
Efficient Incremental Search for Moving Target Search∗

Xiaoxun Sun William Yeoh Sven Koenig

Computer Science Department

University of Southern California

Los Angeles, CA 90089-0781, USA

{xiaoxuns, wyeoh, skoenig}@usc.edu

Abstract

Incremental search algorithms reuse information from
previous searches to speed up the current search and are
thus often able to find shortest paths for series of sim-
ilar search problems faster than by solving each search
problem independently from scratch. However, they do
poorly on moving target search problems, where both
the start and goal cells change over time. In this pa-
per, we thus develop Fringe-Retrieving A* (FRA*), an
incremental version of A* that repeatedly finds shortest
paths for moving target search in known gridworlds. We
demonstrate experimentally that it runs up to one order of
magnitude faster than a variety of state-of-the-art incre-
mental search algorithms applied to moving target search
in known gridworlds.

1 Introduction

Moving target search is the problem where a hunter has
to catch a moving target [Ishida and Korf, 1991]. Moti-
vated by video games, we perform moving target search in
known gridworlds with blocked and unblocked cells, where
the hunter always knows its current cell and the current cell
of the target. The moving target search problem is solved
once the hunter reaches the current cell of the target. The
hunter needs to determine quickly how to move. The com-
puter game company Bioware, for example, recently imposed
a limit of 1-3 ms on the search time [Bulitko et al., 2007].
Moving target search algorithms fall into two classes: Real-
time search algorithms, such as MTS [Ishida and Korf, 1991;
Ishida, 1992], limit the lookahead of each search and thus
find only the beginning of a complete plan before the hunter
starts to follow the plan. Their advantage is that the hunter is
able to start moving in constant time, independent of the size
of the gridworld. Their disadvantage is that the trajectory of
the hunter can be highly suboptimal and that it is difficult to

∗This material is based upon work supported by, or in part by, the
U.S. Army Research Laboratory and the U.S. Army Research Office
under contract/grant number W911NF-08-1-0468 and by NSF un-
der contract 0413196. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
sponsoring organizations, agencies, companies or the U.S. govern-
ment.

determine that the hunter is separated from the target. Com-
plete search algorithms, on the other hand, find a complete
plan before the hunter starts to follow the plan. If they are
sufficiently fast, they provide alternatives to real-time search
algorithms that avoid their disadvantage. We therefore study
complete search algorithms in this paper. The hunter always
follows a shortest path from its current cell to the current cell
of the target. When the target moves off the shortest path,
the hunter has to find another shortest path from its current
cell to the current cell of the target. It could use A* where
the start cell of the search is the current cell of the hunter and
the goal cell is the current cell of the target. However, in-
cremental search algorithms based on A* reuse information
from previous searches to speed up the current search and are
thus often able to find the shortest path faster than by solving
each search problem independently from scratch [Koenig et
al., 2004]. Incremental search algorithms generally fall into
two classes:

• The first class uses information from the previous
searches to update the h-values of the current search
so that they become more informed and focus the cur-
rent search better. Examples include MT-Adaptive A*
[Koenig et al., 2007] and its generalization Generalized
MT-Adaptive A* [Sun et al., 2008].

• The second class transforms the previous search tree to
the current search tree so that the current search does not
need to start from scratch. Examples include Differential
A* [Trovato and Dorst, 2002], D* [Stentz, 1995] and D*
Lite [Koenig and Likhachev, 2005].

All listed incremental search algorithms from the second
class are efficient only if the start cell remains unchanged
from search to search. These incremental search algorithms
are thus not efficient for moving target search, where both
the start and goal cells change over time. In this paper, we
thus develop Fringe-Retrieving A* (FRA*), an incremental
version of A* that repeatedly finds shortest paths for moving
target search in known gridworlds. It repeatedly transforms
the previous search tree to the current search tree and is thus
a new member of the second class of incremental search al-
gorithms. We demonstrate experimentally that it runs up to
one order of magnitude faster than a variety of state-of-the-
art incremental search algorithms of both classes applied to
moving target search in known gridworlds.

615



2 Search Problem and Notation

We perform moving target search in known gridworlds with
blocked and unblocked cells. The hunter can move from its
current unblocked cell to any neighboring unblocked cell. It
always follows a shortest path from its current cell to the cur-
rent cell of the target, until it reaches the current cell of the
target. We make no assumptions about how the target moves.

We use the following notation: S denotes the finite set of
unblocked cells, sstart ∈ S denotes the current cell of the
hunter and the start cell of the search, and sgoal ∈ S denotes
the current cell of the target and the goal cell of the search.
N(s) ⊆ S denotes the set of neighbor cells of cell s ∈ S,
namely the at most four adjacent unblocked cells for four-
neighbor gridworlds and the at most eight adjacent unblocked
cells for eight-neighbor gridworlds. c(s, s′) > 0 denotes the
distance from cell s ∈ S to cell s′ ∈ N(s). We use one if

they are horizontal or vertical of each other and
√

2 if they
are diagonal of each other. d(s, s′) denotes the distance from
cell s ∈ S to cell s′ ∈ S. The h-value h(s, s′) denotes a user-
provided approximation of d(s, s′). The h-values need to be
consistent [Pearl, 1985]. We use the Manhattan distances for
four-neighbor gridworlds and the octile distances for eight-
neighbor gridworlds [Bulitko and Lee, 2006]. The objective
of each search is to find a shortest path from the start cell to
the goal cell.

3 A*

A* is the basis of all incremental search algorithms discussed
in this paper. It maintains two values for every cell s: First,
the g-value g(s) is an approximation of the distance from the
start cell to s. Second, the parent parent(s) is the parent cell
of s in the search tree. A* maintains two data structures:
First, the CLOSED list contains exactly all cells that have
been expanded. Initially, it is empty. Second, the OPEN list
contains exactly all cells that have been generated but not yet
expanded. Initially, it contains only the start cell with g-value
zero and parent NULL. A* repeatedly removes a cell s with
the smallest sum of g-value and h-value from the OPEN list,
inserts it into the CLOSED list and expands it by performing
the following procedure for each neighbor cell s′ of s. If s′

is neither in the OPEN nor CLOSED list, then A* generates
s′ by setting the g-value of s′ to g(s) + c(s, s′), setting the
parent of s′ to s, and then inserting s′ into the OPEN list. If
s′ is in the OPEN list and g(s) + c(s, s′) < g(s′), then A*
sets the g-value of s′ to g(s) + c(s, s′) and sets the parent of
s′ to s. A* terminates when its OPEN list is empty or it has
expanded the goal cell. We use the following properties of
A* [Pearl, 1985]:

• Property 1: During an A* search, every cell s in the
CLOSED list satisfies the following conditions: (a) If s
is not the start cell, then the parent of s is in the CLOSED
list with g(s) = g(parent(s)) + c(parent(s), s). (b) The
g-value of s satisfies g(s) = g(sstart)+d(sstart, s). Prop-
erty 1 implies that one can identify a shortest path from
the start cell to s in reverse by following the parents
from s to the start cell. Property 1 also implies that the
CLOSED list forms a contiguous area in known grid-
worlds.

Figure 1: Definition of Perimeter.

• Property 2: During an A* search, the OPEN list contains
the following cells: (a) If the CLOSED list is empty,
then the OPEN list contains only the start cell. Other-
wise, the OPEN list contains exactly all cells that are
not in the CLOSED list but have at least one neigh-
bor cell in the CLOSED list. Property 2 (a) implies
that the OPEN list contains exactly all cells that on the
outer perimeter of the CLOSED list.1 Every cell s in
the OPEN list satisfies the following conditions: (b) The
parent of s is the cell s′ in the CLOSED list that min-
imizes g(s′) + c(s′, s). (c) The g-value of s satisfies
g(s) = g(parent(s)) + c(parent(s), s).

• Property 3: A* terminates. If A* terminates because its
OPEN list is empty, then no path exists from the start
cell to the goal cell. Otherwise, A* terminates because
it expanded the goal cell and Property 1 asserts that one
can identify a shortest path from the start cell to the goal
cell in reverse by following the parents from the goal cell
to the start cell.

4 Fringe-Retrieving A*

Fringe-Retrieving A* (FRA*) is an incremental version of A*
that repeatedly transforms the previous search tree, which is
given by the OPEN and CLOSED lists as well as the parents
and g-values of the cells in them, to the current search tree,
see the pseudo code in Figure 4.2 Assume that FRA* finds a
shortest path from the start cell, which is the current cell of the
hunter, to the goal cell, which is the current cell of the target.
Properties 1 and 2 hold afterwards since FRA* performs A*
searches. Then, the hunter moves along the shortest path.
When the target moves off the shortest path (that is, its current
cell is not on the shortest path from the previous start cell to
the previous goal cell any longer), FRA* changes the OPEN
and CLOSED lists as well as the parents of the cells in them

1Figure 1 illustrates what we call the inner and outer perimeters
of an area. The solid black line is the outer perimeter of the grey
area, and the dashed black line is the inner perimeter of the grey
area. The outer and inner perimeters consist of three parts each.

2The following explanations are intended to make the pseudo
code easier to understand: ComputeShortestPath() performs an
A* search. iteration is the number of the current search.
InitializeCell(s) initializes g(s) to infinity, generatediteration(s) to
the number of the current search and expanded(s) to false when cell
s is generated during a search. generatediteration(s) is set to the
number of the current search when s is generated. expanded(s) is
set to true when s is expanded. TestClosedList(s) returns true iff s

is in the CLOSED list. It returns true iff s = sstart OR (expanded(s)
AND parent(s) �= NULL). FRA* sometimes sets only expanded(s)
to false and sometimes only parent(s) to NULL to delete s from the
CLOSED list, which speeds it up.

616



1 2 3 4 5

S 0 1 2 6

1 2 3 7

2 3 4 G 8

3 4 5 9

OPEN

OPEN OPEN

4 5 6 71 2 3

A

B

C

D

E

F

G

(a) A* Search

1 2 3 4 5

0 S 1 2 6

1 2 3 7

2 3 4 8

3 4 5 G 9

OPEN OPEN

OPEN

5 6 7

A

1 2 3 4

B

C

D

E

F

G

(b) Steps 1 and 2

2 3 4 5

S 1 2 6

2 3 7

3 4 8

4 5 G 9

c

OPEN

OPEN

1 2 3 4 5 6 7

A

B

C

D

E

F

G

(c) Step 3

2 3 4 5

2 S 1 2 6

3 2 3 7

4 3 4 8

5 4 5 G 9

OPEN

E

F

A

B
OPEN

2 31

G

4 5 6

C

D

OPEN

OPEN

OPEN

OPEN

7

(d) Steps 4 and 5

Figure 2: Example Trace of FRA* on a Four-Neighbor Gridworld.

C3

D3

F4

E3
F3

C2

T

C4
B4

B6
C6
D6
E6

B5

Figure 3: Principle of FRA*.

to guarantee that Properties 1 and 2 hold again and then starts
an A* search with these OPEN and CLOSED lists to find a
shortest path from the new start cell to the new goal cell. We
use the four-neighbor gridworld in Figure 2 to illustrate the
steps of FRA*. The current cell C2 of the hunter is labeled S,
and the current cell E6 of the target is labeled G. Figure 2(a)
shows the very first search of FRA*, which is an A* search
from C2 to E6. Cells in the OPEN and CLOSED list are
labeled with their g-values in their lower right corners. The
outgoing arrows point to their parents. Cells in the OPEN
list are labeled OPEN. The shortest path is C2, C3, C4, B4,
B5, B6, C6, D6 and E6. The hunter then moves along the
shortest path to C3, and the target moves off the shortest path
to F6. FRA* now finds a shortest path from C3 to F6 using
the following steps.

4.1 Step 1: Starting A* Immediately

If the new start cell is the same as the previous start cell and
the new goal cell is in the previous CLOSED list, then one can
identify a shortest path from the new start cell to the new goal
cell in reverse by following the existing parents from the new
goal cell to the new start cell according to Property 1. If the
new start cell is the same as the previous start cell and the new
goal cell is not in the previous CLOSED list, then FRA* starts
an A* search with the previous OPEN and CLOSED lists and
does not need to execute the following steps. In our example,
these conditions are not satisfied and FRA* thus executes the
following steps.

4.2 Optional Step 2: Changing Parents

The new CLOSED list needs to satisfy Property 1 with re-
spect to the new start cell. The previous CLOSED list sat-
isfies Property 1 with respect to the previous start cell since

FRA* performs A* searches. If the new CLOSED list con-
tains exactly all cells of the subtree of the search tree rooted at
the new start cell that are in the previous CLOSED list, then
Property 1 holds with respect to the new start cell. Property
1(a) holds trivially, and Property 1(b) holds for the follow-
ing reason: Consider the shortest path from the previous start
cell s′start to any cell s in the new CLOSED list that results
from following the parents from s to s′start in reverse. Since
the the new start cell sstart is on this shortest path, it holds that
d(s′start, s) = d(s′start, sstart) + d(sstart, s). Since cell s satis-
fies Property 1(b) with respect to the old start cell, it holds
that g(s) = g(s′start) + d(s′start, s). Since cell sstart satisfies
Property 1(b) with respect to the old start cell, it holds that
g(sstart) = g(s′start)+ d(s′start, sstart). Thus, cell s also satisfies
Property 1(b) with respect to the new start cell since g(s) =
g(s′start)+d(s′start, s) = g(sstart)−d(s′start, sstart)+d(s′start, s) =
g(sstart)+ d(sstart, s). However, the new CLOSED list should
be as large a subset of the previous CLOSED list as possible.
Cells from the previous CLOSED list often satisfy Property
1(b) with respect to the new start cell but not Property 1(a)
since there are typically many alternative shortest paths from
the previous start cell to a cell s in the previous CLOSED list.
If the new start cell is on the shortest path from the previous
start cell to s that results from following the parents from s
to the previous start cell, then s is in the subtree of the search
tree rooted at the new start cell and thus in the new CLOSED
list. If the new start cell is not on the shortest path, then s
is not in the subtree of the search tree rooted at the new start
cell. FRA* finds such cells and changes their parents to make
them part of the search tree rooted at the new start cell so
that they can be part of the new CLOSED list. First, FRA*
makes the new start cell its current cell, faces its parent and
performs checks in the counter-clockwise direction. It turns
counter-clockwise to face the next neighbor cell s′ of its cur-
rent cell s that is in the previous CLOSED list and checks
whether it holds that g(s′) = g(s) + c(s, s′).

• If the check is successful, then FRA* sets the parent of
s′ to s, which is possible because this change does not
affect its g-value. Due to this change, all cells in the
subtree of the search tree rooted at s′ now belong to the
subtree of the search tree rooted at the new start cell and
their g-values remain unaffected. FRA* then makes s′

its current cell, faces its new parent s and repeats the

617



process of turning and checking the neighbor cell that it
faces.

• If the check is unsuccessful, then FRA* repeats the pro-
cess of turning and checking the neighbor cell that it
faces.

If, during the process of turning and checking the neigh-
bor cell that it faces, FSA* faces the parent of its current cell
again, then it makes the new start cell its current cell again,
faces its parent and now performs similar checks in the clock-
wise direction. The resulting search tree is one that an A*
search could have generated if it had broken ties among cells
with the same sum of g-value and h-value appropriately. Step
2 traverses at most the inner perimeter of the new CLOSED
list, which can be expected to contain fewer cells than the
CLOSED list itself.

In our example, the cells in the subtree of the search tree
rooted at the new start cell C3 before Step 2 that are in the pre-
vious CLOSED list are B4, B5, B6, C3, C4, C6, D6 and E6.
However, D3 could have C3 as parent rather than D2 since
this change does not affect its g-value. Then, all cells in the
subtree of the search tree rooted at D3 belong to this subtree
and their g-values remain unaffected. FRA* starts at the new
start cell C3 and performs checks in the counter-clockwise di-
rection. First, FRA* is at C3 facing its parent C2 and checks
D3 successfully. It then sets the parent of D3 to C3. Second,
FRA* is at D3 facing its parent C3, checks D2 unsuccessfully
and then checks E3 successfully. It then sets the parent of E3
to D3. Third, FRA* is at E3 facing its parent D3, checks
E2 unsuccessfully and then checks F3 successfully. It then
sets the parent of F3 to E3. Fourth, FRA* is at F3 facing its
parent E3, checks F2 unsuccessfully and then checks F4 suc-
cessfully. It then sets the parent of F4 to F3 (which does not
change its parent). Fifth, FRA* is at F4 facing its parent F3
and checks E4 unsuccessfully. FRA* then starts again at the
new start cell C3 and performs similar checks in the clock-
wise direction until it reaches E6, see Figure 2(b). The cells
in the subtree of the search tree rooted at the new start cell
C3 after Step 2 that are in the previous CLOSED list are B4,
B5, B6, C3, C4, C6, D3, D4, D6, E3, E4, E6, F3, F4 and
F6. The big triangle in the conceptual Figure 3 represents all
cells in the search tree that are in the previous CLOSED list,
the triangle T in the big triangle represents all cells in the sub-
tree of the search tree rooted at the new start cell before Step
2 that are in the previous CLOSED list, and the area in the
big triangle below and including the cells traversed by FRA*
in the counter-clockwise direction (C3, D3, E3, F3 and F4)
and the clockwise direction (C3, C4, B4, B5, B6, C6, D6,
and E6) represents all cells in the subtree of the search tree
rooted at the new start cell after Step 2 that are in the previ-
ous CLOSED list.

4.3 Step 3: Deleting Cells

FRA* now generates the new CLOSED list, which contains
exactly all cells of the subtree of the search tree rooted at the
new start cell that are in the previous CLOSED list. Thus,
FRA* could set the new CLOSED list to empty and then
use breadth-first or depth-first search to traverse this subtree,
starting with the new start cell, and insert the visited cells that

procedure InitializeCell(s)
{01} if (generatediteration(s) �= iteration)
{02} g(s) := ∞;
{03} generatediteration(s) := iteration;
{04} expanded(s) := false;

function TestClosedList(s)
{05} return (s = sstart OR (expanded(s) AND parent(s) �= NULL));

function ComputeShortestPath()
{06} while (OPEN �= ∅)
{07} delete a state s with the smallest g(s) + h(s, sgoal) from OPEN;

{08} expanded(s) := true;
{09} forall s′ ∈ N(s)
{10} if (NOT TestClosedList(s′))
{11} InitializeCell(s′);
{12} if (g(s′) > g(s) + c(s, s′))
{13} g(s′) := g(s) + c(s, s′);
{14} parent(s′) := s;
{15} insert s′ into OPEN if s′ is not in OPEN;

{16} return true if (s = sgoal);

{17} return false;

function UpdateParent(direction)
{18} forall s ∈ N(cell) in direction order, starting with parent(cell)
{19} if (g(s) = g(cell) + c(cell, s) AND TestClosedList(s))
{20} parent(s) := cell;
{21} cell := s;
{22} return true;
{23} return false;

procedure Step2()
{24} cell := sstart;
{25} while (UpdateParent(counter-clockwise)) /* body of while-loop is empty */;
{26} cell := sstart;
{27} while (UpdateParent(clockwise)) /* body of while-loop is empty */;

function Step3()
{28} parent(sstart) := NULL;
{29} forall s ∈ S that belong to the search tree rooted at previous sstart
{30} parent(s) := NULL;
{31} delete s from OPEN if s ∈ OPEN;

procedure Step5()
{32} forall s ∈ S on the outer perimeter of the CLOSED list, starting with anchora

{33} OPEN := OPEN ∪ {s} if (s is unblocked AND s /∈ OPEN);
{34} forall s ∈ OPEN
{35} InitializeCell(s);
{36} forall s ∈ OPEN
{37} forall s′ ∈ N(s)
{38} if (TestClosedList(s′) AND g(s) > g(s′) + c(s′, s))
{39} g(s) := g(s′) + c(s′, s);
{40} parent(s) := s′;
{41} insert s into OPEN if s is not in OPEN;

function Main()
{42} forall s ∈ S
{43} generatediteration(s) := 0;
{44} expanded(s) := false;
{45} iteration := 1;
{46} InitializeCell(sstart);
{47} g(sstart) := 0;
{48} OPEN := ∅;
{49} insert sstart into OPEN;
{50} while (sstart �= sgoal)

{51} return false if (NOT ComputeShortestPath());
{52} openlist incomplete := false;
{53} while (TestClosedList(sgoal)) /* Check of Steps 1 and 4 */

{54} while (target not caught and target is on shortest path from sstart to sgoal)

{55} follow shortest path from sstart to sgoal;

{56} return true if target caught;
{57} previous sstart := sstart;
{58} sstart := the current cell of the hunter;
{59} sgoal := the current cell of the target;

{60} if (sstart �= previous sstart) /* Check of Step 1 */
{61} Step2();
{62} anchor := parent(sstart);
{63} Step3();
{64} openlist incomplete := true;
{65} if (openlist incomplete)
{66} iteration := iteration + 1;
{67} Step5();
{68} return true;

a
The CLOSED list contains exactly all cells s′ ∈ S with TestClosedList(s′). The

forall-loop iterates only over the cells on the part of the outer perimeter of the CLOSED list

that contains the anchor cell anchor.

Figure 4: Fringe Retrieving A* (FRA*).

618



are in the previous CLOSED list into the new CLOSED list to
form the new CLOSED list. However, FRA* can also do the
opposite. It can use breadth-first or depth-first search to tra-
verse the search tree except for the subtree rooted at the new
start cell, starting with the previous start cell, and delete the
visited cells that are in the previous CLOSED list from the
previous CLOSED list to form the new CLOSED list. The
second option is usually faster since the hunter typically can-
not move far along the shortest path before the target moves
off the path. Thus, the previous and new start cells are typ-
ically much closer to each other than the new start and goal
cells, meaning that there are only few cells to delete from the
previous CLOSED list. Therefore, FRA* remembers the par-
ent of the new start cell (that we call the anchor cell). It then
sets the parent of the new start cell to NULL to disconnect
this subtree from the search tree and uses breadth-first search
to traverse the resulting search tree, starting with the previous
start cell, and deletes the visited cells that are in the previ-
ous CLOSED list from the previous CLOSED list to form the
new CLOSED list. It also deletes the visited cells that are not
in the previous CLOSED list from the previous OPEN list to
form the new OPEN list. Afterwards, the new CLOSED list
is complete. The parents and g-values of all cells in the new
CLOSED list satisfy Property 1.

In our example, FRA* sets the parent of C2 to NULL, it
then deletes C2, D2, E2 and F2 from the previous CLOSED
list and deletes B2 from the previous OPEN list, see Figure
2(c).

4.4 Step 4: Terminating Early

If the new goal cell is in the new CLOSED list then one can
identify a shortest path from the new start cell to the new
goal cell in reverse by following the parents from the new
goal cell to the new start cell according to Property 1. In
our example, this condition is not satisfied and FRA* thus
executes the following steps.

4.5 Step 5: Inserting Cells

The new OPEN list needs to contain exactly all cells that are
on the outer perimeter of the CLOSED list according to Prop-
erty 2. The cells that are on the part of the outer perimeter of
the CLOSED list that does not contain the anchor cell from
Step 3 are already in the new OPEN list. However, not all
cells on the part of the outer perimeter of the CLOSED list
that contains the anchor cell are necessarily already in the
new OPEN list. In particular, it could be the case that some
of the cells that were in the previous CLOSED list but are not
in the new CLOSED list should now be in the OPEN list.
The new CLOSED list forms a contiguous area according
to Property 1. FRA* thus completes the new OPEN list by
circumnavigating the part of the outer perimeter of the new
CLOSED list that contains the anchor cell, starting with the
anchor cell, and inserting every visited unblocked cell that is
not yet in the new OPEN list into the new OPEN list. After-
wards, the new OPEN list is complete. However, the parents
and g-values of some cells in the new OPEN list might not
satisfy Property 2. FRA* therefore sets the parent of every
cell s in the new OPEN list to the cell s′ in the new CLOSED
list that minimizes g(s′)+c(s′, s) and then the g-value of s to

Figure 5: Random Gridworld (left) and Maze (right).

Four-Neighbor Maze
searches moves cells cells removed total

per per expanded from CLOSED runtime

test case test case per search per search per search

A* 4218 6716 174127 (212) 45388

MT-Adaptive A* 4218 6716 94362 (131) 35268

Differential A* 4218 6716 174127 (212) 63008

Basic FRA* 4242 6712 472 (3.8) 522 (6.5) 674

FRA* 4242 6712 461 (3.7) 502 (6.2) 655

Table 2: Experimental Results in Mazes.

g(parent(s)) + c(parent(s), s). The parents and g-values of
all cells in the new OPEN list now satisfy Property 2. Step 5,
different from [Edelkamp, 1998], traverses at most the outer
perimeter of the new CLOSED list, which can be expected to
contain fewer cells than the CLOSED list itself.

In our example, FRA* circumnavigates the part of the outer
perimeter of the new CLOSED list that contains C2, starting
with C2, and inserts C2, D2, E2 and F2 into the previous
OPEN list and then corrects all of their parents and g-values.
For example, the parent of D2 was C2 and its g-value was
one. FRA* sets the parent of D2 to D3 and its g-value to
three, see Figure 2(d).

4.6 Step 6: Starting A*

FRA* starts an A* search with the new OPEN and CLOSED
lists. The g-value of the new start cell is not necessarily zero
at this point in time since FRA* has not changed it since its
previous search.

5 Experimental Evaluation

We compare Basic FRA* (without the optional Step 2) and
FRA* (with the optional Step 2) experimentally against A*,
MT-Adaptive A* (which is identical to Generalized MT-
Adaptive A* in known gridworlds), Differential A* and D*
Lite (which is simpler than D* but as efficient [Koenig and
Likhachev, 2005]). We use comparable implementations for
all search algorithms. For example, all of them use binary
heaps as priority queues. We use four-neighbor and eight-
neighbor random gridworlds in which 25 percent of randomly
chosen cells were blocked and four-neighbor mazes whose
corridors and walls are ten cells wide and whose corridors
were generated with depth-first search, see Figure 5. We av-
erage over 1000 gridworlds of size 1000 × 1000 whose start
and goal cells were randomly chosen. The target always fol-
lows a shortest path from its current cell to a randomly se-
lected unblocked cell and repeats the process once it reaches
that cell. The target skips every tenth move, which enables
the hunter to catch it.

Tables 1 and 2 report two measures for the difficulty of
the moving target search problems (that vary slightly among

619



Four-Neighbor Random Gridworld Eight-Neighbor Random Gridworld
searches moves cells cells removed total searches moves cells cells removed total

per per expanded from CLOSED runtime per per expanded from CLOSED runtime

test case test case per search per search per search test case test case per search per search per search

A* 387 688 14013 (31.2) 7250 335 475 8418 (19.3) 6098

MT-Adaptive A* 387 688 12351 (28.2) 6002 335 475 8001 (21.9) 6078

Differential A* 387 688 14013 (40.1) 9533 335 475 8418 (19.3) 7355

Basic FRA* 391 688 541 (13.1) 386 (12.3) 422 336 477 350 (3.9) 276 (8.1) 464

FRA* 391 688 515 (13.0) 362 (11.6) 397 336 477 325 (3.8) 256 (7.5) 438

Table 1: Experimental Results in Random Gridworlds.

moving target search algorithms due to different tie breaking
among several shortest paths), namely the average number of
searches and the average number of moves of the hunter until
it catches the target. The tables report two measures for the
efficiency of the moving target search algorithms, namely the
average number of expanded cells per search and the average
runtime per search in microseconds on a Pentium D 3.0 Ghz
PC with 2 GByte of RAM. The tables also report the aver-
age number of cells per search that Basic FRA* and FRA*
remove from the CLOSED list. Finally, the tables report the
standard deviation of the mean for the number of expanded
cells per search and the number of cells removed from the
CLOSED list per search (in parentheses) to demonstrate the
statistical significance of our results. D* Lite is not listed
in the table because it exceeds our runtime limit of 10 hours
for the 1000 gridworlds that we average over and is thus not
competitive.

In all cases, the sum of the average number of cells that
Basic FRA* expands and the average number of cells that
it removes from the CLOSED list is an order of magnitude
smaller than the average number of cells that the other search
algorithms expand. Accordingly, the average runtime of Ba-
sic FRA* is an order of magnitude smaller than the average
runtime of the other search algorithms. FRA* is even faster
than Basic FRA*, which demonstrates the utility of the op-
tional Step 2.

6 Conclusions

In this paper, we developed Fringe-Retrieving A* (FRA*),
an incremental search algorithm that repeatedly finds short-
est paths for moving target search in known gridworlds. We
demonstrated experimentally that it runs up to one order
of magnitude faster than a variety of state-of-the-art incre-
mental search algorithms applied to moving target search
in known gridworlds, namely D* Lite, Differential A* and
MT-Adaptive A*. FRA* is faster than the other incremen-
tal search algorithms because moving target search poses a
problem for them. None of the other incremental search al-
gorithms that transform the previous search tree to the cur-
rent search tree were specifically designed for moving tar-
get search. They are efficient only if the start cell remains
unchanged from search to search. Thus, they are not effi-
cient for moving target search, where both the start and goal
cells change over time. For example, D* Lite needs to shift
the map and cannot reuse much of the previous search tree
[Koenig et al., 2007], and Differential A* cannot reuse the
previous search tree at all, which makes both of them slower
than A*. MT-Adaptive A* is an incremental search algorithm
that uses information from the previous searches to update the
h-values of the current search. It was specifically designed

for moving target search but does not transform the previous
search tree to the current search tree. FRA* is thus the first
incremental search algorithm that efficiently transforms the
previous search tree to the current search tree for moving tar-
get search in known gridworlds.

References
[Bulitko and Lee, 2006] V. Bulitko and G. Lee. Learning in real-

time search: A unifying framework. Journal of Artificial Intelli-
gence Research, 25:119–157, 2006.

[Bulitko et al., 2007] V. Bulitko, Y. Bjornsson, M. Luvstrek,
J. Schaeffer, and S. Sigmundarson. Dynamic control in path-
planning with real-time heuristic search. In Proceedings of the
International Conference on Automated Planning and Schedul-
ing, pages 49–56, 2007.

[Edelkamp, 1998] Stefan Edelkamp. Updating shortest paths. In
Proceedings of the European Conference on Artificial Intelli-

gence, pages 655–659, 1998.

[Ishida and Korf, 1991] T. Ishida and R. Korf. Moving target
search. In Proceedings of International Joint Conference in Arti-
ficial Intelligence, pages 204–211, 1991.

[Ishida, 1992] T. Ishida. Moving target search with intelligence. In
Proceedings of the National Conference on Artificial Intelligence,
pages 525–532, 1992.

[Koenig and Likhachev, 2005] S. Koenig and M. Likhachev. Fast
replanning for navigation in unknown terrain. Transaction on
Robotics, 21(3):354–363, 2005.

[Koenig et al., 2004] S. Koenig, M. Likhachev, Y. Liu, and
D. Furcy. Incremental heuristic search in artificial intelligence.
Artificial Intelligence Magazine, 25(2):99–112, 2004.

[Koenig et al., 2007] S. Koenig, M. Likhachev, and X. Sun. Speed-
ing up moving-target search. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems,
pages 1136–1143, 2007.

[Pearl, 1985] J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1985.

[Stentz, 1995] A. Stentz. The focussed D* algorithm for real-time
replanning. In Proceedings of International Joint Conference in
Artificial Intelligence, pages 1652–1659, 1995.

[Sun et al., 2008] X. Sun, S. Koenig, and W. Yeoh. Generalized
Adaptive A*. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pages 469–
476, 2008.

[Trovato and Dorst, 2002] K. Trovato and L. Dorst. Differential
A*. IEEE Transactions on Knowledge and Data Engineering,
14(6):1218–1229, 2002.

620


