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Abstract

The main result of this paper is to show that the
problem of instantiating a finite and path-consistent
constraint network of lines in the Euclidean space
is NP-complete. Indeed, we already know that rea-
soning with lines in the Euclidean space is NP-
hard. In order to prove that this problem is NP-
complete, we first establish that a particular in-
stance of this problem can be solved by a non-
deterministic polynomial-time algorithm, and then
we show that solving any finite and path-consistent
constraint network of lines in the Euclidean space
is at most as difficult as solving that instance.

Keywords. Constraint satisfaction problems, Satisfiability,
Qualitative spatial reasoning, Euclidean geometry.

1 Introduction

During the last three decades, a wide variety of formalisms
concerning qualitative spatial reasoning have been proposed
and extensively studied by researchers whose main interests
lie in the field of artificial intelligence [Clarke, 1985; Randell
et al., 1992; Ligozat, 1998; Skiadopoulos and Koubarakis,
2004]. The fact is that most of the spatial information we en-
counter in our everyday’s life can be modeled qualitatively,
rather than quantitatively. An overview of qualitative spa-
tial representation and reasoning, as well as current topics in
qualitative reasoning can be found in [Cohn and Hazarika,
2001] and [Bredeweg and Struss, 2003], respectively.
Besides its natural association with qualitative temporal rea-
soning [Wolter and Zakharyaschev, 2000; Renz and Ligozat,
2005; Renz, 2007], qualitative spatial reasoning plays a cen-
tral role in other fields such as mathematics [Liu, 1998;
Moratz et al., 2000] and logics [Gabelaia et al., 2005;
Kontchakov et al., 2008]. It is worth noting that few spa-
tial models that are related to elementary geometry have been
introduced so far in the field of AI, despite the fact that we
find it very interesting to study constraint satisfaction prob-
lems whose variables are elementary mathematical structures.
Indeed, Balbiani and Tinchev [2007] studied lines in the Eu-
clidean plane and showed that the satisfiability problem of
any finite and path-consistent network of lines in the Eu-
clidean plane can be solved in polynomial time. A sim-

ilar problem that was partially solved [Balbiani and Chal-
lita, 2004] concerned lines in the Euclidean space, where we
proved that the satisfiability problem of any finite and path-
consistent network of lines in the Euclidean space is NP-hard.
In this paper we determine an upper bound for that problem
by proving that it is in the class NP, and thus NP-complete.
In order to achieve our aim, we follow a slightly different
approach than the usual one: instead of providing a nondeter-
ministic polynomial-time algorithm that solves any instance
of that problem, we first establish that a particular instance
of this problem belongs to the class NP, and then we show
that solving any finite and path-consistent constraint network
of lines in the Euclidean space is at most as difficult as solv-
ing that instance. In other words, we only prove in this pa-
per the existence of a nondeterministic polynomial-time al-
gorithm that solves our problem by providing an upper bound
on the number of possible instantiations of a networks vari-
ables.
The reason behind using this strategy is that providing a
nondeterministic polynomial-time algorithm for this problem
turned out to be a nontrivial task.
This paper is divided as follows. We give in section 2 the
terminology needed to qualitatively compare lines in the Eu-
clidean space, and then recall some results about lines in di-
mension three. In section 3, we study particular spatial net-
works and show that instantiating any of their variables is
bounded by a polynomial. Then, in section 4, we prove that
the consistency problem of these networks is NP-complete,
before extending in section 5 the same result to any spatial
network. Finally, we conclude in section 6.

2 Lines in dimension 3

Four basic relations are needed to compare qualitatively
two lines in the Euclidean space. We denote them by
PO, EQ, DC, NC, which respective meanings are: ”hav-
ing one point in common”, ”equal”, ”parallel and distinct”,
and ”non coplanar”. Two lines in the space, denoted by
l and l′, can be exactly in one of the following rela-
tions: l{PO}l′, l{EQ}l′, l{DC}l′, l{NC}l′. Let E =
{PO, EQ, DC, NC} be the set of the jointly exhaustive and
pairwise disjoint relations that compare the position of any
couple of lines in the Euclidean space.
The definitions needed for describing a constraint satisfaction
problem (CSP) can be found in [Montanari, 1974]. We next
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recall some of them.
A network of linear constraints N is a couple (I, C), where
I ⊆ N is a finite set of variables, and C is a mapping from
I2 to the set of the subsets of E (i.e. 2E). The network
N is atomic if for all i, j ∈ I , Card(C(i, j)) > 1 then
C(i, j) = E. We say that N is path-consistent if for all
i, j ∈ I , C(i, j) ⊆ C(i, k) ◦ C(k, j), for every k ∈ I . A
scenario (or an instantiation) is a function f that maps I to a
set of lines in the Euclidian space. An instantiation is consis-
tent if, for all i, j ∈ I , the relation satisfied between the lines
li = f(i) and lj = f(j) is in C(i, j).
The algorithm of path consistency is explored and analyzed
in [Mackworth, 1977; Mackworth and Freuder, 1985]. The
constraint propagation algorithm due to Allen [1983], that re-
places each constraint C(i, j) by C(i, j)∩(C(i, k)◦C(k, j)),
transforms in polynomial time a finite network N into a path-
consistent one, whose set of consistent scenarios is the same
as the one for N .
For the rest of this paper, a constraint network will be de-
noted by N = (V, C), where V = {v1, . . . , vn} is a finite
set of variables of N , and C is a mapping from V 2 to 2E .
Without loss of generality, we assume in this paper that N is
a complete network. This will allow us to instantiate the vari-
ables of N more easily, as we shall see later on in sections 3
and 4.

Definition 1 A network of linear constraints N = (V, C) is
complete if the following condition holds: for any couple u, v
of its variables, there exists a constraint between u and v.

Notice that any network of constraints can be transformed
into an equivalent complete network, using a polynomial-
time algorithm.
Indeed, let N be a path-consistent constraint network of lines
in the Euclidean space. For each node v ∈ V of this net-
work, we check whether for all u ∈ V such that u �= v, there
is a constraint C(v, u) between v and u. If this is not the
case for a particular node u, then we can add the constraint
{PO, EQ, DC, NC} between v and u.

Definition 2 A spatial network is a finite and path-consistent
linear constraint network of lines in the Euclidian space.

We next recall two results established in [Balbiani and Chal-
lita, 2004]: the composition table given in figure 1 and propo-
sition 1.

PO, NC PO, NC, DC

PO, NC

PO, NC, DC,EQ

PO, NC

PO, NC

DC, EQ DC

POPO

DC

PO

PO

PO, NC, DC PO, NC, DC,EQ

DC

DC

EQ

NC

NCEQ

NCEQ

NC

Figure 1: Composition table of spatial relations.

Proposition 1 The consistency problem of spatial networks
is NP-hard.

To prove that the problem of finding a consistent instantiation
of a spatial network is NP-complete, we still have to show

that it is in the class NP . Addressing the problem in its gen-
erality (i.e. when considering any spatial network N ) seems
to be very difficult because of the multitude of possible in-
stantiations of the variables of N . The problem is that to find
a consistent instantiation of N , one might have to instanti-
ate some of its variables several times which, in some cases,
could require an exponential time.

Example 1 Consider the case of a network where three of its
variables (v1, v2, v3) are constrained by the relation PO. We
cannot tell in advance which instantiation of these variables
would be consistent. If another variable v is in the relation
PO with them, then we deduce that lines l1, l2, l3 must be
coplanar. On the other hand, if v is in the relation PO with
two of them and NC with the third one, then lines l1, l2, l3
should intersect in a single point without being all coplanar.

3 Particular spatial networks

We consider in this section some particular spatial networks.
More precisely, we determine the number of possibilities to
consistently instantiate the kth variable of each of these net-
works.

Definition 3 For any basic relation R ∈
{EQ, PO, DC, NC}, let Nn,n′

R = (V, C) be a finite
and complete network of constraints such that |V | = n′ ≥ n
and where the relation that holds between any couple of its
first n variables is R.

In the following subsections, we determine an upper bound
for the problems of consistently instantiating spatial networks

of the form Nn,n′

PO , Nn,n′

NC , and Nn,n′

DC ; the case of Nn,n′

EQ be-

ing trivial.
Note that in order to determine the number of possible instan-

tiations of the kth variable of Nn,n′

R , (1 ≤ k ≤ n), we take
into account all the possible relations that might constraint
vk+1 to the previously instantiated variables. From now on,
the Euclidean plane defined by two distinct lines lj and lj′
will be denoted by Pj,j′ .

3.1 Networks of the form N n,n′

PO

Question 1 Assuming that we already instantiated n−1 vari-

ables of Nn,n′

PO , how many possibilities are there to instantiate

the nth one?

Since all the lines l1, . . . , ln−1 should intersect with each
other, we distinguish 2 cases when instantiating vn:

1. Case 1. The previous lines are not included in one single
plane.
In this case all the lines must intersect in one single
point. So ln must also pass through that point, and can
be included (or not) in any plane already defined by two
lines lj, lj′ , where 1 ≤ j, j′ ≤ n − 1.

The total number of such planes is equal to
∑n−2

i=1
i + 1,

where the (+1) denotes the choice of drawing ln outside
of the planes Pj,j′ .
Note that the case where ln is included in a plane defined
by three (or more) lines is a special case of saying that ln
is included in a plane defined by just two of those three
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(or more) lines. That is why we just considered planes
defined by 2 lines.

2. Case 2. All the previous lines are included in the same
plane P . We distinguish two subcases:

(a) All the lines intersect in one single point p.
We have three possibilities for ln:

i. Line ln is not coplanar with the previous lines.

ii. Line ln is coplanar with the previous lines and
passes through p.

iii. Line ln is coplanar with the previous lines and
does not pass through p.

(b) They do not intersect in one single point.
In this case ln must also be included in P . Let
pj,j′ ∈ P , where 1 ≤ j, j′ ≤ n − 1, be the
point of intersection of lines lj and lj′ . Note that
the total number of such points is at most equal to∑n−2

i=1
i = O(n2).

We distinguish three subcases:

i. Line ln passes through two different points: pj,j′

and pk,k′ .

ii. Line ln passes through one point pj,j′ , where 1 ≤
j, j′ ≤ n − 1.

iii. Line ln intersects all the previous lines without
passing through any point pj,j′ that belongs to
two or more lines.

It is easy to see that the worst case happens for subcase (b) in
case 2; and that the total number of different possibilities of
drawing line ln is bounded by O(n4).

Answer 1. The number of possibilities is bounded by O(n4).

3.2 Networks of the form N n,n′

NC

Question 2 Assuming that we already instantiated n−1 vari-

ables of Nn,n′

NC , how many possibilities are there to instantiate

the nth one?

Suppose that all the previous lines have been drawn in p ≥ 1
groups G1, . . . , Gp, where for all the lines that belong to

the same group Gk, there exists a line lk in the space that
intersects them all. Note that line lk is different from lk,
which is the instantiation of the variable vk; and that a line lk
can, at the same time, belong to several groups Gσ1

, . . . , Gσr

where 1 ≤ σi ≤ p.
Line ln can be included in any of these groups or it can be
part of a new one. In the former case we have p possibilities,
whereas in the latter case line ln could form a new group
Gp+1 with any couple of lines amongst l1, . . . , ln−1, and

such that line lp+1 could be in the relation DC, NC, or PO
with one or more of the lines l1, . . . , lp and l1, . . . , ln−1 (this
condition will help us determine the direction of lp+1).
We know that there are C2

n−1 = O(n2) ways of forming
groups of two lines amongst l1, . . . , ln−1. Moreover, there
are O(n2) directions for line lp+1. Assuming that p = O(n),
we conclude that:

Answer 2. The number of possibilities is bounded by O(n5).

3.3 Networks of the form N n,n′

DC

Question 3 Assuming that we already instantiated n−1 vari-

ables of Nn,n′

DC , how many possibilities are there to instantiate

the nth one?

This is probably the most difficult case to deal with. Indeed,
a variable vn+1 could be in the relation PO with k ≥ 2 other
variables of a network N ′ and with the relation NC with the
remaining ones.
We next assume that the first n − 1 lines have been drawn in
p parallel planes P1, . . . , Pp; where each plane Pi contains ki

lines, for a total of
∑p

i=1
ki = n − 1 lines.

We next describe all the qualitative ways to draw line ln.
Line ln could be drawn in any plane Pi or in a new one. More-
over, one of the following cases holds:

1. Line ln could be included in a plane Pj,j′ defined by 2
existing lines lj and lj′ , where 1 ≤ j, j′ ≤ n − 1;

2. Or it could be included in a plane P parallel to Pj,j′

defined by 2 existing lines lj and lj′ , where 1 ≤ j, j′ ≤
n − 1, and such that P contains another line lj′′ (with
1 ≤ j′′ ≤ n − 1, and j′′ �= j, and j′′ �= j′).

It is easy to see that the number of possibilities of drawing
line ln in case 2 is greater than the one of drawing it in case 1.
Indeed, after fixing a plane Pj,j′ , we have O(n) possibilities
of selecting a third line lj′′ that satisfies the conditions of case
2.
We next determine the total number of possibilities (denoted
by S) of drawing line ln in case 1.

Remark 1 Taking into account case 2 would lead us to mul-
tiply S by n.

Let us assume that ln is drawn in a plane Pm, where 1 ≤ m ≤
p. The number of different possibilities to draw it is given by:

1 +

p−1∑
i=1

i�=m

p∑
j=i+1

j �=m

kikj (1)

The double-sum takes into account all the possible planes
Pj,j′ that might contain ln. The (+1) denotes the choice of
drawing ln outside of all the planes Pj,j′ and in a new plane
Pp+1.
Since we can draw ln in any of the planes P1, . . . , Pp, we de-
duce that the overall number of possibilities to draw it in any
plane Pj,j′ is:

S = p +

p∑
m=1

⎛
⎜⎝

p−1∑
i=1

i�=m

p∑
j=i+1

j �=m

kikj

⎞
⎟⎠

︸ ︷︷ ︸
ln is drawn in a plane Pm

+ 1 +

p−1∑
i=1

p∑
j=i+1

kikj

︸ ︷︷ ︸
ln is drawn in a new plane

(2)
As we can see from equation 2, and because of the factor
kikj , the total number of possible instantiations of a con-

straint network Nn,n′

DC depends on the way the lines are dis-
tributed in the parallel planes Pi, 1 ≤ i ≤ p (see Ap-
pendix A).

Proposition 2 The total number of possible instantiations of

the nth variable of Nn,n′

DC is bounded by O(n6).

464



Proof 1 We first notice that the complexity of the sum S is the
same as its leading term S′, where:

S′ =

p∑
m=1

⎛
⎜⎝

p−1∑
i=1

i�=m

p∑
j=i+1

j �=m

kikj

⎞
⎟⎠ (3)

We then consider the worst case where we assume that the
lines are distributed over p planes with p = O(n), and that
the number of lines in each plane Pi depends on n too (i.e.
ki = O(n), for all i ∈ {1, . . . , p}).
For all i, j ∈ {1, . . . , p}, we have kikj = O(n2). Thus, the

double sum in S′ is bounded by O(n4). Since S′ is the lead-
ing term of S and that p = n, we deduce that S = O(n5);
and hence conclude that the total number of possible instan-

tiations of Nn,n′

DC is bounded by nS = O(n6) (refer to Re-
mark 1).

Answer 3. The number of possibilities is bounded by O(n6).
The next proposition follows from the results established in
this section.

Proposition 3 Let Nn,n′

R , where R ∈
{EQ, PO, DC, NC}.
The total number of possible instantiations of the kth

variable of Nn,n′

R , where 1 ≤ k ≤ n, is bounded by O(k6).

Indeed, the worst case happens when we consider networks

of the form Nn,n′

DC .
The method we described here enlightens us on how to prove
that the consistency problem of particular spatial networks is
in NP, which is the subject of the next section.

4 NP-completeness results

We first prove in this section that the consistency problem of

some of the particular networks (i.e. Nn,n+1

R ) we saw in sec-
tion 3 is NP-complete, and then we extend this result to any
finite spatial network.
To establish proposition 4, one must provide a nondetermin-
istic polynomial-time algorithm that solves the consistency
problem of each of the particular networks we previously
described. The aim of the following algorithms is to prove
proposition 4.

4.1 N n,n+1

DC networks

In the below pseudo-code, pi denotes the number of parallel
planes that are used to draw lines l1 to li−1; kj is equal to the
number of lines drawn in the plane Pj ; and Pr1,r2

represents
the plane defined by the lines lr1

and lr2
.

In the below algorithms, by ”randomly number the variables
of Nn,n

R ” we mean that any numbering of the first n variables
of these networks would work. Moreover, by ”guess a
number q” we mean ”nondeterministically select a line lq or
a plane Pq”, depending on the context.

Algorithm 1. Given Nn,n+1

DC :

1 randomly number t h e v a r i a b l e s o f Nn,n
DC ;

2 f o r i = 1 t o n
3 g u e s s a number q between 0 and pi ;

4 g u e s s a number n0 between 1 and 2 ;
5 i f n0 = 1 then
6 { g u e s s q′ �= q and q′′ �= q between 1 and pi ;
7 g u e s s r1 ∈ {0, 1, . . . , kq′} and r2 ∈ {0, 1, . . . , kq′′} ;
8 draw li i n t h e p l a n e Pq , where li
9 i s i n c l u d e d i n Pr1,r2

;}
10 e l s e
11 { g u e s s q′ �= q and q′′ �= q between 1 and pi ;
12 g u e s s r1 ∈ {0, 1, . . . , kq′} and r2 ∈ {0, 1, . . . , kq′′} ;
13 g u e s s a number r0 between 1 and n − 1 ;
14 draw li i n Pq and Pr0

where Pr0
//Pr1,r2

;
15 draw ln+1 ;}

Intuitively, q represents the plane Pq in which to draw line li.
If q = 0, then li is drawn in a new plane parallel to the other
ones.
Furthermore, in the first case where n0 = 1, we guess the
planes (i.e. Pq′ and Pq′′ ) that contain the lines (i.e. lr1

and
lr2

) defining the plane that should include li.
Note that if r1 = 0 or r2 = 0, then the line li is drawn in
plane Pq but is not included in any plane defined by two ex-
isting lines lj , lj′ , where 1 ≤ j, j′ ≤ i − 1.
The second case, where n0 = 2 is similar to the first one ex-
cept that on line 13 we guess a line lr0

such that Pr0
contains

li and is parallel to Pr1,r2
.

Note that drawing ln+1 is straightforward and is based on the

constraints of vn+1 with all the previous variables ofNn,n+1

DC .
It is easy to see that the running time of this algorithm is poly-
nomial in the size of the spatial network Nn,n

DC .

Remark 2 During iteration i, it is worth noting that keeping
track of all the planes Pj,j′ that are defined by all the couple
of lines lj , lj′ , where 1 ≤ j, j′ ≤ i − 1, requires polynomial
space; and hence our algorithm would belong to the class
NPSPACE.1

Question 4 A fundamental question is:
How to draw line li in a plane Pq in such a way that it is not
included in any plane defined by an already existing two lines
lj , lj′ , with 1 ≤ j, j′ ≤ i− 1, and without keeping track of all
the planes Pj,j′?

Answer 4.
The trick lies in the way we actually draw line li in the Eu-
clidean space, and the fact that the number of lines we already
drew is finite.
We start by selecting for example the rightmost line (denoted
by lr) amongst all the lines included in the planes (Pj)1≤j≤pi

.
We then draw li inside the plane Pq and to the right of the ver-
tical plane to Pq that passes through lr.
In this way we are sure to answer question 4 by just keeping
track of one line (in this case the rightmost one).
Thus proposition 4 holds for the case where R = DC.

4.2 N n,n+1

PO networks

We next provide a nondeterministic polynomial-time algo-

rithm that solves spatial networks of the form Nn,n+1

PO .

1We know by Savitch’s theorem [Savitch, 1970] that
NPSPACE = PSPACE, but this is not of help for us since
we do not know whether PSPACE ⊆ NP .
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Algorithm 2. Given Nn,n+1

PO :

1 randomly number t h e v a r i a b l e s o f Nn,n
PO ;

2 f o r i = 1 t o n
3 g u e s s a number n0 between 1 and 2 ;
4 i f n0 = 1 then
5 { g u e s s two p o i n t s pj,j′ and pk,k′ o r none ;
6 draw li such t h a t i t p a s s e s t h r o u g h pj,j′

7 and pk,k′ ;}
8 e l s e
9 { g u e s s r1 ∈ {0, 1, . . . , i − 1}

10 and r2 ∈ {0, 1, . . . , i− 1} ;
11 i f ( r1 = 0 o r r2 = 0 o r r1 = r2 )
12 then draw li i n a new p l a n e ;
13 e l s e draw li i n t h e p l a n e Pr1,r2

;
14 draw ln+1 ;}

Intuitively, the case where n0 = 1 (resp. n0 = 0) corre-
sponds to the fact that all the lines are included in the same
plane (resp. intersect in one point).
On line 5, if we guess the same point (resp. we guess none)
then subcase (b) (resp. (c)) of case 2 in subsection 3.1 applies.
Moreover, during iteration i we just need to keep track of the
last line that was drawn in a new plane (denoted by lnew,i).
This would save us from using polynomial-space to keep
track of all the possible planes that can be defined by two
lines lj, lj′ .
The idea is to draw all the new lines (that must pass through
a single point) with, for example, a slight rotation to the right
with respect to lnew,i, and in such a way not to exceed an an-

gle of 900 with l1.
It is easy to see that proposition 4 holds for the case where
R = PO.

4.3 N n,n+1

NC networks

We next provide a nondeterministic polynomial-time algo-

rithm that solves spatial networks of the form Nn,n+1

NC .

Algorithm 3. Given Nn,n+1

NC :

1 randomly number t h e v a r i a b l e s o f Nn,n
NC ;

2 f o r i = 1 t o n
3 g u e s s 1 number r1 ∈ {0, 1, . . . , σi} ;
4 i f ( r1 �= 0 )
5 then draw li i n group Gr1

;
6 e l s e
7 { g u e s s r1, r2 ∈ {1, . . . , i − 1} ;
8 g u e s s q0 i n {1, . . . , i − 1} o r i n {1, . . . , σi} ;
9 g u e s s q′0 i n {0, 1, 2} ;

10 draw li i n a new group d e f i n e d by

11 lr1
, lr2

and lσi+1 ;
12 draw ln+1 ;}

Recall that on line 5, when li is drawn in group Gr1
, this

means that it intersects with lr1 (cf. subsection 3.2).
On line 7, we guess 2 lines with which li forms a new group
Gσi+1. Steps 8 and 9 help us determine the direction of
lσi+1 based on its relationship with line lq0

. We have 3
possibilities: DC, NC and PO. For example, q′0 = 0 could
mean that lσi+1 is in the relation DC with lq0

.

It is easy to see that proposition 4 holds for the case where
R = NC.

Proposition 4 The consistency problem of Nn,n+1

R , where
R ∈ {EQ, PO, DC, NC}, is NP-complete.

Actually, there exists a deterministic polynomial-time algo-

rithm that solves the consistency problem of Nn,n+1

R (e.g. it
suffices to start by instantiating vn+1). But our idea of using
a nondeterministic algorithm to instantiate the kth variable of

Nn,n+1

R allows us to generalize the result established in the

above proposition to any network Nn,n′

R .

5 Extending the result to any finite spatial

network

In this section, we show that the consistency problem of any
finite spatial network is NP-complete.
Recalling proposition 3, we have:

Fact 1 Let N ′ = Nn,n′

R , where R ∈ {EQ, PO, DC, NC}.
For any k ∈ {1, 2, . . . , n′}, the number of different instantia-
tions of vk in N ′ is bounded by O(k6).

Indeed, it is easy to see that the more different types of con-
straints a spatial network has, the less consistent instantiations
its variables have.
For example, let N ′ = N 3,4

PO and N ′′ = N 4,4
PO be two spatial

networks where the fourth variable of N ′ is in the relation
DC with v′1 and in the relation PO with v′2 and v′3. The con-
straint DC forces all the lines (l′1 to l′4) to belong to the same
plane. We can easily see that the number of consistent instan-
tiations of N ′ is less than that of N ′′.
When instantiating the kth variable of N ′, and assuming that
the first k − 1 variables are constrained with each other with
the same relation R, we distinguish two cases:

1. The constraints that relate vk to all the previous k − 1
variables are all equal to R;

2. There exists at least one constraint that relates vk to an-
other variable vk′ (k′ < k) that is different from R;

Thus, it is easy to see that there are less possible instantia-
tions of vk in the latter case than in the former case because
of the constraint Cvk,vk′ .

Proposition 5 Let N be a finite spatial network.
The problem of finding a consistent instantiation of N is NP-
complete.

Proof 2 The proof of this proposition follows directly from
fact 1 and from noticing that any finite spatial network be-
longs to the set:

{Nn,n′

R : R ∈ {EQ, PO, DC, NC}; n, n′ ∈ N
∗; n′ ≥ n}.

We conclude this section by stating that there exists a nonde-
terministic polynomial-time algorithm that solves the consis-
tency problem of N .
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6 Conclusion

In this paper, we showed that the consistency problem of fi-
nite and path-consistent constraint networks of lines in the
Euclidean space is NP-complete. To achieve our aim, we first
proved the above result for particular spatial networks, and
then extended it to any spatial network. As we already stated
in the introduction, we did not provide explicitly a nonde-
terministic polynomial-time algorithm that solves the consis-
tency problem of a spatial network, but rather proved the ex-
istence of such an algorithm.
Our next aim is to try to provide an explicit algorithm that
solves this problem. Moreover, we intend to find an answer
to the following questions: would the consistency problem of
lines in the Euclidean space remain the same in the case of in-
finite networks? What are all the tractable subclasses of this
formalism? For the time being, all we know is that if we re-
move the basic relation NC, the consistency problem of lines
in the Euclidean plane becomes tractable.
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A Instantiating a network of the form N n,n′

DC

In this appendix, we give an example of an instantiation of

Nn,n′

DC and determine the number of all possible consistent
instantiations of vn.

Example 2 Suppose that n = m2 and that in each plane Pi

we have m =
√

n lines.
In this case S = O(n3

√
n), and the overall number of possi-

ble instantiations of vn is O(n4
√

n).

Proof 3 Notice that the number of planes is also equal to m.
We then compute the leading term S′ of S:

S′ = m × ((n − 1) × (m × m) + · · · + (1) × (m × m))

= m × ((n − 1)(n) + (n − 2)(n) + · · · + n)

= m × (n(n − 1)/2)× (n)

= O(n3m)

After multiplying the result by n, we get O(n4
√

n).
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