
A New Bayesian Approach to Multiple Intermittent Fault Diagnosis∗

Rui Abreu and Peter Zoeteweij and Arjan J. C. van Gemund

Delft University of Technology

Mekelweg 4, 2628 CD, Delft, The Netherlands

{r.f.abreu,p.zoeteweij,a.j.c.vangemund}@tudelft.nl

Abstract

Logic reasoning approaches to fault diagnosis ac-
count for the fact that a component cj may fail in-
termittently by introducing a parameter gj that ex-
presses the probability the component exhibits cor-
rect behavior. This component parameter gj , in
conjunction with a priori fault probability, is used
in a Bayesian framework to compute the posterior
fault candidate probabilities. Usually, information
on gj is not known a priori. While proper estima-
tion of gj can have a great impact on the diagnos-
tic accuracy, at present, only approximations have
been proposed. We present a novel framework,
BARINEL, that computes exact estimations of gj as
integral part of the posterior candidate probability
computation. BARINEL’s diagnostic performance
is evaluated for both synthetic and real software
systems. Our results show that our approach is su-
perior to approaches based on classical persistent
fault models as well as previously proposed inter-
mittent fault models.

1 Introduction

In model-based fault diagnosis (MBD) approaches faults
are typically assumed to be persistent. However, in many
practical situations faults manifest themselves intermittently,
such as in copiers where sometimes sheets may be blank,
or where a worn roller sometimes slips and causes a paper
jam [De Kleer et al., 2008]. Intermittent behavior is also rel-
evant in software fault diagnosis, which is the primary con-
text of this paper. Although software is supposed to be inher-
ently deterministic, intermittent component models are often
essential. This can be due to non-determinism (e.g., race con-
ditions) caused by design faults related to properly dealing
with concurrency. A more compelling reason is the modeling
abstraction typically applied, where, for example, the soft-
ware component’s input and output values are abstracted in
the model, such that a component’s (abstracted) output may
differ for the same (abstracted) input. Although a weak fault
model (that doesn’t stipulate particular faulty behavior) ad-
mits any output behavior, applying classical (persistent fault)

∗This work has been carried out as part of the TRADER project
under the responsibility of the Embedded Systems Institute.

diagnosis to software components that do not consistently ex-
hibit failures results in severely degraded diagnostic perfor-
mance (as is also shown in this paper).

A model for intermittent behavior [De Kleer, 2007] was
introduced as an extension of the GDE framework [De Kleer
and Williams, 1987; De Kleer et al., 1992]. Essentially, next
to the prior probability pj that a component cj is at fault, a
parameter gj is used to express the probability that a faulty
component exhibits correct (good, hence g) behavior. The
model is incorporated into the standard, Bayesian framework
that computes the posterior probability of diagnosis candi-
dates based on observations [De Kleer and Williams, 1987;
De Kleer, 2006].

The intermittency framework has been shown to yield sig-
nificantly better results (e.g., in the diagnosis and replanning
of paper sheet paths in copiers with intermittent component
failures [Kuhn et al., 2008], and in software fault diagno-
sis [Abreu et al., 2008a]), compared to an approach based on
a classical, persistent fault model. An important problem in
using the intermittency model, however, is the estimation of
gj , as calibration data on correct and incorrect component be-
havior is typically not available. Estimating gj for each com-
ponent cj would be straightforward when (sufficient) system
observations are available where only that single, intermit-
tent component is involved [De Kleer, 2007]. However, in
a multiple-fault context usually only system observations are
available in which multiple components are involved. Conse-
quently, isolating to what extent each individual component
contributes to the observed failure behavior is less straightfor-
ward. However, as the influence of gj in the computation of
the posterior probability of each diagnostic candidate is sig-
nificant, exact knowledge of each gj can be critical to overall
diagnostic accuracy.

In [De Kleer et al., 2008] as well as in [Abreu et al., 2008a;
2008b] strategies have been proposed to estimate the gj in a
multiple-fault context. However, the approaches are essen-
tially based on an approximation. In this paper, we present
a novel approach to the estimation of the gj in conjunc-
tion with a new Bayesian approach towards the computation
of the posterior candidate probabilities using an intermittent
fault model that generalizes over classical, persistent MBD
approaches. The approach represents a departure from the
current Bayesian framework as used in current diagnosis ap-
proaches (e.g., [De Kleer et al., 2008] and [Abreu et al.,

653

2008a]) in the sense that (1) the resulting gj are exact, maxi-
mum likelihood estimators instead of approximations, and (2)
the computation of the posterior candidate probabilities is an
integral byproduct of the gj estimation procedure. The contri-
butions of this paper are threefold: (i) we present our new ap-
proach for the candidate probability computation which fea-
tures the algorithm to compute the gj . The approach is coined
BARINEL, which is the name of the software implementation
of our method; (ii) we compare the accuracy and complexity
of our method to the current approaches in [De Kleer et al.,
2008] and [Abreu et al., 2008a] for observations series that
are synthetically generated for known gj setpoints; (iii) we
describe the application of our approach to spectrum-based
software multiple-fault diagnosis and evaluate the diagnostic
performance using the well-known Siemens suite of bench-
mark programs and space.

To the best of our knowledge, this approach has not been
described before. The results from the synthetic experiments,
as well as from the application to real software systems, con-
firm that our new approach has superior diagnostic perfor-
mance to all Bayesian approaches to intermittent systems
known to date.

2 Preliminaries

In this section we introduce existing concepts and definitions.

2.1 Basic Definitions

Definition 1. A diagnostic system DS is defined as the triple
DS = 〈SD ,COMPS ,OBS 〉, where SD is a propositional
theory describing the behavior of the system, COMPS =
{c1, . . . , cM} is a set of components in SD , and OBS is a set
of observable variables in SD .

With each component cj ∈ COMPS we associate a health
variable hj which denotes component health. The health
states of a component are healthy (true) and faulty (false).
In Section 3 this definition will be extended.

Definition 2. An h-literal is hj or ¬hj for cj ∈ COMPS .

Definition 3. An h-clause is a disjunction of h-literals con-
taining no complementary pair of h-literals.

Definition 4. A conflict of (SD ,COMPS ,OBS) is an h-
clause of negative h-literals entailed by SD ∪ OBS.

Definition 5. Let SN and SP be two disjoint sets of com-
ponents indices, faulty and healthy, respectively, such that
COMPS = {cj | j ∈ SN ∪SP } and SN ∩SP = ∅. We define

d(SN , SP) to be the conjunction (
∧

j∈SN

¬hj) ∧ (
∧

j∈SP

hj)

A diagnosis candidate is a sentence describing one possible
state of the system, where this state is an assignment of the
status healthy or not healthy to each system component.

Definition 6. A diagnosis candidate for DS given an obser-
vation obs over variables in OBS , is d(SN , SP) such that

SD ∧ obs ∧ d(SN , SP) �⊥

In the remainder we refer to d(SN , SP) simply as d, which
we identify with the set SN of indices of the negative liter-
als. A minimal diagnosis is a diagnosis that is not subsumed

by another of lower fault cardinality (number of negative h-
literals, |d|).

Definition 7. A diagnostic report D = {d1, . . . , dk, . . . , dK}
is an ordered set of all K diagnosis candidates, for which
SD ∧ obs ∧ dk �⊥.

2.2 Computing Diagnoses

The Bayesian approach serves as the foundation for the
derivation of diagnostic candidates, i.e., (1) deducing whether
a candidate diagnosis dk is consistent with the observations,
and (2) the posterior probability Pr(dk) of that candidate be-
ing the actual diagnosis. With respect to (1), rather than
computing Pr(dk) for all possible candidates, just to find
that most of them have Pr(dk) = 0, search algorithms are
typically used instead, such as CDA* [Williams and Ragno,
2007], SAFARI [Feldman et al., 2008], or just a minimal hit-
ting set (MHS) algorithm when conflict sets are available,
e.g. [De Kleer and Williams, 1987], but the Bayesian prob-
ability framework remains the basis. In this section we will
briefly describe the contemporary approach to the derivation
of candidates and their posterior probability. In the following,
we assume weak fault models.

Consider a particular process, involving a set of compo-
nents, that either yields a nominal result or a failure. For in-
stance, in a logic circuit a process is the sub-circuit (cone) ac-
tivity that results in a particular primary output. In software a
process is the sequence of software component activity (e.g.,
statements) that results in a particular return value. The result
of a process is either nominal (pass) or an error (fail).

Definition 8. Let Sf = {cj|cj involved in a failing process},
and let Sp = {cj|cj involved in a passing process}, denote
the fail set and pass set, respectively.

Approaches for fault diagnosis that assume persistent,
weak fault models often generate candidates based on fail sets
(aka conflict sets), essentially using an MHS algorithm to de-
rive minimal candidates. Recent approaches that allow inter-
mittency also take into account pass sets. A fail set indicts
components, whereas a pass set exonerates components. The
extent of indictment or exoneration is computed using Bayes’
rule. In the following we assume that a number of pass and
fail sets have been collected, either by static modeling (e.g.,
logic circuits, where each primary output yields a pass or fail
set) or by dynamic profiling (e.g., software, where each run
yields a pass or fail set, both known as a spectrum [Abreu et
al., 2007]).

Definition 9. Let N denote the number of passing and failing
processes. Let Nf and Np, Nf +Np = N , denote the number
of fail and pass sets, respectively. Let A denote the N ×
M activity matrix of the system, where aij denotes whether
component j was involved in process i (aij = 1) or not (aij =
0). Let e denote the error vector, where ei signifies whether
process i has passed (ei = 0) or failed (ei = 1).

The observations (A, e) are input to the Bayesian probabil-
ity update process.

Ranking Diagnoses
Let Pr(j) = pj denote the prior probability that a com-
ponent cj is at fault. Assuming components fail indepen-
dently the prior probability of a candidate dk is given by

654

Pr(dk) =
∏

j∈SN
Pr({j}) ·

∏
j∈SP

(1 − Pr({j})). For each

observation obsi = (Ai∗, ei) the posterior probabilities are
updated according to Bayes rule (naive Bayes classifying)

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
· Pr(dk)

The denominator Pr(obsi) is a normalizing term that is iden-
tical for all dk and thus needs not be computed directly.
Pr(obsi|dk) is defined as

Pr(obsi|dk) =

8<
:

0 if obsi ∧ dk |=⊥
1 if dk → obsi
ε if dk → {obs1, . . . , obsi, . . . , obsN}

As mentioned earlier, rather than updating each candidate
only candidates derived from an MHS algorithm are updated
implying that the 0-clause need not be considered.

Many policies exist for ε [De Kleer, 2006]. Three policies

can be distinguished. The first policy, denoted ε(0) equals
the classical MBD policy for persistent, weak faults, and is
defined as follows

ε
(0)

=

8<
:

EP
EP +EF

if ei = 0

EF
EP +EF

if ei = 1
(1)

where EP = 2M and EF = (2|dk|−1)·2M−|dk| are the num-
ber of passed and failed observations that can be explained by
diagnosis dk, respectively. A disadvantage of this classical
policy is that pass sets, apart from making single faults more
probable than multiple faults, do not help much in pinpoint-
ing the faults, in particular for weak fault models which do
not rule out any candidates (the 2M term in Eq. 1). In addi-
tion, there is no way to distinguish between diagnoses with
the same cardinality, because the terms are merely a function
of the cardinality of the diagnosis candidate.

The next two, intermittent policies account for the fact that
components of pass sets should to some extent be exoner-
ated. In the following we distinguish between two policies,

ε(1) [De Kleer, 2007] and ε(2) [Abreu et al., 2008a] which
are defined as

ε
(1)

=

j
g(dk) if ei = 0
1 − g(dk) if ei = 1

ε
(2)

=

j
g(dk)m if ei = 0
1 − g(dk)m if ei = 1

where m =
∑

j∈dk
[aij = 1] is the number of faulty com-

ponents according to dk involved in process i. Note that a
term g(dk) is used rather than the real individual component
intermittency parameters gj . As mentioned earlier, this is due
to the fact that obtaining gj from pass and fail sets where
multiple intermittent failures are involved was far from triv-
ial. Instead, an “effective” intermittency parameter g(dk) is
estimated for the candidate dk by counting how many times
components of dk are involved in pass and fail sets. In both
strategies g(dk) is approximated by

g(dk) =

X
i=1..N

[(
_

j∈dk

aij = 1) ∧ ei = 0]

X
i=1..N

[
_

j∈dk

aij = 1]

where [·] is Iverson’s operator ([true] = 1], [false] = 0]).
Policy ε(2) is a variant of ε(1), which approximates the

probability
∏

j∈dk
gj that all m components in dk exhibit

good behavior by g(dk)m assuming that all components of dk

have equal g values. This takes into account the fact that the
failure probability changes when multiple intermittent faults
are involved.

3 BARINEL Approach

In this section we present our approach to compute the gj

and the associated, posterior candidate probabilities Pr(dk)
given a set of observations (A, e). In our approach we (1)
determine the real gj instead of g(dk), and (2) apply the gj

in an improved epsilon policy to compute Pr(obs|dk). The
key idea underlying our approach is that for each candidate
dk we compute the gj for the candidate’s faulty components
that maximizes the probability Pr(e|dk) of the observations e
occurring, conditioned on that candidate dk (maximum like-
lihood estimation for naive Bayes classifier dk). For a given
process i, in terms of gj the epsilon policy is given by

ε =

8>>><
>>>:

Y
j∈dk∧aij=1

gj if ei = 0

1 −
Y

j∈dk∧aij=1

gj if ei = 1

Thus, gj is solved by maximizing Pr(e|dk) under the above
epsilon policy, according to

G = argmax
G

Pr(e|dk)

where G = {gj|j ∈ dk}. This approach implies that for a
particular candidate dk the optimum gj values may differ with
those for another candidate d′k for the same components.

Generalizing over persistent and intermittent faults, with
each candidate dk each component cj is associated with
a computed gj value (which from now on we will denote
hj for health) which ranges from 0 (persistently failing) to
1 (healthy, i.e., faulty without any failure). Consequently,
each candidate diagnosis need only specify the set of com-
ponent health states hj , which represents a real-valued gen-
eralization over the classical binary “normal/abnormal” en-
tries. For example, for an M = 4 component system our
framework might yield the double and triple-fault candi-
dates {0.33, 1, 1, 0}, and {0.5, 0.66, 1, 0}, respectively, each
of which has gj that optimally explain the observations e, but
differ for the same j (e.g., 0.33 vs. 0.5).

Our approach, of which the implementation is coined
BARINEL, is described in Algorithm 1 and comprises three
main phases. In the first phase (line 2) a list of candidates
D is computed from (A, e) using a low-cost, heuristic MHS
algorithm called STACCATO that returns an MHS of limited
size (typically, 100 multiple-fault candidates), yet capturing
all significant probability mass.

In the second phase Pr(dk|(A, e)) is computed for each
dk ∈ D (lines 3 to 14). First, GENERATEPR derives for every
candidate dk the probability Pr(e|dk) for the current set of
observations e. As an example, suppose the following mea-
surements (ignoring healthy components):

c1 c2 e Pr(ei|{1, 2})
1 0 1 1− g1

1 1 1 1− g1 · g2

0 1 0 g2

1 0 0 g1

As the four observations are independent, the probability of
obtaining e given dk = {1, 2} equals

Pr(e|dk) = g1 · g2 · (1 − g1) · (1 − g1 · g2)

655

Algorithm 1 Diagnostic Algorithm: BARINEL

Inputs: Activity matrix A, error vector e,

Output: Diagnostic Report D

1 γ ← ε
2 D ← STACCATO((A, e)) � Compute MHS
3 for all dk ∈ D do
4 expr ← GENERATEPR((A, e), dk)
5 i ← 0
6 Pr[dk]i ← 0
7 repeat
8 i ← i + 1
9 for all j ∈ dk do

10 gj ← gj + γ · ∇expr(gj)
11 end for
12 Pr[dk]i ← EVALUATE(expr, ∀j∈dk

gj)
13 until |Pr[dk]i−1 − Pr[dk]i| ≤ ξ
14 end for
15 return SORT(D, Pr)

Subsequently, all gj are computed such that they maximize
Pr(e|dk). To solve the maximization problem we apply a sim-
ple gradient ascent procedure [Avriel, 2003] (bounded within
the domain 0 < gj < 1).

In the third and final phase, the diagnoses are ranked ac-
cording to Pr(dk|(A, e)), which is computed by EVALUATE

according to the usual, posterior update

Pr(dk|(A, e)) =
Pr(e|dk)

Pr(obs)
· Pr(dk)

where Pr(dk) is the prior probability that dk is correct,
Pr(obs) is a normalization factor, and Pr(e|dk) is the prob-
ability that e is observed assuming dk correct.

In the following we illustrate that for single-fault candi-
dates, the maximum likelihood estimator for g1 equals the
health state h1 =

∑
i ei/N , which is the intuitively correct

way to estimate g1 (and has also been the basis for the pre-
vious approximation of g(dk) shown in Section 2). Consider
the following (A, e) (only showing columns of c1 rows where
c1 is hit), e, and the probability of that occurring (Pr):

c1 e Pr(ei|dk)
1 0 g1

1 0 g1

1 1 1− g1

1 0 g1

where g1 is the true intermittency parameter (g1 = 3
4). Aver-

aging e yields the estimate h1 = 3
4 . To prove this is a perfect

estimate, we show that h1 maximizes the probability of this
particular e (or any permutation with 1 fail and 3 passes) to
occur. As Pr(e|{1}) is given by Pr(e|{1}) = g3

1 · (1 − g1),
the value of g1 that maximizes Pr(e|{1}) is indeed 3

4 . Conse-

quently, the estimate for g1 is h1 = 3
4 .

Finally, to illustrate the benefits of our approach, con-
sider the program spectra in Figure 1 (c1 and c2 faulty,
‘2’ means that the component was actually responsible
for the overall failure). MHS computation yields D =
{{1, 2}, {2, 5}, {1, 5}, {4, 5}}. As mentioned in the previous

section, ε(0) does not distinguish between candidates with the
same cardinality. Hence, as they rank with the same probabil-
ity, all candidates would have to be inspected. This also holds

for ε(1) since ∀dk∈D g(dk) =
Np

Np+Nf
= 1

6 . ε(2) distinguishes

between the probabilities of candidates with same cardinality,
but it ranks {2, 5} at the first place. BARINEL yields better re-
sults due to a better estimation of the individual gs, ranking
the true fault {1, 2} at the first position.

c1 c2 c3 c4 c5 e

2 1 0 1 0 1

0 2 0 0 1 1

2 0 0 0 1 1

1 2 0 0 1 1

0 2 0 0 1 1

1 0 0 1 1 0

Figure 1: Observation-matrix example

As the formulae that need to be maximized are simple and
bounded in the [0, 1] domain, the time/space complexity of
our approach is identical to the other reasoning policies pre-
sented in Section 2 modulo a small, constant factor on ac-
count of the gradient ascent procedure, which exhibits rapid
convergence for all M and C (see Section 5).

4 Theoretical Evaluation

In order to assess the performance improvement of our frame-
work we generate synthetic observations based on sample
(A, e) generated for various values of N , M , and number
of injected faults C (cardinality). Component activity aij is
sampled from a Bernoulli distribution with parameter r, i.e.,
the probability a component is involved in a row of A equals
r. For the C faulty components cj (without loss of general-
ity we select the first C components) we also set gj . Thus
the probability of a component being involved and generat-
ing a failure equals r · (1 − g). A row i in A generates
an error (ei = 1) if at least 1 of the C components gen-
erates a failure (noisy-or model). Measurements for a spe-
cific (N, M, C, r, g) scenario are averaged over 1, 000 sample
matrices, yielding a coefficient of variance of approximately
0.02.

We compare the accuracy of our improved Bayesian frame-
work with the classical framework in terms of a diagnos-
tic performance metric W , that denotes the excess work in-
curred finding the actual components at fault. The met-
ric is an improvement on metrics typically found in soft-
ware debugging which measure the debugging effort associ-
ated with a particular diagnostic method [Abreu et al., 2007;
Renieris and Reiss, 2003]. For instance, consider a 4-
component program with a unique diagnosis d1 = {1, 2, 4}
with an associated h1 = {0.33, 0.5, 1, 0.25}, where c1, c2 are
actually faulty. The first component to be verified / replaced
is the non-faulty c4, as its health is the lowest. Consequently,
W is increased with 1

4 to reflect that it was inspected in vain.
The graphs in Figure 2 plot W versus N for M = 20, r =

0.6 (the trends for other M and r values are essentially the
same, r = 0.6 is typical for the Siemens suite), and different
values for C and g. The plots show that W for N = 1 is
similar to r, which corresponds to the fact that there are on
average (M − C) · r components which would have to be

656

0%

10%

20%

30%

40%

50%

60%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

 BARINEL

(a) C = 1 and g = 0.1

0%

10%

20%

30%

40%

50%

60%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

 BARINEL

(b) C = 1 and g = 0.5

0%

10%

20%

30%

40%

50%

60%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

 BARINEL

(c) C = 1 and g = 0.9

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

 BARINEL

(d) C = 5 and g = 0.1

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

 BARINEL

(e) C = 5 and g = 0.5

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

 BARINEL

(f) C = 5 and g = 0.9
Figure 2: Wasted effort W [%] for several settings

inspected in vain. For sufficiently large N all policies produce
an optimal diagnosis, as the probability that healthy diagnosis
candidates are still within the hitting set approaches zero.

For small gj W converges more quickly than for large gj

as computations involving the faulty components are much
more prone to failure, while for large gj the faulty compo-
nents behave almost similarly, requiring more observations
(larger N) to rank them higher. For increasing C more ob-
servations are required (N) before the faulty components are
isolated. This is due to the fact that failure behavior can be
caused by much more components, reducing the correlation
between failure and particular component involvement.

The plots confirm that ε(0) is the worst performing policy,
mainly due to the fact that it does not distinguish between di-
agnosis with the same fault cardinality. Only for C = 1 the

ε(2) and ε(1) policies have equal performance to BARINEL,
as for this trivial case the approximation for gj is equal. For
C ≥ 2 the plots confirm that BARINEL has superior perfor-
mance, demonstrating that an exact estimation of gj is quite
relevant. In particular, the other approaches steadily deterio-
rate for increasing C.

5 Empirical Evaluation

In this section we assess the diagnostic capabilities of our ap-
proach for real programs. For this purpose, we use the well-
known Siemens benchmark set and space1. The Siemens
set contains 132 faulty versions of 7 C programs with ex-
tensive test suites. The space package provides 38 faulty
versions and 13, 585 test cases, as well as 1, 000 test suites of
150 test cases (in our experiments, the test suite used is ran-
domly chosen from the 1, 000 suites provided). See Table 1
for info on the number of components M and test cases N .

For our experiments, we have extended the Siemens set
and space with program versions where we can activate ar-
bitrary combinations of faults. For this purpose, we limit our-
selves to a selection of 130 out of the 172 faults, based on cri-
teria such as faults being attributable to a single line of code,
to enable unambiguous evaluation. The observation matrices
are obtained using the GNU gcov profiling tool.

1http://sir.unl.edu for further info.

Using this extended set of programs, the diagnostic quality
- quantified by W - of BARINEL is compared to the three ε
strategies outlined in Section 2.2. Table 1 presents a summary
of the diagnostic quality of the different techniques.

Similar to Section 4, we aimed at C = 5 for the multi-
ple fault-cases, but for print tokens insufficient faults are
available. All measurements except for the four-fault version
of print tokens are averages over 100 versions, or over
the maximum number of combinations available, where we
verified that all faults are active in at least one failed run.

In agreement with in the previous section, the results for
software systems confirm that BARINEL outperforms the
other approaches, especially considering the fact that the vari-
ance of W is higher (coefficient of variance up to 0.5 for
schedule2) than in the synthetic case (1,000 sample ma-
trices versus up to 100 matrices in this case). Only in 4 out
of 24 cases, BARINEL is not on top. Apart from the obvi-
ous sampling noise, just mentioned, this is due to particular
properties of the programs. For schedule2 with C = 2
and C = 5, ε(0) is better due to the fact that almost all fail-
ing runs involve all faulty components (highly correlated oc-
currence). Hence, the program effectively has a single fault

spreading over multiple lines, which favors ε(0) since it ranks
candidates with cardinality one first. For tcas with C = 2
and C = 5, ε(2) marginally outperforms BARINEL (by less
than 0.5%) which we attribute to the fact that the program is
almost branch-free and small (M = 174) combined with the
sampling noise (σW of 5% for tcas).

In these experiments the average time cost of BARINEL

is merely 2.8 ms/obs, the difference with the other methods
(0.2 ms/obs) being due to the (unoptimized) gradient ascent
procedure.

6 Related Work

As mentioned earlier, in many model-based diagnosis
approaches (e.g., GDE [De Kleer and Williams, 1987]

GDE+ [Struss and Dressler, 1989], CDA* [Williams and
Ragno, 2007], SAFARI [Feldman et al., 2008]) faults are
modeled to be persistent. Consequently, they may not work
optimally when components fail intermittently. Recently, a
model for intermittent behavior was introduced as an exten-

657

print tokens print tokens2 replace schedule schedule2 tcas tot info space

M / N 539 / 4,130 489 / 4,115 507 / 5,542 397 / 2,650 299 / 2,710 174 / 1,608 398 / 1,052 9,564 / 150

C 1 2 4 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5

#matrices 4 6 1 10 43 100 23 100 100 7 20 11 9 35 91 30 100 100 19 100 100 28 100 100

ε(0) 13.7 18.2 22.8 21.6 26.1 30.8 16.2 25.1 33.8 17.2 23.5 28.6 29.3 26.6 28.9 28.0 26.9 28.7 14.0 18.2 21.5 19.5 25.2 34.3

ε(1) 1.2 2.4 5.0 4.2 7.6 14.5 3.0 5.2 12.5 0.8 1.6 3.0 22.8 31.4 38.3 16.7 24.2 30.5 5.1 8.7 17.4 2.2 3.6 9.5

ε(2) 1.2 2.4 4.8 5.1 8.9 15.5 3.0 5.2 12.4 0.8 1.5 3.1 21.5 29.4 35.6 16.7 24.1 30.5 6.1 11.7 20.9 2.2 3.7 9.9

BARINEL 1.2 2.4 4.4 1.9 3.4 6.6 3.0 5.0 11.9 0.8 1.5 3.0 21.5 28.1 34.9 16.7 24.5 30.7 5.0 8.5 15.8 1.7 3.0 7.4

Table 1: Wasted effort W [%] on combinations of C = 1 . . . 5 faults for the Siemens set and space

sion of the GDE framework [De Kleer, 2007], later extended
by [Abreu et al., 2008a; 2008b]. Our approach improves on
the approximations within these works, providing superior re-
sults. Furthermore, unlike MBD approaches we only assume
a very abstract component model without even considering
static system interconnection topology.

In logic (model-based) reasoning approaches to automatic
software debugging, the model is typically generated from the
source code - see [Mayer and Stumptner, 2008] for an evalu-
ation of several models. The model is generated by means of
static analysis techniques and is extremely complex. While
at this detailed level intermittency is not an issue, the level of
detail is such that the associated diagnostic complexity pro-
hibits application to programs larger than a few hundred lines
of code. As an indication, the largest program used in [Mayer
and Stumptner, 2008] is tcas (172 lines of code only).

Our dynamic approach towards determining component in-
volvement and system failure (i.e., through (A, e)) is inspired
by statistical approaches to automatic software debugging,
known as spectrum-based fault localization (each row in A
is a spectrum). Well-known examples include the Taran-
tula tool [Jones and Harrold, 2005], the Nearest Neighbor
technique [Renieris and Reiss, 2003], and the Ochiai coef-
ficient [Abreu et al., 2007]. These approaches rank com-
ponents in terms of the statistical similarity of component
involvement and observed program failure behavior. While
attractive from complexity-point of view, the approaches do
not consider multiple faults. Furthermore, the similarity met-
ric has little value other than for ranking, in contrast to our
probability metric.

7 Conclusions

Intermittent fault models can be crucial when modeling com-
plex systems. Estimating the probability that a faulty com-
ponent exhibits correct behavior is an important step for logic
reasoning approaches to properly handle intermittent failures.
In contrast to previous work, which merely approximates
such probabilities for particular diagnosis candidates, in this
paper we present a novel approach (BARINEL) to compute
the exact probabilities per component at a complexity that is
only a constant factor greater than previous approaches.

We have compared the diagnostic performance of
BARINEL with the classical (Bayesian) reasoning approach,
as well as with three intermittent reasoning approaches. Syn-
thetic experiments have confirmed that our approach con-
sistently outperforms the previous approaches, demonstrat-
ing the significance of maximum likelihood estimation over
approximation. Application to the Siemens benchmark and
space also suggest BARINEL’s superiority (20 wins out of
24 trials), while the exceptions are caused by component clus-
tering in combination with sampling noise.

Future work includes (1) extending the activity matrix from
binary to integer, allowing us to exploit component involve-
ment frequency (e.g., program loops), (2) reducing the cost
of gradient ascent by introducing quadratic convergence, and
(3) applying BARINEL to intermittent hardware.

References
[Abreu et al., 2007] R. Abreu, P. Zoeteweij, and A. J. C. van

Gemund. On the accuracy of spectrum-based fault localization.
In Proc. TAIC PART, 2007.

[Abreu et al., 2008a] R. Abreu, P. Zoeteweij, and A. J. C. van
Gemund. A dynamic modeling approach to software multiple-
fault localization. In Proc. DX, 2008.

[Abreu et al., 2008b] R. Abreu, P. Zoeteweij, and A. J. C. van
Gemund. An observation-based model for fault localization. In
Proc. WODA, 2008.

[Avriel, 2003] M. Avriel. Nonlinear Programming: Analysis and
Methods. 2003.

[De Kleer and Williams, 1987] J. De Kleer and B. C. Williams. Di-
agnosing multiple faults. Artif. Intell., 32(1):97–130, 1987.

[De Kleer et al., 1992] J. De Kleer, A. K. Mackworth, and R. Re-
iter. Characterizing diagnoses and systems. Artificial Intelli-
gence, 56:197–222, 1992.

[De Kleer et al., 2008] J. De Kleer, B. Price, L. Kuhn, M. Do, and
R. Zhou. A framework for continuously estimating persistent and
intermittent failure probabilities. In Proc. DX, 2008.

[De Kleer, 2006] J. De Kleer. Getting the probabilities right for
measurement selection. In Proc. DX, 2006.

[De Kleer, 2007] J. De Kleer. Diagnosing intermittent faults. In
Proc. DX, 2007.

[Feldman et al., 2008] A. Feldman, G. Provan, and A. J. C. van
Gemund. Computing minimal diagnoses by greedy stochastic
search. In Proc. AAAI, 2008.

[Jones and Harrold, 2005] J. A. Jones and M. J. Harrold. Empiri-
cal evaluation of the Tarantula automatic fault-localization tech-
nique. In Proc. ASE, 2005.

[Kuhn et al., 2008] L. Kuhn, B. Price, J. de Kleer, M. Do, and
R. Zhou. Pervasive diagnosis: Integration of active diagnosis
into production plans. In Proc. AAAI, 2008.

[Mayer and Stumptner, 2008] Wolfgang Mayer and Markus
Stumptner. Evaluating models for model-based debugging. In
Proc. ASE, 2008.

[Renieris and Reiss, 2003] M. Renieris and S. P. Reiss. Fault local-
ization with nearest neighbor queries. In Proc. ASE, 2003.

[Struss and Dressler, 1989] P. Struss and O. Dressler. “Physical
Negation” - Integrating fault models into the general diagnostic
engine. In Proc. IJCAI, 1989.

[Williams and Ragno, 2007] B. Williams and R. Ragno. Conflict-

directed A* and its role in model-based embedded systems. Dis-
crete Applied Mathematics, 155(12):1562–1595, 2007.

658

