
Query Answering in Description Logics with Transitive Roles∗

Thomas Eiter1, Carsten Lutz2, Magdalena Ortiz1, Mantas Šimkus1

1 Institute of Information Systems 2 Fachbereich Mathematik und Informatik

Vienna University of Technology, Austria Universität Bremen, Germany

(eiter|ortiz|simkus)@kr.tuwien.ac.at clu@informatik.uni-bremen.de

Abstract

We study the computational complexity of conjunc-
tive query answering w.r.t. ontologies formulated
in fragments of the description logic SHIQ. Our
main result is the identification of two new sources
of complexity: the combination of transitive roles
and role hierarchies which results in 2-EXPTIME-
hardness, and transitive roles alone which result
in CO-NEXPTIME-hardness. These bounds com-
plement the existing result that inverse roles make
query answering in SHIQ 2-EXPTIME-hard. We
also show that conjunctive query answering with
transitive roles, but without inverse roles and role
hierarchies, remains in EXPTIME if the ABox is
tree-shaped.

1 Introduction

One of the main applications of ontologies in computer sci-
ence is in data access, where an ontology formalizes con-
ceptual information about data that is stored in one or mul-
tiple data sources, and this information is used to derive an-
swers when querying the sources. This general setup plays
a central role e.g. in ontology-based information integration
and in peer-to-peer data management. In all these areas, De-
scription Logics (DLs) and in particular those of the OWL
standard by the W3C are popular ontology languages, and
conjunctive queries (CQs) are used as a fundamental query-
ing mechanism; cf. [Tessaris, 2001; Glimm et al., 2008b;
Ortiz et al., 2008a] and references therein and below.

In spite of prominent applications, studying the compu-
tational complexity of answering CQs over OWL ontolo-
gies has only recently gained momentum. In particular, it
was shown that inverse roles have an impact on complexity:
(a) CQ entailment (the decisional variant of CQ answering)
over ontologies in the primary OWL fragment SHIQ is 2-
EXPTIME-complete [Glimm et al., 2008b; Lutz, 2008], thus
harder than standard reasoning tasks such as satisfiability and
subsumption which are EXPTIME-complete; and (b) the com-
plexity drops to EXPTIME-complete if inverse roles are disal-

∗This work has been partially supported by the Austrian Sci-
ence Fund (FWF) grant P20840, the Mexican National Council for
Science and Technology (CONACYT) grant 187697, and the EU
project OntoRule (IST-2009-231875).

lowed (SHIQ is replaced with SHQ) and, additionally, the
use of transitive roles in queries is disallowed or seriously re-
stricted, cf. [Lutz, 2008; Ortiz et al., 2008b].

While dropping inverse roles was known to be crucial for
obtaining an EXPTIME upper bound, the restriction on tran-
sitive roles was not. From an application perspective, such a
restriction is unsatisfactory as transitive roles play a central
role in many ontologies and are used to represent fundamen-
tal relations such as “part of” [Sattler, 2000]. However, al-
gorithms for CQ entailment with unrestricted transitive roles
in the query are much more intricate than without, see e.g.
[Glimm et al., 2008b; Calvanese et al., 2007].

The aim of this paper is to study the computational com-
plexity of CQ entailment in fragments of SHIQ with no re-
strictions on transitive roles in queries. Our main contribu-
tion is to identify two novel sources of complexity: (1) the
combination of transitive roles and role hierarchies and (2) to
a lesser degree, transitive roles alone. More precisely, we
first show that CQ entailment in SH (SHIQ without inverse
roles and number restrictions) is 2-EXPTIME-hard, and thus
2-EXPTIME-complete. Thus, inverse roles are not the only
reason why CQ entailment in SHIQ is hard. Interestingly,
2-EXPTIME-hardness is hit already with a single role inclu-
sion (or alternatively with a single left identity r ◦ t � t) and
with an empty ABox (which contains the data). Secondly, we
prove that CQ entailment in S (SH without role hierarchies)
is CO-NEXPTIME-hard. The lower bound applies already to
the case where the TBox (conceptual information) is empty.

On the other hand, we show that CQ entailment in S
ontologies where the ABoxes have a tree-shaped relational
structure is in EXPTIME, and thus EXPTIME-complete. This
result is interesting for three reasons. Firstly, it is the first
EXPTIME result for CQ entailment in an expressive DL with
unrestricted transitive roles in queries. Secondly, to the best
of our knowledge, this is the first case where CQ entailment
for tree-shaped ABoxes is easier than the general case: in
all existing lower bounds for CQ entailment in fragments of
SHIQ, the ABox contains no role assertions at all. Thirdly,
EXPTIME membership may be viewed as an indication that
the complexity in the general case is likely to be below 2-
EXPTIME; a tight upper bound is currently open. Full proofs
can be found in [Eiter et al., 2009].

759

2 Preliminaries

Knowledge Bases. We assume standard notation for the syn-
tax and semantics of SH knowledge bases [Glimm et al.,
2008b]. In particular, NC, NR, and NI are countably infinite
and disjoint sets of concept names, role names, and individual
names. Concepts are inductively defined: (a) each A∈NC is
a concept, and (b) if C, D are concepts and r∈NR is a role,
then C �D, C �D, ¬C, ∀r.C and ∃r.C are concepts. A
TBox is a set of concept inclusions C � D, role inclusions
r� s, and transitivity statements trans(r). An ABox is a set
of assertions C(a) and r(a, b). A knowledge base (KB) is
a pair (T ,A) consisting of a TBox T and an ABox A. We

use I to denote an interpretation, ΔI for its domain, and CI

and rI for the interpretation of a concept C and of a role r,
respectively. We denote by Ind(A) the set of all individual
names in an ABox A. S is the fragment of SH that disallows
role inclusions.

Conjunctive Query Answering. Let NV be a countably in-
finite set of variables. A conjunctive query (CQ) over a KB
K is a finite set of atoms of the form A(v) or r(v, v′), where
v, v′ ∈NV, A is a concept name and r is a role, both occur-
ring in K.1 For a CQ q over K, let Var(q) denote the vari-
ables occurring in q. A match for q in an interpretation I is a
mapping π : Var(q) → ΔI such that (i) π(v)∈AI for each

A(v)∈ q, and (ii) (π(v), π(v′))∈ rI for each r(v, v′)∈ q. We
write I |= q if there is a match for q in I. If I |= q for every
model I of K, then K entails q, written K |= q. The query en-
tailment problem is to decide, given K and q, whether K |= q.

Forest Models. When studying CQ answering in the SHIQ
family of DLs, it suffices to consider models that have a
forest-like shape; informally, such a model I consists of two
parts: an ABox part that consists of the interpretations aI of
the individuals a in K and has an unrestricted relational struc-
ture, and a forest part that is a collection of trees whose roots
are elements of the ABox part and that are otherwise disjoint
from the ABox part. The following result can be found e.g.,
in [Glimm et al., 2008b].

Proposition 1. For every SH-knowledge base and CQ q, if
K �|= q, then K has a forest model I such that I �|= q.

3 Query Answering in SH

It follows from a number of existing results that CQ en-
tailment in SH is in 2-EXPTIME [Calvanese et al., 2007;
Glimm et al., 2008a; Ortiz et al., 2008b]. We provide a
matching lower bound.

Theorem 1. CQ entailment in SH is 2-EXPTIME-complete.

It is well-known that there is an exponentially space bounded
Alternating Turing Machine (ATM) M whose word problem
is 2-EXPTIME-hard [Chandra et al., 1981]. To prove the
lower bound from Theorem 2, we reduce this word problem.

Recall that the state set Q of an ATM is partitioned into
existential (Q∃) and universal (Q∀) states. An ATM with
only existential states can be viewed as a standard non-
deterministic TM, which accepts a word iff there exists a

1Individuals in q can be simulated and queries with answer vari-
ables can be reduced to the considered Boolean CQs as usual.

r

r
r

r

. . .

depth m

r
r

rr

rr

Fh

Gh

Eh

t
t

Fp

tt

Gp

Ep

Figure 1: The structure of models.

sequence of successive configurations that starts in the ini-
tial configuration, with initial state q0 and the input word
w on the tape, and ends in an accepting state qacc. For
general ATMs, these sequences become trees of configura-
tions, where branching is caused by universal states (there is
a successive configuration for each transition in δ(q, a) with
q ∈ Q∀). Such a computation tree is accepting if qacc is
reached on all paths. For details, see [Chandra et al., 1981].

For each input w to M, we define a KB Kw and a query qw

such that M accepts w iff Kw �|= qw. In fact, forest models I
of Kw with I �|= qw will represent an accepting computation
of M on w. More precisely, I is an accepting computation
tree each of whose nodes is the root of a configuration tree.
The latter are binary trees of depth m := |w| (length of w)
that represent configurations using their 2m leaves to store
the tape contents. This is illustrated in Figure 1; the initial
configuration tree is existential and thus has a single succes-
sor configuration tree. This (magnified) successor is universal
and has two successor configuration trees.

To enforce this structure, we need some technical tricks.
In particular, each configuration tree will represent two con-
figurations: the current configuration Kh and the previous
configuration Kp. We use Kw to ensure locally at each con-
figuration tree that Kh is indeed a successor configuration of
Kp. The query qw is then used to globally guarantee that
the Kp value of each configuration tree is identical to the Kh

value of the predecessor in the computation tree. We will call
a computation tree proper if it satisfies the latter condition.

We now give a precise definition of how configuration trees
and computation trees are represented as a model. A single,
non-transitive role r is used for the edges of computation trees
and of configuration trees. Observe that, as shown in Figure 1,
we use two r-edges between two consecutive configuration
trees. We also use a transitive role t, to be explained later.
The alphabet symbols Σ of M and the states Q are used as
concept names. We also use the concept names from B :=
{B1, . . ., Bm} to encode addresses of tape cells in binary. For

a node n of a forest model I and i < 2m, we write adr
I(n) =

i if the truth values of BI
1 , . . . , BI

m at n encode the number i.
A tape cell with address i and content a ∈ Σ is represented

by a node n with adr
I(n) = i that satisfies the concept name

a. If the head is currently on the cell and M’s state is q, then
n also satisfies q; otherwise, n satisfies the concept name nil.

To later on ensure properness using the query, we use ad-
ditional nodes and concept names. The latter are Eh, Ep,
Fh, Fp, Gh, and Gp, used as markers; and the concept names
from Z := {Za,q | a ∈ Γ and q ∈ Q ∪ {nil}}. The addi-
tional nodes are attached to the leaves of configuration trees,

760

as indicated on the left-hand side of Figure 1 and detailed in
the subsequent definition. Intuitively, nodes labeled Eh store
the current configuration and nodes labeled Ep the previous.

Definition 1 (i-cell). Let I be an interpretation and i < 2m.
We call n ∈ ΔI an i-cell if the following hold:

(a) n has r-successors np and nh that respectively satisfy Ep

and Eh, with adr
I(np)= adr

I(nh)= i, and such that both
satisfy exactly one a ∈ Σ and exactly one q ∈ Q ∪ {nil}.

(b) np (resp., nh) has an r-successor n′
p (resp., n′

h) that sat-

isfies Fp (resp., Fh), with adr
I(n′

p)= adr
I(n′

h) the bit-wise

complement of i, and such that for all a∈Σ, q ∈Q∪{nil}:

(i) nh satisfies Za,q iff nh does not satisfy both a and q;

(ii) n′
p satisfies Za,q iff np does not satisfy both a and q;

(iii) n′
h and np satisfy Za,q;

(c) n′
p (resp., n′

h) has a t-successor n′′
p satisfying Gp (resp.,

n′′
h satisfying Gh) such that n′′

p (resp., n′′
h) is also a t-

successor of np (resp., nh).

We simply speak of a cell if i is unimportant. Note that the
ability of SH to express (c) in Definition 1 via the axioms r�t
and trans(t) is crucial for the reduction. The same condition
can be expressed via a so-called left identity r ◦ t � t.

We now define (q, a, i)-configuration nodes, which are the
roots of configuration trees, and (models that encode) com-
putation trees. A node n′ is an rm-successor of a node n, if
n′ is reachable from n by traveling m r-edges.

Definition 2 ((q, a, i)-configuration node, Computa-

tion tree). Let I be an interpretation. We call n ∈ ΔI a
(q, a, i)-configuration node if (1) it has an sm-successor that
is a j-cell, for each j < 2m and (2) the Eh-node of the i-
cell satisfies q and a, and all other j-cells have nil in their
Eh-nodes.
We call I a computation tree for w if I is tree-shaped and

1. the root ε of I has an r-successor n that is a (q0, a, 0)-
configuration node whose i-cells describe the initial configu-
ration for input w;

2. for each (q, a, p)-configuration node n, if q ∈Q∃ (resp.,
q ∈Q∀), then for some (resp., for each) tuple (q′, a′, M) ∈
δ(q, a) we have:

(i) there exists an r2-successor node n′ that is an
(q′, a′′, p′)-configuration node with p′ = p+M , where
M ∈ {−1,+1} is the executed move,

(ii) the Eh node of the p-cell of n′ satisfies a′, and,

(iii) for all j-cells c of n′ where j �= p, if the Ep node of c
satisfies a∈Σ, then the Eh node of c also satisfies a.

We call I accepting, if q = qacc in each (q, a, i)-configuration
for which there are no successor configurations. I is proper,
if for each pair of successive configuration nodes n1, n2 and
each i < 2m, the i-cell of n1 has the same (q, a)-label in its
Eh-node as the i-cell of n2 in its Ep-node.

It is not hard to verify that there is a one-to-one correspon-
dence between accepting proper computation trees for w and
accepting computations of M on w.

Proposition 2. M accepts w iff there exists an accepting
proper computation tree for w.

It is not too difficult to show the following.

Proposition 3. Given w, we can build in polynomial time a
KB Kw whose forest models are exactly the accepting com-
putation trees for w.

As already mentioned, we use the query qw to test whether
the tree is proper. More precisely, qw should have a match in
a computation tree iff that tree is not proper. We start with
a characterization of (im)properness in terms of the auxiliary
concept names from above. In the following, we say that two
cells n and n′ are A-conspicuous, with A a concept name, if

(†) A is true at the Eh-node of n and the Ep-node of n′, or

(‡) A is true at the Fh-node of n and the Fp-node of n′.

Proposition 4. A computation tree I is not proper iff (�) there
exists a cell n in some configuration K and a cell n′ in a
successor configuration of K such that for all A ∈ B ∪ Z, n
and n′ are A-conspicuous.

The above proposition holds due to the way auxiliary labels
are defined. First note that if n, n′ are cells of two successive

configurations in I, then the conditions imposed on adr
I(·) in

Definition 1 imply that adr
I(n) = adr

I(n′) iff for all A ∈ B,
n and n′ are A-conspicuous; this is because bit-wise comple-
ment is used for the addresses of Fp- and Fh-nodes.

Now suppose that I is proper and let n, n′ be cells of two
successive configurations. If they are not A-conspicuous for
some A∈B then, as required, (�) is violated. If there is no

such A ∈ B, then adr
I(n) = adr

I(n′). As I is proper, the
Eh-node of n and the Ep-node of n′ satisfy the same q ∈ Q
and a ∈ Σ. By (b.i), Za,q is false at the Eh-node of n; by
(b.ii), Za,q is false at the Fp-node of n′. Hence, n, n′ are
not Za,q-conspicuous and (�) is violated. Conversely, let I
be improper. Then there exist two j-cells n and n′ of two
successive configurations such that the Eh-node of n and the
Ep-node of n′ satisfy different pairs (q, a) and (q′, a′). As

adr
I(n) = adr

I(n′), n and n′ are A-conspicuous for all A ∈
B. By (b.iii), Zq,a is true at the Fh-node of n; by (b.ii) and
since (q, a) �= (q′, a′), Zq,a is also true at the Fp-node of n′.
We can argue symmetrically that za′,q′ is true at the Eh-node
of n and the Ep-node of n′. For (q′′, a′′) /∈ {(q, a), (q′, a′)},
Za′′,q′′ holds at the Eh-, Ep-, Fh-, and Fp-nodes of both n
and n′. In summary, n and n′ are A-conspicuous for all A ∈
Z and thus (�) is satisfied.

It thus remains to find a query qw that has a match iff (�) is
satisfied. The structure of qw is displayed in Figure 2(II).

We obtain qw by taking, for each A ∈ B∪Z, a copy of the
basic query q(A, u, v) in Figure 2(I) such that the different
copies share only the variables u and v, and then taking the
union. Intuitively, q(A, u, v) deals with A-conspicuousness,
and the shared variables u, v ensure that the different compo-
nent queries speak about the same cells n, n′. In more detail,
let n, n′ be cells of two successive configurations that are A-
conspicuous for all A ∈ B ∪ Z. We can find a match for qw

as follows: start with matching u on the Gh-node of n and v
on the Gp-node of n′. Now take an A ∈ B∪Z. If (†) applies,

then match yA
m+1 on the Eh-node of n and zA

m+1 on the Ep-

node of n′; if (‡) applies, then match yA
m+1 on the Fh-node of

n and zA
m+1 on the Fp-node of n′. The matches of all other

761

xZnxZ1· · ·

y
B1
0

r

xB1 xBm· · ·

r

y
Bm
0

y
Z1
0

y
Zn
0 z

B1
0

z
Z1
0

z
Zn
0

z
Bm
0

z
B1
m+3

B1 Bm

z
Bm
m+3

z
Z1
m+3

z
Zn
m+3

ZnZ1

vGp

xA

yA
0

yA
1

r

r r

r

zA
0

zA
1

u

A

Gp
v

A

yA
m+1

yA
m

t

r

r

t

zA
m+2

zA
m+3

y
B1
m+1

r

t

B1 Bm

y
Bm
m+1

y
Z1
m+1

ZnZ1

uGh

.

.

.

Gh

.

.

.
(II)(I)

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

· · · · · ·

· · · · · ·

y
Zn
m+1

Figure 2: The basic query q(A, u, v) and the final query qw.

variables are now uniquely determined by the (non-transitive)
role edges in the query. In particular, the lengths of the role
chains in the query ensure that xA will be matched to the root
of n in case (‡) and to the root’s predecessor in case (†). Ob-
serve that the paths labeled with z-variables are exactly two
steps longer than those labeled with y-variables, and thus the
query only relates n and n′ if they belong to successor con-
figurations. In summary, it is possible to show that

Proposition 5. A computation tree I is proper iff I �|= qw.

Together with Propositions 2 and 3, this yields the desired
reduction, establishing the lower bound from Theorem 2.

4 Query Answering in S
The reduction in the previous section crucially exploits the
presence of role inclusions and transitive roles. In partic-
ular, the structure shown on the left-hand side of Figure 1
cannot be enforced if either of these expressive means is
dropped. Role hierarchies alone do not suffice to make CQ
entailment harder than satisfiability checking and other EXP-
TIME-complete standard reasoning tasks: it is known that CQ
entailment in ALCH, which is SH without transitive roles, is
only EXPTIME-complete [Lutz, 2008; Ortiz et al., 2008b]. In
contrast and as we show next, transitive roles alone suffice to
make CQ answering harder than standard reasoning.

Theorem 2. CQ entailment in S is CO-NEXPTIME-hard even
without TBoxes and with acyclic ABoxes.

This result is shown by a reduction to CQ non-entailment
from a NEXPTIME-complete variant of the tiling problem
where the task is to tile a 2n × 2n-torus. The reduction uses
only a single transitive role and no other role, no TBox, and an
ABox whose relational structure is a directed acyclic graph,
but not a tree. Because of space limitation, we refer to [Eiter
et al., 2009] for a detailed construction and give only a rough
idea why transitive roles make CQ entailment hard. Viewed
on a high level of abstraction, most algorithms for CQ entail-
ment exploit forest models and work by splitting the problem
into a number of subproblems: one for each individual a in
the input ABox A. This splitting also involves splitting the
input query q into subqueries: a match of q in a forest model
I may send some variables to the subtree below a and some
variables to other parts of I, and we obtain a subquery by in-
cluding only variables of the former kind. Now, the crucial
observation is as follows: without transitive roles, only poly-
nomially many subqueries are generated for each a whereas

exponentially many subqueries have to be considered when
transitive roles are admitted.

As we show next, the described effect vanishes in the
case of tree-shaped ABoxes. This case is relevant, e.g.,
when the ABox is obtained by translating an XML docu-
ment. An ABox A is tree-shaped if the directed graph with
nodes Ind(A) and edges {(a, b) | r(a, b)∈A} is a tree and
r(a, b), r′(a, b) ∈ A imply r = r′. We aim to show

Theorem 3. CQ entailment in S is EXPTIME-complete if
ABoxes are tree-shaped.

It is well-known that CQ entailment in S is EXPTIME-hard
even with empty ABoxes and thus it remains to show the up-
per bound. We start with a simple observation.

Proposition 6. For a KB K=(T ,A), where A is tree-
shaped, we can build in polynomial time a KB K′=
(T , {CA(a)}) such that K |= q iff K′ |= q for every CQ q.

It thus suffices to give an EXPTIME algorithm for CQ entail-
ment in S with ABoxes of the form {C0(a)}. From now on,
let K = (T , {C0(a)}) be a KB and q a CQ for which we
decide K |= q.

We set Tr(K) := {r ∈ NR | trans(r) ∈ T }. We as-
sume w.l.o.g. that C0 is in negation normal form (NNF), i.e.
negation is only applied to concept names, and that T has
the form {
 � CT } with CT in NNF. We may also assume
w.l.o.g. that CQs are connected (a disconnected query can be
answered by separately posing each connected subquery).

We can limit our attention to certain canonical models and
a certain kind of query that we call a pseudo-tree query.

Definition 3 (Canonical Model). We use sub(K) to denote
the set of all subconcepts of concepts occurring in K. A
canonical model for K is a model I of A such that (i) I satis-
fies all concept inclusions in T (but not necessarily the transi-
tivity axioms); (ii) (ΔI ,

⋃
r∈NR

rI) is a tree with root aI and

whose out-degree is bounded by the cardinality of sub(K);
(iii) rI ∩ sI = ∅ whenever r �= s; (iv) for all ∀t.C ∈ sub(K)
with t ∈ Tr(K) and all (d, e) ∈ tI , d ∈ (∀t.C)I implies

e ∈ (∀t.C)I .

Due to the non-transitivity of transitive roles in canonical
models I, we have to work with a relaxed version of a match
that becomes a match when, for every r ∈ Tr(K), rI is re-
placed with its transitive closure.

Definition 4 (Pre-match). Let I be a canonical model of K.
We call π :Vars(q)→ΔI a pre-match for q in I if (a)

762

π(u)∈AI for each A(u)∈ q, (b) (π(u), π(v))∈ rI for each
r(u, v)∈ q with r �∈Tr(K), and (c) for each t(u, v)∈ q with

t∈Tr(K), there is a sequence d0, . . . , dn ∈ΔI such that

d0= π(u), dn = π(v) and (di, di+1)∈ tI for all i < n. We
write I |=pre q, if there is a pre-match for q in I.

We now define pseudo-tree queries.

Definition 5 (Role Cluster, Pseudo-tree Query). Let q be a
CQ. For each t ∈ Tr(K), ∼t denotes the smallest equivalence
relation over Var(q) such that t(v, v′) ∈ q implies v ∼t v′.
An equivalence class ct of ∼t is called a (transitive) cluster
of q. For each non-transitive role s, a (non-transitive) cluster
of q is a set cs= {u, v} with s(u, v) ∈ q. Now, a connected
CQ q is a pseudo-tree query if it satisfies:

(a) if cr is a cluster of q and s(u, v), s′(u′, v′)∈ q with
v, v′ ∈ cr and s, s′ �= r, then s= s′, u=u′, v= v′;

(b) q is acyclic, i.e., it does not contain atoms r0(v0, v1),
. . . , rn(vn, vn+1) with vn+1= v0.

A cluster cr of q is initial if no v ∈ cr has an incoming
edge r′(v′, v)∈ q with r �= r′.

Intuitively, a pseudo-tree can be viewed as a tree of clusters
with an additional root; the root is a predecessor of every ini-
tial cluster (there can be more than one) and there is an edge
between two clusters if they share an element. It is easy to
see that clusters cannot share more than one element. Each
transitive cluster in a pseudo-tree query describes a subquery
that is an acyclic directed graph.

Definition 6. Let q, q′ be conjunctive queries. Then q′ is
obtained from q by fork elimination, if q′ results from q by
one of the following operations:

• select r(u, v), r(u′, v) ∈ q with u �=u′ and r �∈Tr(K),
and identify u and u′;

• select r(u, v), r(u′, v′) ∈ q with v �= v′ and v, v′ in a
cluster cs of q with s �= r, and identify v and v′.

We say that q′ is a maximal fork rewriting of q if q′ is obtained
from q by exhaustive fork elimination.

It can be shown that the maximal fork rewriting is unique
and computable in polynomial time. Moreover, it can be
checked in polynomial time whether a query is a pseudo-tree
query. Hence, the following proposition allows us to restrict
our attention to canonical models and pseudo-tree queries.

Proposition 7. Let q be a CQ, and let q′ be the maximal fork
rewriting of q. Then K �|= q iff (i) q′ is not a pseudo-tree
query, or (ii) I �|=pre q′ for some canonical model I of K.

In what follows, assume that the input query q is a pseudo-
tree query. We want to decide whether there is a canonical
model I of K such that I �|=pre q. Our approach is based on
knots [Ortiz et al., 2008c].

Definition 7 (Knot). A T -type is a set τ ⊆ sub(T) that sat-
isfies, for all C, D ∈ sub(T): (a) C ∈ τ implies ¬C �∈ τ , (b) if
C �D∈ τ , then {C, D}⊆ τ , (c) if C �D∈ τ , then C ∈ τ or
D∈ τ , and (d) CT ∈ τ . A knot for T is a pair κ=(τ, S) with
τ a T -type and S a set of pairs (r, τ ′) such that r is a role
name that occurs in T , τ ′ is a T -type, and in addition:

(1) if ∃r.C ∈ τ , then C ∈ τ ′ for some (r, τ ′)∈S;

(2) if ∀r.C ∈ τ , then C ∈ τ ′ for all (r, τ ′)∈S;

(3) if ∀r.C∈ τ ∧ r∈Tr(K), then ∀r.C∈ τ ′ for all (r, τ ′)∈S;

(4) |S| ≤ |sub(K)|.

A knot κ=(τ, S) can be viewed as describing a fragment of
a canonical model that consists of a node which satisfies the
concepts in τ and its successors, as described by S. Our al-
gorithm will represent canonical models as a set of knots. In
fact, it is not hard to come up with conditions which guaran-
tee that a given set of knots can be assembled into a canoni-
cal model. The difficulty is to ensure that, in the represented
canonical model, there is no pre-match of q.

The general idea to overcome this difficulty is as follows.
Consider a top-down walk though a (tree-shaped!) canonical
model I. To avoid a pre-match of the pseudo-tree query q, we
‘track’ q through the tree, switching to a subquery of q when-
ever we are able to match at least one variable. For exam-
ple, if q = {A(v0), B(v

′
0), r(v0, v1), r(v

′
0, v1)} with r tran-

sitive and we are currently considering an element d ∈ ΔI

such that d ∈ AI \ BI , then we switch from q to q′ :=
{B(v′0), r(v

′
0, v1)} because v0 (but not v′0) can be matched

to d; we then track q′ starting from all r-successors of d in I;
if e is such a successor with e /∈ BI , condition (c) of pre-
matches forces us to continue to track q′ (without any modi-
fications since v′0 cannot be matched at e) at the r-successors
of e; and so on. When we are left with a query that consists
of only one variable, we ensure that this variable matches
nowhere. In summary, we thus use an eager matching ap-
proach (matching variables as early as possible) to ensure that
q matches nowhere in I. This general idea is complicated by
the mixture of transitive and non-transitive roles in the query,
and by the fact that we have to implement it in terms of knots
rather than directly in terms of models.

To track subqueries of q, we need a means to identify such
subqueries.

Definition 8 (Query Pointer). A query pointer for q is a pair
(cr, V) with cr a cluster of q and V ⊆ cr nonempty. If cr is
a cluster of q, v ∈ cr, and there is an s(v, v′)∈ q with s �= r,
then the query pointer (cs, cs) is possible from v, where cs is
the (unique!) s-cluster in q with v, v′ ∈ cs.

Intuitively, a query pointer P = (cr, V) represents the
subquery of q generated by the variables that are reachable
from the variables in V . By definition of clusters, there are
two types of query pointers (cr, V): (i) r non-transitive and
|V | ∈ {1, 2}; and (ii) r transitive and V of any cardinality≥ 1.

Clearly, a pre-match of a query can concern more than a
single knot. To implement the tracking of queries based on
knots, we thus extend knots with bookkeeping information.

Definition 9 (Marked Knot). A q-marking for q is a set Γ
of query pointers such that for all clusters cr of q, there is at
most one pointer (cr, V) ∈ Γ. A marked knot is a pair (κ, ν),
where κ=(τ, S) is a knot and ν assigns a q-marking to each
element in S ∪ {ε}.

As a convention, ν(ε) is the marking of the root of κ. In-
tuitively, (cr, V) ∈ ν(ε) means that we are currently tracking
the subquery of q identified by (cr, V) at the element of the
model that is identified by the root node of the knot, and sim-
ilarly for (cr, V) ∈ ν(s, τ).

763

procedure Knot-Elim(K, q) with K = (T , {C0(a)})
Compute the set K0 of marked q-avoiding knots
i := 0
repeat
i := i+ 1
Ki := Ki−1 \ {(κ, ν) ∈ Ki−1 | (κ, ν) bad in Ki−1}

until Ki = Ki−1

if there is a (κ, ν) ∈ Ki with κ = (τ, S) s.t. C0 ∈ τ then
return “K does not entails q”

else return “K entails q”

Figure 3: The knot elimination algorithm.

To ensure that the query is properly tracked, we propagate
markings from the root of a knot to its successors. For V ⊆
Vars(q), we use min(V)⊆Vars(q) to denote the set of those
v ∈V for which there exists no r(v′, v)∈ q with v′ ∈V .

Definition 10 (q-avoiding). A marked knot (κ, ν) with κ =
(τ, S) is q-avoiding if (I) ν(ε) contains a query pointer
(cr, V) with cr initial; and (II) the following conditions hold
for each (cr, V)∈ ν(ε):

1. If r �∈ Tr(K), V = {v, v′}, and r(v, v′) ∈ q, then either

(a) for some A, we have A(v) ∈ q and A �∈ τ , or

(b) (cr, {v′}) ∈ ν(r, τ ′) for all (r, τ ′) ∈ S;

2. If r �∈ Tr(K) and V = {v}, then either

(a) for some A, we have A(v) ∈ q and A �∈ τ , or

(b) P ′ ∈ ν(ε) for a query pointer P ′ possible from v;

3. If r∈Tr(K), then there is some set M ⊆ min(V) s.t.:

(a) for each v ∈min(V) \ M , either (i) for some A, we
have A(v) ∈ q and A �∈ τ , or (ii) P ′ ∈ ν(ε) for some
query pointer P ′ possible from v, and

(b) there is a non-empty V ′ ⊆ V \ M with (cr, V
′) ∈

ν(r, τ ′) for all (r, τ ′) ∈ S.

Intuitively, Definition 10 implements the tracking of q de-
scribed above. Conditions (1.b), (2.b), and (3.b) push the
query to successor nodes. In Condition (3), M is the set of
variables to be matched at the ‘current’ node, and (3.a) im-
plements eager matching. The final avoidance of the query is
implemented via Conditions (2) and (3) when |V | = 1. Con-
dition (I) is needed to re-initiate the tracking process, e.g.,
when we have traveled a role that does not occur in the query.

Our algorithm is of the type elimination kind introduced in
[Pratt, 1979], but works on marked knots instead of on types.
It rests on the following definition.

Definition 11 (Bad). Let K be a set of marked knots and
(κ, ν) ∈ K with κ = (τ, S). We say that (κ, ν) is bad in K,
if there is some (r, τ ′)∈S for which there is no (κs, νs)∈K

with κs =(τs, Ss) such that τs= τ ′ and νs(ε)= ν(r, τ ′).

The algorithm is given in Figure 3. Soundness and complete-
ness are established in [Eiter et al., 2009].

Proposition 8. The Knot-Elim algorithm is sound, complete,
and terminates.

To establish Theorem 3, it remains to show that Knot-Elim
runs in exponential time. For this, it clearly suffices to show
that the number of marked knots is only exponential in the
size of K and q. Let n be the size of K and m the size of q.

The number of T -types is bounded by 2n and the number of

knots by 2O(n2) (note cond. 4 in Def.7); the number of query

pointers is bounded by 2O(m) and the number of q-markings

by 2O(m2). It follows that there are 2O(n2m2) marked knots.

5 Related Work and Conclusions

We have shown that CQ entailment in the DL SH, which
supports transitive roles and role hierarchies, is 2-EXPTIME-
hard, and thus provably harder than standard reasoning
tasks such as satisfiability and instance checking, which are
EXPTIME-complete. We have also shown that the problem
is in EXPTIME for S when ABoxes are tree-shaped, but CO-
NEXPTIME-hard in general. A tight bound remains open, but
we consider it likely that CQ entailment in S is simpler than
2-EXPTIME, with CO-NEXPTIME being a good candidate.

The 2-EXPTIME hardness for SH and for ALCI [Lutz,
2008] matches known upper bounds for unions of CQs in
SHIQ [Glimm et al., 2008b] and for the even more expres-
sive two-way positive regular path queries in ALCQIbreg

[Calvanese et al., 2007]. This shows that once either inverse
roles or role hierarchies and transitivity are allowed, both
the query language and the DL can be significantly extended
without further increase of the worst case complexity.

References
[Calvanese et al., 2007] D. Calvanese, T. Eiter, and M. Ortiz. An-

swering regular path queries in expressive description logics: An
automata-theoretic approach. In Proc. AAAI 2007, pp. 391–396.

[Chandra et al., 1981] A.K. Chandra, D.C. Kozen, and L.J. Stock-
meyer. Alternation. Journal of the ACM, 28(1):114–133, 1981.

[Eiter et al., 2009] T. Eiter, C. Lutz, M. Ortiz, and M. Šimkus.
Query answering in description logics with transitive roles. INF-
SYS RR-1843-09-02. TU Vienna, 2009.

[Glimm et al., 2008a] B. Glimm, I. Horrocks, and U. Sattler.
Unions of conjunctive queries in SHOQ. In Proc. KR 2008,
pp. 252–262, 2008.

[Glimm et al., 2008b] B. Glimm, C. Lutz, I. Horrocks, and U. Sat-
tler. Answering conjunctive queries in the SHIQ description
logic. J. Artificial Intelligence Research, 31:150–197, 2008.

[Lutz, 2008] C. Lutz. The complexity of conjunctive query answer-
ing in expressive description logics. In Proc. IJCAR 2008, LNAI
5195, pp. 179–193. Springer, 2008.

[Ortiz et al., 2008a] M. Ortiz, D. Calvanese, and T. Eiter. Data
complexity of query answering in expressive description logics
via tableaux. J. Automated Reasoning, 41(1):61–98, 2008.

[Ortiz et al., 2008b] M. Ortiz, M. Šimkus, and T. Eiter. Conjunctive
query answering in SH using knots. In Proc. DL 2008, CEUR
Workshop Proc., vol 353, 2008.

[Ortiz et al., 2008c] M. Ortiz, M. Šimkus, and T. Eiter. Worst-case
optimal conjunctive query answering for an expressive descrip-
tion logic without inverses. In Proc. AAAI’08, pp. 504–510, 2008.

[Pratt, 1979] V.R. Pratt. Models of program logics. In Proc. IEEE
FOCS 79, pp. 115–122, 1979.

[Sattler, 2000] U. Sattler. Description logics for the representation
of aggregated objects. In Proc. ECAI 2000, pp. 239-243, 2000.

[Tessaris, 2001] S. Tessaris. Questions and Answers: Reasoning
and Querying in Description Logic. PhD thesis, Univ. Manch-
ester, CS Dept, April 2001.

764

