each rule 7 € P such that [head(r) N I|> 1 with a
rule i« body(r), where

(i) hehead(r) N1, if head(r) N J =0, and
(i) hehead(r) N J,if head(r) N J #0;

2. replace each rule r € P such that |head(r) N I| =0 with
the constraint « body(r).

As easily seen, J is a model of P’, and thus [is not the least
model of P’. Contradiction. O

Due to the theorem above, minimal model checking for posi-
tive disjunctive programs reduces to minimal model checking
over a set of non-disjunctive programs. Building on this, we
show decidability of BD-programs using trees whose nodes
are labeled with sets of blocks (or, hyperblocks) instead of a
single block. Intuitively, each projection of such a tree, ob-
tained by arbitrarily discarding all but one block in each node,

provides us with a 5-tree that encodes a different single split
of a program. Consistency test for a program then amounts to
finding a tree whose all projections are minimal B-trees.

We first formally define the notion of projection over a tree.

Definition 5.2. (Projection) Let ¥ be an alphabet, and let
¥ C 2%, Atree (T, L) over X is called a X-projection of a
tree (T, L') over X', if for every node n € T', L(n) € L'(n).

Trees having block trees as projections are defined next.

Definition 5.3. (Minimal hyperblock trees) A hyperblock is
any set of blocks (o, D, R) sharing the same « and D.

Let B be a set of blocks with k function symbols occurring
in it, and C 2B be a set of hyperblocks. Then an H-tree
is any H-labeled k-ary tree 7 = (T, L) satisfying the the
following: (i) the blocks in L(¢) are root blocks, and (ii) for
all z-c€T, the blocks in L(z-c) are child blocks (o, D, R)
with i(a) =c.

Note that B-projections of 7 are (proper) B-trees, and let
int(7) =int(7"’) for an arbitrary B-projection 7’ of T (note
that for any other projection 7", int(7") =int(7")).

We say 7 is minimal, if each B-projection of H is minimal.

To characterize stable models via hyperblock trees, we select
suitable blocks and hyperblocks, taking into account splits.

Definition 5.4. A block for a (disjunctive) core program P
is any block (o, D, R), where « is the constant ¢ or a func-
tion of P, D is a set of predicates of P, and R is a rule set
consisting of:

a) All f-forward rules in P, for all functions f of P.

b) Incase a=c, therule A(z) < foreach fact A(c) < in P.
Otherwise, if « is a function f, all f-backward rules of P.

¢) (Reduct) Assuming X = {A(z)| A € D}, for each local
rule 7 € P such that body™ (r) N X = {:

i. arule h < body™ (r) for an arbitrary € head(r)N X,
in case head(r) N X #0, and

ii. the constraint < body™ (), in case head(r) N X = 0.

A hyperblock for P is any C-maximal set of blocks
(o, D, R) for P sharing the same « and D.

The following characterization is now an easy consequence
of Theorem 5.1 and the above Definitions 5.3 and 5.4.

Theorem 5.2. Let P be a core program, B the set of all blocks
for P, and H C 2B the set of all hyperblocks for P. Then
SM(P)={int(T) | T is a minimal H-tree}.

Proof. (Sketch) Let 7 be a minimal H-tree and I =int(7).
Then T is the least model of prog(7”’) for each B-projection
T’ of 7. Furthermore, due to the definition of hyperblocks
for P, {prog(7") | T" is a B-projectionof 7} = SP(P!,I).
Thus, I is the least model of every P’ € SP(P’, I), and, by
Theorem 5.1, a minimal model of P! and a stable model of P.

On the other hand, using Theorem 5.1, for any I € SM (P)
we can easily build an H-tree 7 with int(7) =1. O

To test existence of minimal H-trees, and hence consistency
in core programs, we resort to the automaton of the previous
section, and to a projection-based notion of acceptance.

770

Definition 5.5. (Hyperacceptance) Let A be a 2ATA with an
alphabet 3, and let X’ C 2. We say a tree 7 over X/ is X'~
accepted by A, if A accepts each X-projection of 7.

By combining Theorems 5.2 and 4.2, we get the following:

Proposition 5.3. Let P be a core program, B the set of all
blocks for P, and H C 2B the set of all hyperblocks for P.
Then SM (P)={int(T) | T is H-accepted by AP}.

Thus, consistency of P amounts to the existence of an H-tree
T such that AB accepts each B-projection of 7. To decide
the latter, we apply well-known automata conversions:

e We first transform A% into a 2ATA A; that accepts the
complement of L(AB); this is well-known to be linear (the
connectives in the transitions are inverted and the index of
the sets in the parity condition increased by one).

e We transform A; into an equivalent nondeterministic I-
way tree automaton (INTA) A, using the translation in
[Vardi, 1998]; this causes an exponential blow-up in the num-
ber of states. In contrast to 2ATAs, the automaton A, moves
only forward and its transitions are disjunctions of conjunc-
tions.

e Building on A, we define a INTA Aj that accepts exactly
the trees 7 over H such that some B-projection 7’ of 7 is not
accepted by AB. The components of A3 are the ones of As
except the alphabet X3, which is 23 =H, and the transition
relation &3, which is 03(q, o) = \/ ., d2(q, @) for each state
g € Q3 and symbol o € 3. Intuitively, when scanning
an H-labeled tree 7, A3 simulates a run of A5 on some -
projection 7’ of 7, and accepts 7 iff Ay accepts some 7.

e By complementing A3, we obtain in linear time a 1ATA
Ay that accepts a tree 7 over H iff 7 is H-accepted by A5,

The number of states and the alphabet H in the final au-
tomaton A4 are exponential in | P| (note that each set of pred-
icate names from P together with a function or the constant ¢
induces one hyperblock). Emptiness of a 1 ATA is decidable
in exponential time in the number of states and polynomial
time in the size of the alphabet [Vardi, 1998]; overall, this
yields double exponential time in |P|. By Proposition 5.3,
we then obtain our main result on consistency testing; the
hardness part can be proved by an encoding of an alternating
Turing machine with exponentially bounded space.

Theorem 5.4. Testing consistency of disjunctive core pro-
grams and of disjunctive BD-programs under bounded predi-
cate arities is 2EXPTIME-complete.

6 Further Results

Query entailment P |=,, 3. A(¥) is efficiently reducible to
(in)consistency testing in BD-programs, and thus has the
same complexity. Briefly, if A(y) is a y-atom and y
is a variable, in cautious mode (pu=c), we can use a
constraint —A(¢), D(y), and in brave mode (u=>) rules
B(c) —not B(c), B(x)—=B(f(x)), Bly)—A(),D(y),
where D is an auxiliary domain predicate (cf. Example 3.3).
The other cases can be easily reduced to this case. Note that,
in fact, one can show 2EXPTIME-hardness of brave queries
already over positive (disjunctive) core programs.

For BD-programs with unbounded predicate arities, we
obtain an exponential increase in complexity (to complete-
ness for 3SEXPTIME, and 2EXPTIME in the non-disjunctive
case). Intuitively, BD-programs are exponentially more suc-
cinct than core programs, and hence a reduction to a core pro-
gram similar as in Proposition 3.1 is exponential in general.

However, the complexity of BD-programs is lower in case
of a single function symbol (which still suffices to model a
time line). Here, under bounded arities, consistency testing
is EXPSPACE-complete in general, and PSPACE-complete in
non-disjunctive case. Intuitively, the 5-trees degenerate to
words over B, and we can use word automata instead of tree
automata, for which emptiness testing is accordingly easier.

7 Discussion and Conclusion

BD-programs enlarge the range of decidable ASP programs
with function symbols, and constitute one of the few classes
allowing for infinite stable models. Of the latter kind are fini-
tary and finitely recursive programs [Bonatti, 2004], to which
BD-programs are incomparable: they are neither finitary nor
finitely recursive in general, but also do not capture any of the
classes (as reasoning in them is semi-decidable in general).
Heymans [2006] used a similar automata construction as in
Section 4 for conceptual logic programs, which have no func-
tion symbols and open answer set semantics. They also lack
disjunction (in a usual sense) and are thus easier to handle.
Using our results, we can extend FDNC programs with in-
verses P~ of binary predicates P, i.e., P~ (f(z),z) equals
P(z, f(x)). In this way, some Description Logics with in-
verse roles (e.g., ALCT) can be naturally captured and en-
coded efficiently into BD-programs. We just represent atoms
Pz, f(2)) by Py(x) and P~ (f(x),x) by P, (f(x)), and
use BD-rules Py (z) < P; (f(z)) and P; (f(x)) < Pr(x).
Our results may shed also new light on Datalog,,s, which
extends Datalog with n unary function symbols [Chomicki
and Imielinski, 1993], and imply novel complexity results for
this language. A detailed analysis remains for further work.
Other future work will also aim at more practical algo-
rithms and applications (cf. Introduction and above).

References

[Baral, 2002] C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. CUP, 2002.

[Baselice et al., 2007] S. Baselice, P. A. Bonatti, and G. Criscuolo.
On finitely recursive programs. In ICLP-07, LNCS 4670, pp.
89-103. Springer, 2007.

[Bonatti, 2004] P. A. Bonatti. Reasoning with infinite stable mod-
els. Artif. Intell., 156(1):75-111, 2004.

[Calimeri et al., 2008] F. Calimeri, S. Cozza, G. lanni, and N.
Leone. Computable functions in ASP: Theory and implemen-
tation. In ICLP-08, LNCS 5366, pp. 407—424. Springer, 2008.

[Chomicki and Imielinski, 1993] J. Chomicki and T. Imielinski. Fi-
nite representation of infinite query answers. ACM Trans.
Database Syst., 18(2):181-223, 1993.

[Gelfond and Lifschitz, 19911 M. Gelfond and V. Lifschitz. Clas-
sical negation in logic programs and disjunctive databases. New
Gen. Comput., 9(3/4):365-386, 1991.

771

[Heymans, 2006] Stijn Heymans. Decidable Open Answer Set Pro-
gramming. Ph.D. Dissertation. Vrije Universiteit Brussel, 2006.

[Marek et al., 1994] W. Marek, A. Nerode, and J. Remmel. The
Stable Models of a Predicate Logic Program. Journal of Logic
Programming, 21(3):129-153, 1994.

[Minker, 1988] J. Minker (ed). Foundations of Deductive Data-
bases & Logic Programming. Morgan Kaufm., 1988.

[Simkus and Eiter, 2007] M. Simkus and T. Eiter. FDNC: De-
cidable non-monotonic disjunctive logic programs with function
symbols. In LPAR-07, LNCS 4790, pp. 514-530. Springer, 2007.

[Syrjéinen, 2001] T. Syrjdnen. Omega-restricted logic programs. In
LPNMR-01, LNCS 2173, pp. 267-279. Springer, 2001.

[Thomas, 1990] W. Thomas. Automata on infinite objects. In
Handbook of Theor. Comp. Sci. (B), pp. 133-192. Elsevier, 1990.

[Vardi, 1998] Moshe Y. Vardi. Reasoning about the past with two-
way automata. In Proc. ICALP-98, LNCS 1443, pp. 628-641.

[Woltran, 2005] S. Woltran. Answer Set Programming: Model ap-
plications and proofs-of-Concept. Available at http://www.
kr.tuwien.ac.at/projects/WASP/report.html.

